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In the paper possible treatments of the domain integrals appearing in
BEM are discussed. Major approaches are compared and critically eva-
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ques. New trends in these methods involving new interpolation functions
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1. Introduction

Complex engineering problems are efficiently solved nowadays only by
using numerical methods. Finite differences (FDM), finite elements (FEM)
or more recently boundary elements {BEM) are the principal methods used
to determine both steady-state as well as transient fields. Each of the above
techniques can be seen as a particular version of a more general approach
i.e. the Method of Weighied Residuals. The differences between particular
methods consist in the application of different weighting functions and in the
number of integrations by parts performed over the domain. Many numerical
tests carried out so far have proved that all the above mentioned techniques
provide a remarkable and comparable degree of accuracy and are usually not
very demanding in terms of computer time and memory. The versatility in re-
presentation of geometrically complicated regions allows one to model variety
of engineering phenomena in objects of any shape with any kind of boundary
conditions.

It should be pointed out, however, that in spite of many similarities, par-
ticular numerical techniques differ in the way they approach the problem. in
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the amount of required geometrical information. in the way they represent
solution etc. From the user point of view it is important to notice that the
FDM and FEM fall within the group of the so-called domain methods. This
means that discretization of the whole domain is necessary when using these
techniques. On the contrary. BEM expresses the solution to the problem in
terms of an integral equation. In many cases this equation contains only the
boundary integrals and only the boundary needs to be discretized. Solution
at internal nodes (if needed) is obtained at the next stage making use of just
the known boundary values. This stage is purely a postprocessing task.

As explained above the boundary element method reduces the dimensiona-
lity of the problem by one. The word reduces has been put into the inverted
commas since the physical field retains its number of independent variables.
The object which is discretized, i.e. the contour line (in 2D computations)
or surface (in 3D computations), has one dimension less than the physical
problem itself.

As already mentioned the Boundary Flement Method consists of transfor-
ming the boundary value problem into an equivalent integral equation which is
then solved numerically. The method was first used to solve the Laplace type
partial differential equations which govern steady-state potential problems, in-
cluding heat transfer problems. In these cases solution is expressed in terims
of boundary integrals only, Brebbia et al. (1984), Brebbia and Dominguez
(1989). The clegance of the formulation and simplicity of the computer imple-
mentation has stimulated the extension of the method onto more complicated
engineering situations.

Problemis with internal sources (or body forces), e.g. those described by
the Poisson equation contain both domain and boundary integrals. The latter
integral not only ‘detracts from the elegance of the formulation but first of
all affects numerical efficiency. This is why a substantial amount of research
has been carried out in order to convert the domain integrals occurring in the
BEM equations into boundary integrals. Several methods have been proposed
so far and some of them will be discussed in this paper.

The aim of this paper is twofold. First, a general discussion on the tre-
atment of domain integrals in BEM is given, including the fundamentals of
the Dual Reciprocity Method (DRM) as well as the Multiple Reciprocity Me-
thod (MRM). These techniques attracted most attention for the last few years.
Then recent advances in the DRM interpolations, computer implementation
and substracturing are presented. This is then followed by main advantages
and disadvantages of both techniques.
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2. Boundary problem under consideration

The treatiment of domain integrals will be studied reffering to the Poisson
type equations which can describe, for example, a steady-state temperature
field with heat sources acting inside a domain (2 with a boundary I

. 1
Viu+ =0 (2.1)
where
w - temperature
k- thermal conductivity
¢y — internal heat source (a known function).

It should be noted that this term can stand for real source existing inside
the considered body, but also for a fictitious one when transient, nonlinear,
convective etc effects are collected in the term gq,.

In order to obtain a unique solution ¥Eq (2.1) one has to specify boun-
dary conditions. However, because boundary conditions of any kind can be
prescribed along the boundary [ these equations will not be discussed hereby.

Application of the reciprocity theorem allows one to transform the boun-
dary value problem (2.1) to the following integral equation (cf Brebbia et al.,
1984: Brebbia and Dominguez, 1989)

/i'Cz‘”LLz‘-i‘/([*'U, dl' = /u*q df—/u*qv ds? (2.2)
I r 7]

where the fundamental solution u* satisfies the following differential equation

Viu* = §, (2.3)
and has the form
QL In(r) 2D problems
ur = 17r . (2.4)
— = 3D problems
47

In equation (2.4) 6, is the Dirac function acting at the point 7 and 7 is
the distance measured from that point.
The heat flux analog ¢* is defined as

=~k
e on
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The domain integral in Eq (2.2)

D= /u*qu ds? (2.6)
n

causes that discretization of this equation can not be restricted to the boun-
dary [ only. In early BEM works (c¢f Brebbia, 1978; Brebbia and Walker,
1979) integrals of this type have been calculated by domain discretization. If
the sources term ¢, is a known function of space only, the domain integral does
not introduce any new unknowns. Subdivision of the domain into cells is ho-
wever cumbersome and time consuming, and particularly in three dimensions
this is a difficult task even when automatic mesh generators are available. Mo-
reover, integration over the whole domain has to be performed as many times
as the total number of nodes. This affects noticeably efficiency of the me-
thod and causes BEM to lose its main advantage which is the boundary-only
formulation of the problem.

Gipson (1987) in his paper devoted to solutions of the Poisson equation
using BEM proposed to employ the Monte Carlo method to perform numerical
integrations over the domain. This idea is simply to implement but it usually
requires a large number of random integrals to achieve a good accuracy.

In many practical situations the domain integral appearing in Eq (2.6) can
be transformed into its equivalent boundary form, which is a subject of the
next section.

3. Transformation of the BEM domain integrals to the boundary

Transformation methods discussed in this section are in general restricted
to the domain integral appearing in Eq (2.6). For notation convenience the
source term ¢, is replaced by a generalized body force called b and this
integral is written in the following form

D= / Wb A (3.1)
o}

The transformation methods which have been proposed so far fall into one
of the following main groups:

e methods related to particular solutions

e methods related to the so-called Galerkin technique.
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The particular solution. noted here as u, obviously satisfies Eq (2.1) and
the body forces can be expressed in terms of a particular Laplacian solution
(cf Azevedo and Brebbia, 1988; Cruse et al.. 1989)

b=—-kV3y (3.2)

Substitution of Eq (3.2) into Eq (3.1) makes the integration by parts po-
ssible and yields

D= —lc/ WV AR = —k / avius d + /(u*'{]— qgu)drl (3.3}
o} 17} r

Taking into account the definition of fundamental solution and particu-
larly the property of Dirac function. one arrives at the following boundary
formulation

D= —/{:ciﬂ.i—f—/(u*cf—q*a)df (3.4)
r

When the particular solution is not known (and this is the majority of
practical situations) Nardini and Brebbia proposed in the beginning of eigh-
ties Nardini and Brebbia (1982), (1985) that heat source term is generally
approximated at N + L points (/N boundary nodes and [ internal nodes)
using the following interpolation

1 N+L
b=2aw=2_ e (3.5)
j=1

where f; are arbitrary approximating functions and ¢, are unknown coef-
ficients. In early works, e.g. by Nardini, Partridge, usually f = 14 r was
used. This function is recognized to have the so-called local support, i.e. the
influence of points located closer to the collocation point is stronger than that
of distant points. This feature is very important at the stage of determining
the coefficients «;. Simply, the interpolation functions without this property
can lead to a divergent algorithm.
The technique is nowadays widely known as the dual reciprocity method.
It uses interpolation functions f; that allow for easy analytical solutions for
the following equations
Vi, = f; (3.6)
More details of the DRM are given in many references, e.g. by Partridge et
al. (1992), Partridge and Brebbia (1989). It has already been successfully
applied to solving many engineering problems, Partridge et al. (1990) and
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(1992), including nonlinear cases, e.g. Wrobel and Brebbia (1987). As alre-
ady mentioned the DRM can be considered as an extension of the particular
solution technique.

Instead of applying interpolation (3.5) Tang (1988) proposed to expand
the body force term b into its Fourier series. In general, to obtain the Fourier
coefficients one needs to integrate over the whole domain. In order to perform
this integration analytically Tang expanded the body force term within an
overdimensioned but simple shaped auxiliary region 2’ covering the domain
2. For 2D problems the usual choice regarding domain 2’ is a rectangle.
whereas for the 3D case it might be a parallelepiped or sphere. For such
simple shapes the Fourier base functions are also fairly simple. As a result
it is relatively easy to find particular solutions to the Fourier base functions.
Taking into account the orthogonality of base functions and following the
DRM transformation procedure the author arrives at the series of boundary
integrals.

The method was originally proposed to deal with potential and elasticity
problems. However, it has been successfully extended by Itagaki and Brebbia
(1988) to solve neutron diffusion problems.

The second group of methods is related to the so-called Galerkin technique,
Brebbia and Dominguez (1989), Brebbia et al. (1984), Cruse (1977), Telles
(1986). In its original form it permits of conversion of domain integrals to the
boundary for a limited selection of the body force terms, i.e. those obeving
the Laplace equation

V2 = 0 (3.7)

The transformation to the boundary is basically accomplished through
integration by parts and making use of the fundamental solution »* for a
biharmonic equation, i.e.

Vivr = §; (3.8)
It is easy to prove that the function v* reads

2
;—(ln r+1) 2D problems
T

T

— 3D problems
8w

as well as satisfies the condition

Vit =y (3.10)
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Hence, by virtue of Eqs (3.10) and (3.7) the reciprocity theorem yields

D= /*bdr /51; 0b Z0r) ar (3.11)

The multiple reciprocity method (MRM), developed by Nowak in the late
1980s generalizes these concepts (cf Brebbia and Nowak, 1989; Nowak, 1988,
1989, 1992; Nowak and Brebbia, 1989, 1992). The method introduces a set of
the so-called higher order fundamental solutions

5 . N ; (?u ‘ .
v Wiy = U q; = 871 3 =0,1,2,.. (3.12)

as well as a sequence of the source function Laplacians

0b;

2 . .

and operates on the domain integral in a recurrent manner. As a result, the
technique can lead in the limit to the exact boundary-only formulation of the

problem

Z/ qi1bj — uiwi) dl (3.14)
=07
where bp = b and uj = u”.

The multiple reciprocity method was proposed by Nowak (1988) to cope
with thermal processes and has since then been gradually extended to solve
other engineering problems (cf Nowak and Brebbia, 1989a,c; Nowak, 1989;
Brebbia and Nowak, 1992). It has already been applied to solving the Hel-
mholtz equation, calculating eigenvalues; analysing fluid flow problems; inve-
stigation of elasticity and thermoelasticity, as well as solving critical safety
and vibration problems. Full discussion on the MRM can be found in Nowak
and Neves (1994) while solutions of nonlinear problems are reported by Nowak
(1995).

4. New trends in the treatment of BEM domain integrals

Recent works on the domain integrals treatment show that many interna-
tional efforts have been made generally in the following two directions:
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e Extension of the DRM and MRM into new applications. It is interesting
to notice that fluid dynamics groups are particularly very active in the
DRM research. Fluid flow problems are attacked by the DRM approa-
ches using both fundamental solutions, i.e. to the Navier-Stokes equation
as well as to the Laplace one (cf Popov and Power, 1966; Szczygiel and
Nowak, 1992)

e Progress in the accuracy and robustuness of the DRM which was possible
mainly because of the more solid mathematical bases formulated recently
for this technique. The following two improvements have to be pointed
out in that context

— Decomposition {(zoning) which reduces considerably numerical er-
rors (cf Mingo and Power, 1966). The reason why results obtained
using zoning are much more accurate is still not fully clear. Usually.
reduction of the size of patches is pointed out. In another words,
formulation is more similar to that of FEM. It is however impor-
tant to stress that boundary nature of this solution is still preserved.
Another reason could be an additional constrain involving fluxes,
which in the case of zoning are forced to be continuous across each
interface in this approach

— New DRM interpolation functions which allow now for better repre-
sentation of the behaviour of source term inside the domain. This
issue is discussed in the next subsection.

4.1. Thin plate splines

Early works on the dual reciprocity have shown that although a variety
of functions can in principle be used as a basic approximation function, good
results were usually obtained with simple expansions, the most popular of
which is  f; = 14 r;, where r; is the distance between represented fixed
collocation points, y;, and a field point =, at which the sought field is
approximated. In the DRM literature given, the choice is based on experience
gained numerical tests rather than on formal mathematical analysis.

Recently, mathematicians have pointed out, from cf Goldberg and Chen
(1994), that according to the radial bases functions in interpolation theory,
the best possible 2D approximation for b in Eq (3.5) is given the following

formula
N+L

b= Z(?‘?logr]-)aj—kal‘—kby—kc (4.1)

=1
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Such function is known as the so-called thin plate spline. It is important
to add that the above best interpolant still possesses the local support, but
it additionally reveals another important feature. i.e. its curvature between
collocation points is minimum. This is why the function (4.1) guarantees the
best possible interpolation of source term b.

It is also interesting to note that the first term on the right-hand side of
Eq (4.1) (involving logr) is very much the same as the fundamental solution
of the first order utilized in the multiple reciprocity method. This suggests
deep links between the DRM and MRM which need to be investigated.

The interpolation function (4.1) contains three additional coefficients com-
paring with Eq (3.5). Thus, three more equations to Eq (4.1) are required.
They are as follows (cf Goldberg and Chen, 1994)

N+L N+L N+L

Z o; = Z oz = Z a;y; =0 (4.2)
7=1 3=1 7=1

The set of Eqs (4.1) and (4.2) allows one to determine the components of
vector b for each boundary node and each internal point. Remaining part of
the algorithm follows the standard path.

5. Conclusions

Recent developments of the treatment of domain integrals in BEM offer
two alternative techniques, namely the Dual Reciprocity and the Multiple
Reciprocity Methods which both utilize the reciprocity theorem although the
philosophy behind each method is different. The MRM leads to the exact
boundary-only formulation whereas the DRM is based on approximation of
the body force term using interpolating functions.

It should however be stressed that this approximation can require the sub-
stantial number of internal points as the approximation based on boundary
nodes only may not guarantee a sufficient accuracy. The numerical tests car-
ried out so far indicate that first internal points included affect solution con-
siderably. The influence of the following points is usually weaker. However,
up-to-now, a criterion of how many internal points is required has not been
proposed.

Also location of the internal poles is very important and generally requires
some knowledge about the sought field behaviour. This is why many sets
of interpolating functions have been tried including the Fourier expansions.
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New DRM interpolation functions improve significantly the accuracy of it.
The price one have to pay for this improvement is more difficult computer
implementation of the technique. It has been noticed that combining these
new interpolation functions with a zoning produced very encouraging results.

The DRM formulation involves the matrix F based on interpolation func-
tions. If the body force in Eq (3.5) is a known function, then the vector «
may be obtained explicitly using the Gauss elimination. If bis an unknown
function, e.g. depends on solution b = b(z,y,u) then o = F~'b is used
and the matrix F must be inverted. In the case when the inversion of F is
necessary this operation together with the multiplication of matrices for large
number degrees of freedom can be time consuming.

It is worth noticing that numerical implementation of both methods is very
simple and straightforward. In any case a right hand side vector requires to
be calculated by multiplication of appropriate matrices.

Both techniques were found to give accurate results. It should, however, be
remembered that the DRM usually requires certain number of internal points,
which are not used in the MRM. Providing the discretization is appropriate to
represent properly the behaviour of the solution and the number of terms in the
series (3.14) guarantee its convergence, the MRM gives more accurate results.
The DRM produces aless accurate solution but with less computational effort.
It is important to point out that for many cases where the functions sought
are relatively smooth the DRM gives good results very cheaply. Thus, the
choice between DRM or MRM depends strongly on the boundary problem.
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W pelni brzegowe sformulowania w metodzie elementéw brzegowych

Streszczenie

W artykule omdéwiono sposoby obliczania calek po calym obszarze wystepujacych
w metodzie elementéw brzegowych. Podstawowe algorytmy obliczeniowe zostaly kry-
tycznie poréwnane ze szczegdlnym uwzglednieniem metod wykorzystujacych zasady
wzajemnoscl: podwd)ng oraz wielokrotna. Zaprezentowano réwntez trendy w tych
technikach obliczeniowych, a w szczegdlnosei nowe funkcje interpolujace oraz metode
dekompozycji obszaru.
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