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Basing on two examples a significant impact of the order of magnitude
of dimensionless parameters on the homogenisation process results when
using either the direct averaging or classical homogenisation approach
has been presented. First, the effect of two dimensionless parameters on
the results of amplitude direct homogenisation procedure has been stu-
died. Three examples of different values of dimensionless parameters
and R, have been shown for filtration of an incompressible Newtonian
liquid. The presented methodology proves that certain classes of physical
processes can be treated in a similar way. Dissimilar descriptions of the
processes appearing in, for instance optics or dynamics result from ne-
glecting certain effects when changing the observation method or scale.
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1. Introduction

The homogenisation theory is usually applied when one has to find an equ-
ivalent homogeneous model of a heterogeneous medium under consideration.
An overwhelming majority of material solids which continuum mechanics is
interested in reveal the feature of material properties heterogeneity displaying
a random spatial distribution. Only few materials, usually the artificial ones,
exhibit periodic distributions of heterogeneity. In this paper, we shall use the
direct homogenisation and the method of averaging based on the theory of
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small parameter, applied to materials of periodic heterogeneity distribution.
This is for the following two reasons. Firstly, there 1s evidence for equivalence
of the two methods of homogenisation of randomly and periodically hetero-
geneous media (Kroner, 1972; Strzelecki et al., 1996). Secondly, the method
of homogenisation of deterministically heterogeneous medium can be followed
in much more easy way when taking into account the necessary mathematical
apparatus. Periodic heterogeneity is assumed to oscillate at a high frequency
within an area of the body under consideration when travelling from point
to point. It appears that considerable or even jump changes of the medium
properties that occur on a small scale (microscale) are observed as large-scale
(macroscale) variability imposed on the trend function of the physical value we
are interested in. These distortions tend to vanish in the course of homogeni-
sation process when the medium is homogenisable or contribute considerably
to solutions to the non-homogenisable problems.

Whether or not a heterogeneous medium is homogenisable, or if there exists
an equivalent model of the medium and a theory that describes it, is determi-
ned by the orders of magnitude of dimensionless parameters that appear in the
equations written in dimensionless coordinates. These parameters determine
the processes in a heterogeneity cell (Auriault, 1986). There are two para-
meters in the steady-state vibrations, considered below, one of which being
the basic epsilon parameter of homogenisation. When analysing liquid steady
flows through a porous medium, apart from the epsilon parameter, also two
dimensionless parameters are used. If, for a given boundary-value problem,
the heterogeneous medium is homogenisable, it is possible to find the effective
material constants for a homogeneous simplified model. Then these constants
are used in the simplified equation describing the physical value being looked
for. The solution to this problem is a function, being the limnit the solution ob-
tained for a periodic homogeneous medium tends to approach. We obtain this
limit when we approach zero with the cell size. This also means that, when the
periodic heterogeneity ”cell” is small enough when compared to the size of the
body in question, the solution precisely taking into account heterogeneities
differs slightly from the solution for homogenisation-simplified model of the
medium. In addition, the theory of homogenisation allows us to determine in
which boundary-value problems the fluctuations induced by the body struc-
ture heterogeneity are so big that they constitute a part of the solution that
cannot be neglected. Such issues are non-homogenisable, hence approximate,
simpler, averaged material constants solutions obtained for models of homoge-
neous media do not exist. In the theory of homogenisation, it is often assumed
that not only the size of the periodic heterogeneity cell tends to zero. It is
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also assumed that the other parameters that describe the problem, including
some physical constants, might change in proportion to the e*-function of the
small epsilon parameter associated with the material constants periodicity cell
(Auriault and Royer, 1993).

The a-power exponent might be any real number, but usually takes one
of the following values: —2, —1, —=1/2, 0, 1/2, 1, 2. The physical sense of the
assumption that the values of physical constants should change alongside with
a change of ¢ is sometimes not clear. It is obvious only in the direct method
of homogenisation. In this method, we know a precise closed form solution to
the problem for a periodically heterogeneous medium where, by a direct limit
passage to zero with the parameter ¢, we get a simplified solution, valid for a
medium with the effective material constants. If the problem is not hornogeni-
sable, this limit does not exist. However, the method of direct homogenisation
displays one basic drawback. There are hardly any closed form solutions for
heterogeneous media, important from the technical viewpoint. Using this me-
thod, it is immpossible to obtain the equation representing the problem for the
equivalent homogeneous medium. On the other hand, the method of direct
homogenisation is of great importance for didactic purposes owing to its clear
mathematical and physical sense. It is a tool for understanding the idea of ho-
mogenisation and makes it easier to get skilled at other, more general, methods
of averaging. Therefore, below we shall present the analysis of the effect the
values of dimensionless parameters exert on the result of the averaging pro-
cess, following the direct homogenisation procedure, in a simple 1D mechanical
problem of the dynamic theory of elasticity.

A similar problem of the effect the values of dimensionless parameters
exert on homogenisation result is presented while averaging an incompressible
liquid flow through the pores of a heterogeneous medium. However, unlike in
the former case, the way of homogenisation is based on a general method, in
which the small parameter approach is employed.

2. Samples of direct homogenisation of the solutions within the
framework of dynamic theory of elasticity

The boundary problems of the dynamic elasticity theory of heterogeneous
media is described by the equation

32

= P@Ui (2.1)

(G(Ui,j + Uj’i)),j + (/\Uj’j),i + i
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For clarity, in the above equation the index notation is used and the Einstein
summation convention holds. In addition, the coma denotes the operation of
calculating the partial derivative, e.g.

BUI(XlaXQaX:})t)

=U
59X, 1,1
Additionally, the following notation is applied
U; — displacement vector component directed along the Xj;-axis

of the coordinate system at instant ¢

G,X — material constants dependent on the X; coordinates,
G = G(Xi,X2,X3) and X = A(X, X9, X3). These are
functions that describe local shear moduli and the Lame
constants for a heterogeneous medium

p - mass density dependent on the Xj;-coordinates

Yi — unit weight component dependent on X;-coordinates.

Coming on to the 1D issue: U = U}, Uy =0, U3 = 0, which can be called
the oedometric equation of movement, we get .
d d 0?
E —U = p(X
B 5 0] 4450 = () o0
(2.2)
2 2
Jax2V t7=r35.

The former equation refers to a heterogeneous body whereas the latter
- to a homogeneous medium. These equations emarge from the assumption
that X = X, U =U,, B4 = A+ 2G and 7 = ;. The latter equation is
derived from the former on the assumption that the oedometric modulus of
compressibility £y, unit weigh -y, and mass density p, do not depend on the
spatial coordinate X.

As an example, we shall solve the problem of determining the amplitude
of steady-state vibrations W(X) in a heterogeneous sample under the oedo-
metric condition of deformation. The boundary conditions were assumed as
follows: W(0) = A, W(L) = 0 for a sample showing a periodic heterogene-
ity of the oedometric modulus of elasticity FE,(X) and mass density p(X).
Sample oscillations of the material constants of an [-period are shown in Fig.1.

The equation representing the problem is the first term of (2.2), after the
unit weight effect in it has been neglected

0 0 o*

5% 7% U] p(X) 55U (2.3)

Ey(X U

[Ba(X) 7
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Fig. 1. Assumed variations of modulus FEj; and density p along the sample axis

The assumption that the sample exhibits stationary vibrations
U(X,t) = W(X)exp(iwt)

resolves the above issue to solving the Helmholtz wave equation

0 0

= [Ed(X)a—X

o W| + p(X)w*W =0 (2.4)

Unfortunately, the general solution of this equation cannot be written down
in the closed form for any periodical functions Eg(X) and p(X). The parti-
cular form of Eq (2.4) is Hill’s equation: 3" + [f(z) + e]y = 0, where f(z)
is a periodic function. A further simplification may lead to Mathie’s equation:
y" + (bcos 2z + h)y = 0. However, these simplified forms of the equation do not
have general solutions expressed by elementary functions either. Therefore, in
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order to find possibly the simplest form solution of Eq (2.4), we assume the
particular forms of E4(X) and p(X) periodic changes presented in Fig.1
Ey

EyX)=—-7F= p(X) = po (2 + sin ?) (2.5)

2 + sin 22X

The general solution of Eq (2.4), having taken into account the above sub-
stitutions, the notation: ¢ = y/Ey/po and the boundary conditions W(0) = A,
W(L) = 0 reads

W(X) = — A sin(%fl)+ Atang COS(%{I)

sino + cos o tan sino + cos o tan

(2.6)
with the following notation
6122%—%COS¥ wz%(?—%cosi—ﬁ)
(2.7)
o L .
2mwe L

This solutions depend on two dimensionless parameters, wL/c and [/L. The
first one, consisting of the angular velocity of steady-state vibrations w, the
characteristic dimension of the object considered L and a quantity c¢ beeing
similiar to the sound speed in the medium, might be either extremely big:
wL/c = O(e™1); it can be of the order of one: wL/c = O(1), or extremely
small: wL/c = O(g), where the parameter ¢ is much smaller than one: ¢ < L.
This quotient determines the ratio of sample length to the wave length that can
propagate in the sample. The /L coefficient can assume values of the order
of one: I/L = O(1), or very small ones: [/L = O(e). Noticeably, the values
of the order of one are only possible if the method of direct homogenisation is
applied. The solution (2.6), depending on the values of the two quotients, can
take six different forms.

Case I - [/L-parameter is of the order of one and wlL/c takes a very great
value

% = O(1) = Oe™h) (2.8)
In the solution of Eq (2.6), as wL/c tends to infinity the result depends on the
value of the denominator sin &+ cos a tan . If this value is equal to zero, the
amplitude distribution is indefinite, as the phenomenon of resonance occurs.
For great values of wL/c, already relatively small changes of w or ¢ might
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result in such a situation. The solution assumes an especially simple form for
@ = /2 + nxw. For this ¢-value, the solution (2.6) is simplified to yield

A wl X [ 2w X wl
W) = o eos( 76 Q=2 m g s =9
(2.9)

Such a type of solution cannot be obtained using methods of periodic
media homogenisation because the epsilon parameter is of the order of one:
e = l/L = O(1), and the homogenisation method requires that epsilon be
of the order: O(e). This case is a part of a different asymptotic theory - the
theory of the eiconal of macroscale periodic heterogeneity media.

Case II - The parameters, [/L and wL/c, are of the order of one

{ wlL

— =0(1 — =0(1 2.1

- =0(1) =~ o) (2.10)
It is Eq (2.6) that makes up the solution in this case. It belongs to the class

of solutions of macroscale-heterogeneous media dynamic theory of elasticity.

Case III — [/L-parameter is of the order of one and the wL/c quotient is
very small

) wl

L (1) C
This assumption causes the variables wL& /¢, ¢, ain Eq (2.7) to be extremely

small

O(e) ekl (2.11)

“L _ o) o = O) Le=oe) @)

- 2me

After the limit passage changes Eq (2.6) can be rewritten as

2X l 2r X [
U(X) = "M(T ~ 5 cos ”T) +A(1- WMT) -
M:2+%(1—cos¥)

Eq (2.13) belongs to the class of static solutions of the theory of elasticity for
macroscale-heterogeneous media.

The theory of homogenisation of micro-scale heterogeneous media does not
cover the three cases given above as it requires that the quotient [/L should
be very small, of the order of epsilon: Of(e). The first and third cases can be
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obtained within the framework of other asymptotic theories, where another
physical value rather than the relative periodicity cell size of the medium
heterogeneous material constants is a small parameter.

Case IV - [/L-parameter is very small and the coeflicient wL/c is of a very
great value

% = O(e) — = O(e™) ek 1 (2.14)
This is a sample non-homogenisable issue in the theory of microscale-
heterogeneous media homogenisation. On the assumption (2.14) the variables
in Eq (2.7) take the values of the following orders of magnitude

=" = o) o= O™
e (2.15)

wlL 2wX wkle 2 X
—& - cos = 2n7 + @
c ¢ 2rwe l

The possible solutions include that of the type of Eq (2.9), which reads

A wlL
W(X) = — 2.16

(X) cosacos( c &) (2.16)
It belongs to the class of solutions of geometric optics for heterogeneous bodies
for which the wavelength c¢ is comparable with the length of the medium
heterogeneity periodicity cell.

Case V — The parameter [/L = ¢ is very small and the ratio wL/c is of the

order of one ] I
= =0() WT —0(1) e<x1 (2.17)

For these parameter order of magnitude, what we have is a classical case of
applying the process of homogenisation to the dynamic theory of microscale-
heterogeneous media. The assumed orders of magnitude for the parameters
simplify Eq (2.7) as follows

2wl 2X wlL

o(1 = — = —¢= i
p="toon)  a=% a=prc=0()  (219)
After the limit passage Eq (2.6) reads

in( 2
W(X) = —%JFACOS(%X) (2.19)
C
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This is a solution that determines stationary vibrations in a homogeneous me-
dium. In the formula above, the parameters consist of the effective material
constants of the homogeneous medium, which were formed from periodically
variable constants of the heterogeneous medium. Unfortunately, as was men-
tioned earlier, the method of direct homogenisation fails to give a way to
determine the effective oedometric modulus, FE.y, and effective mass density
pes in the mathematical model of the equivalent homogeneous medium

o*U o*U
fox2 ~ Pl g2

Without referring to the general homogenisation procedure, we can only guess
that E.; and p.s should be determined with the aid of the formulae

E

(2.20)

_ 1 Eo
Eep = (B ()" = - pes = {p(y)) = 2po
(2.21)
Eef C
C = = —
°f Pef 2

The symbol (-) denotes averaging over the periodicity cell area.
These dependencies allow for determination of the effective wave velocity
cef, €qual to the sound speed in the equivalent medium.

Case VI - The two values: the parameter {/L = ¢ and the coefficient wL/c
are very small

é = O(e) % =0() exl1 (2.22)

On these assumptions the variables in Eq (2.7) are of the following order of
magnitude
2wl

Y= O(e) W_Iigl =
(4 (4

2wX L
it = O(e) o=

c 27e

£ = O(e)
(2.23)

After the limit passage Eq (2.6) simplifies to the form: W(X)=A — AX/L.
In this case, the process of direct homogenisation leads to the static solution.
This result can be obtained using the equivalent model for a homogeneous
body, by considering the analogous boundary-value problem.

The six cases of direct homogenisation are summed up in Table 1. The
basic problem of dynamics of periodically heterogeneous bodies given in bold
can be simplified in five different ways as a result of direct homogenisation.
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Table 1. Possible cases of homogenisation of the dynamic problem of
periodically heterogeneous media

wL/c O(e™®) 0(1) O(e%)

l/L
Theory  |Optics Dynamics Statics

O(1) Medium |Heterogeneous Heterogeneous | Heterogeneous
Transition | Asymptotic Asymptotic
Theory |Optics Dynamics Statics

O(e~®) Medium |Heterogeneous Equivalent Equivalent
"Transition Non-homogenisable Homogenisation |Homogenisation
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Fig. 2. Solutions yielding the amplitude distribution in the sample given in the first
row of Table 1: quasi-static approximation (1), solution of the dynamic theory of
elasticity of heterogeneous media (2) and solution of the optical-geometric
approximation (3)

Two limit passages for the first row are not included in the homogenisation
theory discussed. The theory of homogenisation comprises limit passages up
to the second-row cases.

3. Flow of a Newtonian liquid through a non-deformable porous
medium

Let us assume that a porous medium constitutes a non-deformable struc-
ture formed of a solid. Inside this structure, there is a network of filtration
channels, linked mutually regularly enough to determine the Representative
Volume Element (RVE), meeting the conditions of structural periodicity. Our
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assumption is that the considered body contains a big number of such repe-
atable elements, which can be presented in Fig.3.

Medium in a macroscale
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Fig. 3. Cross-section through the periodic structure of porous medium

An incompressible Newtonian liquid flows through the pores and this phe-
nomenon takes place at a constant temperature (isothermal process). The way
of derivation of the equations describing the process of liquid flow through a
periodic cell was presented in several works, c¢f Auriault et al. (1990), Mei
and Auriault (1989), (1991), Sanchez Palencia (1974), (1980), Strzelecki et al.
(1996), Whitaker (1986).

Taking into account the postulate of Newtonian liquid incompressibility,
we can present the system of equations, describing the flow process through
the pores of a non-deformable medium, in the following form

ov/
uVif — gradpf = pf(W + v/ gradvf)
(3.1)
dive/ =0 vfrF:O [v/] =0 Ip] =0

The above system makes the starting point for homogenisation procedure.
However, it must be preceded by an introduction of dimensionless variables;
hence the normalisation of this equation system should be performed.

3.1. Normalisation of equations

In equations (3.1), all of the values are physical values with certain units
corresponding to the physical sense of these values. Following the algorithm
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of homogenisation proposed by Beer (1972) we have

Upmaz = max ||of || Prax = max ||p/ ||
Unaz v2yf Prmaz dof 9
e — max | V20 | % — max |[gradp/l|  (3:2)
o' 2
M max [| e || tmaz . max [l grade/|

ot
By substituting dependencies (3.2) into equations (3.1), we get

f f
v

tmaz

vf

f ]
HVmaz o2 2 Pmaz D P’ Unmazx
\VJ “) — d = — t
12 <Umaz ) l gra (pmaz l) tmaz Otf ('Umaz maz) +
f,2 of f
+ £ Ymaz ( grad hd ) (3.3)
) Urmnaz Urnazx
f f
div2— =0 b
’Umam vmaz r

Then we shall introduce the following dimensionless value of velocity and pres-

sure

o! f

P
p =
VUmaz Pmaz
We define all the functions of physical values in a double magnitude scale
(X,Y), hence

v = (3.4)

v=v(X,Y) p=p(X,Y) (3.5)

while: X € [0, L] is the macroscopic spatial (physical) variable, Y € [0,{] is
the local spatial (physical) variable.

In the general case, there is a simple linear relationship between the ma-
croscopic and the local variables, i.e. X =Y +C, where C denotes a constant
value.

The values are {2-periodical with respect to the Y-variable, which means
that: »(X,Y +1) = »(X,Y) and p(X,Y +{) = p(X,Y). As we tend to
resolve our system of equations to the dimensionless form, we shall introduce
the dimensionless spatial coordinates z and vy, as well as a dimensionless
time 1

X Y tf

= — = — z,y € (0,1 t=
A y €[0,1] P

The derivative of a function with respect to the X-macroscopic dimensional

variable has the form

te0,00)  (3.6)

i 1,8 0
aX 7(5— )

+ A _L (3.7
or " oy ‘7L 1)
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Let us now introduce other dimensionless values

fa)2 .2 "
Rel — P vmaz/l Rtl — P vmaz/ max (38)

Q= Prmaz/l
PVmaz /12 PVmaz /12

B /J"Uma.z/l2

The quantities @, R and Ry have their physical meaning. The dimen-
sionless number () determines the ratio between the forces due to pressure
gradient and the viscous drag in the flowing liquid

Q= O(ffﬁii) (3.9)

In Auriault’s papers (Auriault, 1980, 1987, 1994; Auriault et al., 1990) it
was assessed that, in the case of a liquid flow through a porous medium, the
values of Q) is of the order of O(e™').

The following reasoning was made:

o The order of magnitude the pressure gradient observed in the macroscale
was determined

gradp = 0(?) - O(E%) = O(e)

— then the viscous drag was assessed
. pllv
pdive = O(%ﬂ) = 0(1)

— the ration between the two values finally yields the order of magni-
tude
Qu=0(") (3.10)

Q; may certainly assume a value much greater or smaller than that assumed
in Eq (3.10). We shall perform homogenisation assuming the following orders
of magnitude for dimensionless variable @

Q= O(%) Q=0 Q= 0(e™?) (3.11)

The first of the above cases means that, in the microscale, the pressure
gradient is of the same order of magnitude as the viscous drag. Thus, in the
macroscale, we deal with the classical problem of hydraulics. The last of the
cases, i.e. when @Q; = O(¢~2) means that the pressure gradient is of the order
of @Q; = O(e™}), when the viscous drag is of the order of @Q; = O(¢), i.e. the
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load factor is €~2 stronger than the drag forces. Auriault (1994) suggested
that the order of the R,-value was associated with @; in the following way

Re=0(Q7) (3.12)

which would indicate that the order of magnitude of the two numbers is de-
termined the order of magnitude of dimensionless velocity wv. Should this
suggestion be taken as true, then we would need to analyse the following com-
binations of the dimensionless constants orders of magnitude

Q=0(" and Ry =O0()
Q=01 and Ry = 0(e) (3.13)
Q=0(c"?) and Ry = 0(e?)

In the general case, after assuming initially three orders of magnitude of ¢
and, analogously, three orders of H.; we would need to consider 9 combinations
of mutual relationships between these values. If, in addition, we take into
account the term of inertial forces, i.e. three cases of dimensionless Reynolds
number, we would have to consider 27 cases with various configurations of the
dimensionless values (), R, and Ry.

In our paper we shall confine ourselves to an analyses of a much smaller
number of mutual relations of the dimensionless values @, R and Ry,
though such that yield interpretations which are significant from the viewpoint
of physics. In the case of a steady flow, we shall confine ourselves to the cases
described by Eqs (3.13). Taking into account Eqgs (3.4), (3.6) = (3.8), in the
system of equations (3.3) we get the normalised system of equations in the
form

0
V2 +2eV2, + Vil — Qe grad ; + gradyJp = Ruz% +
+Rejfevgrad , +vgrad v (3.14)
e div v+ div,v =0 v]rzo

The x,y-indices at the symbols grad, div, V2 mean that dimensionless
variables z, y are the independent variables with rspect to which differen-
tiation is performed. The above system of equations is supplemented by the
conditions of §2-periodicity for the functions of pressure p, and velocity v

[p] =0 [v] =0 (3.15)

All of the vector and scalar values in Eqs (3.14) lie within the range [0,1]
except for time t, which changes within the range [0, 00).
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Then we shall confine ourselves to considerations of a steady liquid flow.
In this case, the system of equations (3.14) is simplified to the form

[€2V2 + QEViy + V;]v — Qilegrad ; + grady|p =
= Rglevgrad ; + vgradjv (3.16)
ediv,v + divyv =0 v| =0

with the periodicity conditions (3.15).
The homogenisation procedure proposes expanding the sought functions
v and p into an asymptotic series with respect to the small parameter €

v =2 4 v 4 2 4 S 4
(3.17)

p= p(o) + Ep“) + 52p(2) + Esp(s) + ..

The process of normalisation allowed us to determine dimensionless system of
equation (3.16), which can now be subjected to the homogenisation procedu-
res.

3.2. Homogenisation

Let us start with the case of dimensionless values @; 1 R, being of the
order

Qi =0(") Re = O(e) (3.18)
Taking into account Egs (3.16) with the periodicity conditions (3.15) we have

[€2V2 + QEViy + V;]v — ¢ Hegrad , + grad,|p =
= elevgrad; +vgradylv (3.19)
e div v + divye =0 v| =0 v] =0 Ip] =0

After substituting the asymptotic expansions (3.17) into Egs (3.19), we obtain
an infinite system of differential equations corresponding to the subsequent
powers of €%, For the lowest orders of the expansion with respect to ¢, we get
the following systems of equations:
— for the order of magnitude ¢~}

gradp(® =0 (3.20)

2 — Mechanika Teoreryczna
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— for the order of magnitude (¥

divp@ =0 o0 =0 pOI=0 =0
(3.21)
Vinl® — grad ") — gradp'® = 0
— for the order of magnitude &
divyv“) + divzv(l) =0 p( r= 0 [[,,(1)]] -0 [[p(l)]] —0
(3.22)
Vf/v(i) + 2V2yv(o) — grad yp(z) — grad Ip(l) =2 grad yv(o)
— for the order of magnitude &2
div,»® + div,eM) =0 ey =0 @] =0 p®] =0
(3.23)

However, having considered only the first two equations, we can already re-
ach the expected results referring to the mathematical model of the equivalent
medium and the way of averaging the material constants of the macroscopic
medium. After taking into account the periodicity condition Eq (3.20) implies
that the value of pressure p(®) depends solely on macroscopic variable z, i.e.
in the local scale g is constant

P = pO(z) (3.24)

In order to obtain the relationship between the values of highest order asymp-
totic expansions (3.17), the task resolves itself to solving the system of equ-
ations (3.21) + (3.23), which yields

V2u(0 — gradp) — grad ;p(® = v©

(3.25)
div,® =0 v<°>(r =0 [v©] =0 PN =0
The following make up the solution of the above system
v = —K(y) grad ,p*
(3.26)

) = 1(y) grad ;p® + 5 ()
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where the tensor K(y) and vector 7(y) are functions of the local variable,
while p(1)(z) is a function depending on the macroscopic variable .

Substituting Eq (3.26) into Egs (3.25), we can see that functions K(y) and
T(y) must fulfil the system of equations

V;K(y) + agg(}y) + 0 =0
J (3.27)
div,Kpl=0 K| =0  [K@l=0  [w]=

After being averaged, Eqs (3.27) constitute the starting point for determining
the value of Darcy’s macroscopic coefficient of filtration. If numerical methods
are applied, Eqs (3.27) make the starting point to formulate the boundary-
value problem. The obtained functions K(y) and 7(y), after averaging, render
it possible to find the second-order tensor K and vector 7.

Rewriting the first solution of Eq (3.25) intoterms of the filtration velocity
vector components, we have

opl0
Oz;

v = —ki;(y) (3.28)

Passing on to the physical variables in Eq (3.28) as well as multiplying and
dividing the right-hand side of the equation by ul, we get

£(0) kij(y) BVmaz , . OpF©)
BT LL 3.99
z B Pmal | 0X; (3.29)
hence .
1.0 0pf
’U;f(o) = ( )Ql 1 112 gX (330)

As we assumed that @Q; = O(s’l), we can then write down the following on
the assumption that, in a particular case, the value of constant A =0(1) =1

Qz Ae=¢ (3.31)

Substituting Eq (3.31) into Eq (3.30), we get the final solution of the system
of equations in the form

2 5, f(0)
A0 _ o\ Op

(3.32)
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After averaging relative to spatial coordinate y, we have

2 f(0)
60 = == (b (o) (3.33)
J
where .
() =g J© a (3.34)
2

Eq (3.33) is Darcy’s filtration law, known from experimental physics. This law
can be written down in the form
- o)
—kij Op
0X;

(o] = (3.35)

1

where I~cij is the second-order tensor of permeability, the numeric value of
which is of the order )
kij = o(l—) (3.36)
°
whereas k;; is a mean value (k;;(y)) dependent on the cell internal structure
considered on the microscale.

Let us consider the physical sense of all the values obtained by averaging
in Eq (3.33). What rises suspicion is the sense of mean value v/ defined
as a value of volumetric mean, while filtration velocity is associated with a
flow through the surface, so we should calculate the mean over the surface. In
reality, we can show that, in this case, the two means are equal. This is due
to the selenoidal character of function (9.

Now we shall consider the case when the dimensionless values @Q; and R,
are of the order of magnitude

Q=001) Ry = O(1) (3.37)

Physically, this means that the pressure gradient is of the same order as the
viscous drag and the forces of convection. Taking into account Eq (3.37); in
the system of equations (3.16) with periodicity condition (3.15) and then ap-
plying asymptotic expansion of the form (3.17), after analogous mathematical
transformation, as in the previous case, we have

20— (O = p0(z) (3.38)

Hence, in case we are considering the ideal homogenisation, i.e. such that
epsilon 1s very close to zero, we do not observe any flow of the liquid even
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though there appears some variation of pressure p(%)(z) on the macroscale.
For the term of order ¢' we get

vl = —K(y) grad ,p*)
(3.39)
P = aly) grad o + 5(z)

where K(y) and a(y) are functions of local variable y, and p)(z) is a
function dependent solely on the macroscopic variable z.

Functions K(y) and a(y) are the solutions of the following equations
system

V2K(y) + 6‘;’; Buily) 55 =0
? (3.40)
div K(y)l =0 K(y)| . =0 [K(y)] =0 la(y)] = 0

Writing the first solution of Eq (3.39) in terms of the velocity vector compo-
nents, we get

(0)
O _ () 2 3.41
U’L ( alj ( : )
Passing to dimensional variables in equation (3.41), we shall get
k £(0)
of® = _KiilW) pOp 77 (3.42)

U BX

If we take the velocities from the asymptotic expansion of Eq (3.17) with an
accuracy of small of the first order, it is expressed by the formula

v = 00 4 o)

hence £0)
_ kii(y) o0
Lf — _Fid\Y),2 0P
€ P l 7YX, (3.43)
By averaging relative to the local coordinate y, we get
. gpf®
(0f) = —ehkij———o oX, (3.44)

The above formula clearly implies that for a very small value of ¢ the mean
velocity of filtration tends to zero: (vif) = (. Following this, the filtration
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velocity is, for € — 0, equal to zero although pressure gradient p(®) might
not be equal zero. This case describes filtration of an extremely viscous liquid,
forced by the limited value of pore pressure gradient 8p(®/8X; = O(1). Only
an infinitely high pressure gradient, 9p(®)/6X; = O(e~1!), not occurring in
practice, makes a noticeable liquid flow. Let us consider the last case, i.e.

when
Q=02 and Ry =O0(? (3.45)

By analogous procedures as in the previous cases we get p(® = const, and
p() is a function of only one macroscopic variable, i.e.

ap(0)

0
p = pW(z) and of ) = — ki (y) o7 (3.46)
Zj

After averaging, we obtain Darcy’s law again, yet with the excitation smaller
by an order than in the first case under consideration. By introducing the first
two terms from the pressure asymptotic expansion

p=p0 +ep (3.47)

and passing on to dimensional variable in Eq (3.46),, we get

2 f
0)f [ _ | 0p
wl = ki) e laxj
Thence, after averaging, we have
f
0)f . —10p
WOy = —kye la_Xj (3.48)

Noticeably, 0p/0X; must be of the order of O(e), so that (vfo)> can be of
the order of O(1), which means that this solution is reasonable only when
we deal with very small excitations. For instance, it should be understood
physically that we are considering the problem of filtration of a nearly ideal
liquid, of minimal kinematic viscosity, of the order of O(e). Only very small
pressure gradient ensures filtration velocity displaying values of the order of
O(1). Visibly, the obtained solution imposes conditions for pressure gradient
values on the macroscale. The process is homogenisable.

3.3. The essence of the solutions obtained

We have considered three cases of the homogenisation process, having as-
sumed, respectively, different dimensionless values @Q; = O(1), @, = O(e ™)
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and @Q; = O(e7?), in addition assuming that, due to the velocity order of
magnitude, there exists the relationship between @; and R,

R = 0(Q7") (3.49)

In the first considered case we have Darcy’s filtration Jaw on the macroscale
(3.35)

P op®
- YBX;
whereas on the microscale the classical description of a incompressible liquid
flow (the Navier-Stokes equation) is in force, while k;; is the second-order
tensor of permeability and has the order of magnitude

(0 = (3.50)

- 2
kij O(u) (3.51)
The solution obtained is a significant achievement of theoretical physics. Using
only mathematical tools, when passing on from the microscale to the macro-
scale, we have obtained an entirely different type of the equation that describe
the flow process. We have also managed to determine the order of magni-
tude for the permeability tensor elements of the equivalent medium. It should
be stressed that the obtained results agree with the results of experimental
physics and the dependence of the permeability coefficient on the [%/u-ratio
conforms to the experiments. In addition, it should be stressed that the first
person who got the linear relationship between the mean velocity of a liquid
flowing through a small diameter pipe and pressure gradient was Poisseuille.
He showed that the coefficient in his name’s equation is proportional to the
squared pipe diameter and inversely proportional to the viscosity of the liquid
flowing through the pipe.
Now we shall analyse the solution for the case of the equality

@ =0(1) Ra =0(1) (3.52)

While observing the process of homogenisation, we shall notice that already for
the first value order of ¢ we get a system of classical hydraulics equations
on the macroscale with periodicity conditions. It is the existence of these
conditions that leads to solutions in the form

2@ = (0 = pO)(z) (3.53)

Further considerations lead to a Darcy’s law-type relationship between the
second term of v(1-asymptotic expansion and the pressure gradient p(? in
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the form equivalent to Eq (3.44)

(0)
f(1) :_fcuap 54
(IUZ > 27 6XJ (3 )
Due to the relationship: (fuif) = s(fuif(l)), in the case of ideal homogenisation

(¢ — 0) the above equation allows for drawing the conclusion that, at gradient
pl® of the order of O(1), the filtration velocity v/ might tend to zero. This
is a trivial solution to the problem of liquid filtration. Such a case rarely
occurs in practice. The assumption leads to a result which is uninteresting
from the practical viewpoint. The question is when such a case might occur.
The answer to this question is simple. Certainly, one can imagine an issue of
dealing with an extremely dense liquid, of very high viscosity, or a pressure
gradient, small enough for average viscosity, such that the order of viscous
drag is the same as the order of the flow excitation. Then this task resolves
itself to the case of incompressible liquid filtration with the viscosity coeflicient
tending to infinity. The process of homogenisation and intuition prompt that
the only solution that determines the filtration velocity is a trivial solution,
i.e. no liquid flow. In the extreme case of infinite liquid viscosity coefficient,
the two-phase medium transforms itself into a single-phase non-deformable
material. What we are left with is the third case, when the dimensionless
values are as follows

Q=0 and Ry = 0(?) (3.55)

(3.55) The interpretation of the case is also easy. The accepted assumptions
lead to the conclusion that the value of p(%) is, in this case, a constant value,
so the gradient p(®) does not occur. We get the way to homogenise a Darcy’s-

type equation, which binds the value <'UZ(O)> with gradient p{!) in the form of
relationship
0 - 3p(l) _
<UL( )> = _kijg ! 8XJ (306)

The above result makes sense only when the pressure gradient is very small,
of the order of O(e). When the pressure gradient is of the order of OM | then
the velocity ’UZ(O) tends to infinity. Such a case might occur in the flow of an
almost inviscid liquid through a porous medium, at a very small magnitude of
excitation due to the pore pressure gradient. Taking this into account, we can
imagine that, in the extreme case, the pores are filled with the Pascal ideal
inviscid liquid.
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In the case of ideal homogenisation, at ¢ approaching zero, the two pro-
cesses in question yield the equivalent media which are uninteresting from the
practical view-point. In the first case, this is a non-deformable body and in the
second — the Pascal liquid. The processes of averaging from the point of view of
the homogenisation theory have limitations, hence the issues under considera-
tion are homogenisable though the conclusions stemming from launching these
processes impose additional conditions on the value of macroscopic pressure.
In the former, the pore pressure gradient should tend to infinity and in the
latter — zero. The obtained results are summed up schematically in Table 2
below.

Table 2. Homogenisation results for the problem of a non-compressible
liquid steady flow through a stiff periodically heterogeneous medium

paeneomes | o) O O(e?)

Dimensi

vl g OW) 0 o

Theory None Darcy’s filtration | None

Medium Equivalent, Equivalent, Equivalent,
Non-deformable | Darcy liquid Pascal liquid

Transition Homogenisable | Homogenisable Homogenisable

It should be emphasised that the above table was prepared taking into ac-
count the initial assumption R = Ql_l, which not always has to be satisfied.
Then our considerations should be extended to cover all of the combinations
of the mutual relationships between the dimensionless numbers.

4. Conclusions

Using two examples, we have shown the significant impact of the order of
magnitude of dimensionless geometrical and loading parameters on the physi-
cal equations. The equations describe the courses of phenomena and medium
type obtained in the procedure of transition from the microscale to the macro-
scale, provided such a transition is possible. The analysis we have presented
also renders it possible to define the range of issues that are homogenisable.
The fact of impossibility to perform this procedure does not always mean that
the process cannot be described, but the task should be solved as for a hetero-
geneous medium. In an easily noticeable way, this is illustrated by the directed
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homogenisation examples we adduced even though the presented examples fail
to comprehensively explain the entire problem.

Three examples of different values of dimensionless ) and R, have been
shown for filtration of a non-comprehensible Newtonian liquid. The analysis
we have performed allowed us to determine the form of the flow equation on
the macroscale when the medium pores are filled with a Pascal liquid or a
liquid of infinite viscosity (non-deformable liquid). Amongst the three cases
under consideration, only the one that allows for determination of a Darcy-
type equation in the macroscale. Although, on the microscale, this process
is described by a system of differential equations, it seems to be of great
practical significance. However, from the theoretical point of view it seems
important that when the pores are filled with a Pascal liquid, one cannot
arrive at Darcy’s equation on the macroscale. This follows the fact that, in
numerous publications referring to the theory of consolidation, it was assumed
incorrectly that the Darcy-Biot equation describes the process of a Pascal-type
non-viscous liquid flow (Derski, 1978; Biot, 1941).

In the case of liquid filtration, the analysis of the effect exerted by dimen-
sionless values was the subject of studies when the flow velocity grows and
the laminar movement transforms itself into the turbulent movement on the
microscale. In Mei and Auriault’s papers (Mei and Auriault, 1989, 1991), the
non-linear equation of the filtration low was obtained on the macroscale in the
form of an asymptotic series. It was also shown that, under any circumstances,
even powers cannot occur in this expansion, which excludes Chezy’s equation,
commonly applied to the description of this process.

The methodology we have presented shows the integrity of certain classes
of physical processes. The dissimilarity of process descriptions in, for instance
optics or dynamics results from neglecting certain effects when the observa-
tion method or the scale is changed. According to the authors, this is what
the homogenisation theory significance consists of. Owing to it, the descrip-
tion of certain processes on the atomic scale has been successfully associated
with their influence on the processes in continuous media mechanics (Benso-
ussan, 1978).
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Wplyw rzedu wielkoéci parametréw bezwymiarowych na wyniki procesu
homogenizacji

Streszczenie

Wplyw rzedu wielkosci parametréw bezwymiarowych na wyniki procedury homo-
genizacji zostal pokazany na dwdch przykladach, z ktérych pierwszy dotyczy homo-
genizacji bezposredniej, a drugi uzywa metodologii klasycznej teorii homogenizacji.
W pierwszym przykladzie zilustrowano wplyw rzedu wielkosci dwéch parametrdw
bezwymiarowych na rozwiazanie opisujace amplitude drgai ustalonych. W drugim
przykladzie, dotyczacym przeplywu niescisliwej cieczy lepkiej przez o$rodek porowaty,
pokazano wplyw rzedu wielkodci dwéch parametréw @ 1 R, na wynikowe rownanie
konstytutywne. Przeprowadzona analiza dowodzi, ze wiele réznych proceséw fizycz-
nych moze byé potraktowanych w sposdb podobny, jezeli poddajemy je homogenizacji.
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