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In the paper the process of deformation of an elastic porous skeleton
at finite strains and the associated transport of fluid through the pores
is considered. Undergoing large deformations these coupled interaction
phenomena require skilful analysis. Numerical results for a three-layered
subsoil resting on a rigid foundation under different permeability condi-
tions in the uni-axial state of strains are given.
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1. Introduction

Consolidation processes which arise in many problems of geotechnics, envi-
ronmental engineering, biomechanics, chemical industry etc., need improved
understanding of transport and interaction phenomena in porous, fluid satu-
rated media. These phenomena being very complex in different bodies (e.g.
pollutant soils, dampers, bones) can be analysed precisely when large defor-
mations and large displacements are not ignored.

In the present paper the consolidation of a multilayred foundation consi-
sting of an elastic porous skeleton and inviscid, incompressible fluid is conside-
red. Large deformations and hence separation of the fluid and solid particles,
change of porosity, and configuration dependent permeability are taken into
account. Consequent lagrangian descriptions for both the solid as well as the
fluid phase have been used. The finite strain formulation leads to many non-
trivial computational details which require careful analysis and inspection.
The paper aims at presentation of numerical results for a quasi-stationary
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nonlinear consolidation process in the uniaxial state of strains. A general de-
scription of the problem is based oun the model presented by Szefer (1980),
(1998).

2. Formulation of the problem

Consider a two-component porous body with a linear elastic skeleton, un-
dergoing consolidation due to a static load acting on the boundary. Using the
following denotation

u°,E,S ~ displacement vector, strain tensor and the II Piola-
Kirchhoff stress tensor for the skeleton particle

uf ,F’l’F ,p — displacement, deformation gradient and pressure, re-
spectively, for the fluid component

n,0,T — porosity, fluid content ratio and interaction drag vec-

tor, respectively

one can write the system of governing equations in material coordinates as
follows:
— balance of mass for the fluid

nJF = 79
— balance of momentum
(1 = n0)Skr(dir, +ui ) — "JFPXIP;,i],K =0
(2.1)
—n[J pXi i,k +7i =10
— kinematical relations
1
Egr = 5(“?{,L +uj g+ ul gUN L)
0 =nJ®—mng

— constitutive relationships

l1—-n
Sk1 = T (2N Bxr + (ABnw + Q0)5xz]

p=QEKK—R9 Ti:—l—(’vip—’vf)



CONSOLIDATION OF A POROUS MULTILAYERED SUBSOIL... 761

where

vg - velocities

cof — algebraic co-factor

k - coefficient of permeability

N,A,QQ,R - material constants

79 — initial porosity
and

F 1 F a a

Xy = 5F cof (bir + u; g) J* = det(d;x + ui'g) a=s,F

In Eq (2.1); we leave out the mass balance for the solid (since it determines
the skeleton mass density which is not coupled with the remaining equations)
whereas in (2.1)2 3 we neglect the body forces.

The system (2.1) should be complemented by suitable initial and boundary
conditions

u% (X, o) = ufo(X) X € Br a=3sF
u% (X, t0) = vgo(X)
(1 -n0)Skr(ir +uf )Nk = qri(Xo,t)  Xo€S,

—nJFpXE’iNK = pri(Xo, 1) for permeable edge
u;{(XOutO):g(XOJ) XO ES'u. SR:SGUSU
(wF ~vf)n; =0 for impermeable edge

(2.2)
Ng and n; ~ stand for the components of unit outward normal vectors in the
reference and current configurations, respectively.

3. One-dimensional process of consolidation

Consider a three-layered subsoil resting on a rigid stratum loaded uniformly
on the upper surface by the load ¢(t) (Fig.1). Taking Z for the lagrangian
and z°, zF for the current coordinates of the particles, let us denote the list
of unknown functions describing the one-dimensional case by

W, U — displacements of the solid and fluid particles, respec-
tively

Ez7,572 - strain and stress components in the solid

P — fluid pressure

T, - diffusive drag force

n, 6 — porosity and fluid content ratio.
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Fig. 1.
Thus it we have
22 =7Z+W(Z,1t) J3:1+%—V; 'usz%/v
F=Z4+U(2,1) JF:1+g—g vF:%—(t] (3.1)

07 1
a,F U
az ]‘+ﬁ

Hence the system of governing equations for the one-dimensional case is

U 0 oW . B
n(1+52) =ng B_Z[(l_nO)SZZ(l-*-?Z—) - np(Z ,t)] =0
ow Op
92n(1+—)—n0 —n—+7127=10
0Z o0z (3.2)
ow 1,0W\2
Ezz = FYA + 5("52) Szz=(2N 4+ A)Ezz+ Qf
1 -
p=QEzz+ Rf TZ:E[’UF(Z*,t)—’US(Z,t)]

It should be emphasized, that the fluid and solid particles beeing in contact
at the instant ¢ have different coordinates Z* and Z in the reference confi-
guration (see Fig.1). The coordinate Z* results from the implicit relationship

Z*: == 2 U2 ) = Z° + W(Z5,1) (3.3)
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(see also the companion paper of Szefer).

This fact constitutes an important part of the numerical analysis by using
the material description.

A weak formulation of the governing equations can be stated by applying
Galerkin’s procedure of weighted residuals (Lewis and Schrefler, 1987) or by
using the virtual power formalism. Using the latter approach yields

H
oW\ 8 5 on
0/ (0= n0)Sz2(1+ 5 ) 5 (6W) + np - (8U) + 5_p(8U = 5W)] dZ +

(3.4)
H

+ / 72(8U — §W) dZ = (1 — ng)q(t)dW (0,?)
0

where W, §U - stand for the virtual displacements.
To overcome the nonlinearities appearing in the model described by Eq
(3.4) the incremental procedure of step-by-step linearization has been used.
Thus, approximating the field variables in space as usual by the finite
element techniques and by the weighted finite difference discretization in the
time domain one obtains the matrix equation

(K* + KN AU = AF + Q, (3.5)
at each step of the time instant ¢, where

AU — nodal displacement vector of the increments

K® KF - stiffnes matrices resulting from the solid and fluid com-
ponents, respectively

AF — vector of the external force increment

Q, - residual vector resulting from linearization of the nonli-
near terms.

4. Numerical examples

We will focus our attention on the three layered foundation resting on the
rigid base (Fig.2).

For numerical solution, the time discretization proceeds according to the
scheme
Ay®* 1-4§
SAL 6

s 2

ugap = ug + [(1 = 8l + dlgy At At = Uppnr = U
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q(1)
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Fig. 2.
where 0<d <1, a=s,F.
Thus, the diffusive drag force (3.2) has the form
1 /AU AW 1-4 - .

T t+At:—(———)——U—W 4.1
2( ) =0\ T A w5 Ut = W) (4.1)

Applying the finite element method we will use one dimensional isoparametric
finite elements. Then the displacement increments of the skeleton and fluid
are

[AW] = [$4,0, 65,0, by, O)[Ah;, Adhs, Atg, Adi;, Athyy, Adi] " = ¢S?& )
4.2

[AU] = [0, $i,0, ¢5, 0, | [Ab;, Ally, A, Afhj, Moy, A T = ¢F At



CONSOLIDATION OF A POROUS MULTILAYERED SUBSOIL... 765

where
1 1 1 1
$i(6) = 56° ~ 3¢ $i(6)=1-¢ $i(€) = 56 + 3¢

After introducing Eq (4.2) into Eq (3.5) the matrices may be rewritten as
follows

1
K: — /al¢sT¢ Jsed£+/a2¢F ¢ Jsed£+
—~1
1
5 r8€ 5T 4 F 7se
+ /lakéAt ¢ d“/a“kmt" ¢ g ¢
1
K™ = [ asgf 8fs™ de + / o’ BEITC de +
- ! (4.3)
1
.
+ / ¢ JFed£+/ag ¢F ¢ JFE de
1
5 l1 5 (1
o - _ S5€ - = = se
Q - 5/1k¢¢ % dE - 5/1,c B7ULI* de +
1-6 [1 1-6 [1,p
- LoFT Frr qFe 50 L~ L Fe
+ 5/1k¢¢UtJ d 5/1k W, IFC de

where ¢% — matrix of derivatives
o =(1—ng)2N +A-Qn) g = ...

At this point let us notice that the global stiffness matrix is a band but asym-
metric one. That is known in contact problems and here we have some kind
of internal contact between the skeleton and fluid particles.

As it was mentioned before, due to the separation of fluid and skeleton
particles, during the consolidation process some part of the fluid is squeezed
out of the pores. Then, it is necessary (at each time step) to describe and
evaluate the current fluid reference configuration, which is different from the
reference configuration of the skeleton. That is realised by using an iterative
procedure which occured to be fast convergent.
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Denoting the current common position of particles by

zs(N-}—l) — 78 +Z¢3(Zs)(N)AW

N (4.4)
JF(N+LY) _ 7F + Z¢F(ZF)(N)AU

N

we have at each internal step n the following equality of nodal point coordi-

nates
ngs — ngk (4.5)

Solving the equation resulting from Eqs (4.4) and (4.5)

nss _ Al + Z¢F(nZ*F)(N)AU (4.6)
N

we obtain a new coordinate "t'Z*F for the current fluid nodal point of the
finite element.
This procedure is repeated until the following condition is satisfied

N+l
ntlss _ n+12F( +1) <e (4.7)

where ¢ is sufficiently close to zero.

skeleton
fluid W -
n7tF///~\ - "Z'[':v ’
"+IZ.F/‘ . A\"'
L

Fig. 3.

This iterative procedure is schematically shown in (Fig.3). Three kinds of
subsoils A, B, C (Fig.2) of different permeability conditions on the top and
bottom edges have been solved. Fig.2 shows the list of data, the character
of loading and the values of numerical parameters used in our calculations.
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The well-known in soil mechanics Kriiger’s formula for permeability coefficient
describing its dependence on porosity is used.
_ 2.8-107%dyn?
- (1-n)t

(4.8)

where d, - diameter of soil particles.
5. Conclusions

8 910 o
1 [103h]
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Fig. 4. Current position of the edge of upper layer (settlement)
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Fig. 5. Fluid reference configuration

The paper is summarized with the plots of: displacements of fluid and
skeleton particles, current fluid reference configurations, porosity, permeability

coefficient and fluid pressure distributions (see Fig.4 + Fig.12).
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In strongly deformable porous medium substantial changes of porosity and
permeability can be seen. It is Interesting that during rapid compression we
observe initial increase in porosity (see Fig.9) and then it slowly decreases
maintaining the level of external load.

Simultanously no essential difference in displacement distribution of the
skeleton in the three kinds A, B, C of subsoils is observed. In some parts of
the layers the value of fuid pressurre is about 25% of the value of external
load (Fig.10 + Fig.12), which means that this part of the load is carried by
the fluid. Analysis of the paths of skeleton and fluid particles motion (Fig.6
+ Fig.8) allows for providing more precise description of the consolidation
process and enables one to evaluate the amount of fluid squeezed out of the
layers which can have a practical application to different porous bodies.
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Konsolidacja wielowarstwowego podloza porowatego w warunkach
duzych deformacji

Streszczenie

W pracy rozwazono proces deformacji porowatego szkieletu sprezystego przy skon-
czonych odksztalceniach oraz towarzyszacego transportu cieczy. W warunkach duzych
deformacji te sprzezone zjawiska interakcji wymagaja subtelnej analizy. Podano nu-
meryczne rezultaty dla trojwarstwowego podloza lezacego na sztywnym podkladzie
przy réznych warunkach przepuszczalnoéci w jednoosiowym stanie odksztalcenia.
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