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The subject of the paper is an application of the boundary element me-
thod to problems of scattering of acoustic waves by an elastic solid sub-
merged in a fluid. A model problem of linear acoustics with a simplified
fluid-solid interaction on the boundary is considered. The problem is
described by the Burton-Miller integral equation. The Galerkin method
is used to obtain an approximate solution. Adaptive methods of ap-
proximation are discussed. Some a posteriorl error estimates are given.
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1. Introduction

Onme of the greatest advantages of the Boundary Element Method (BEM)
is the reduction from an unbounded 3D domain to a 2D surface. BEM is a
discretization technique for these equations, analogous to the Finite Element
Method (FEM) for simple boundary-value problems.

The presented paper is devoted to the adaptive BEM approach for a model
problem of elastic scattering in linear acoustics. In the paper an equivalent
variational formulation of the Boundary-Value Problem (BPV) is presented.
The paper focuses on adaptation methods, which are transferred from the
known techniques used in FEM.

This paper does not pretend to be a "state of the art” survey in that area.
It bases mainly on earlier author’s work in the group of L.Demkowicz, coo-
perating with Texas Institute for Computational and Applied Mathematics in
Austin (Texas), in realisation of some scientific programs. The details omitted
here are to be found in the paper Karafiat (1996a), and more references are
given there. Theoretical formulation of the problem is analysed in the papers
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Demkowicz et al. (1991a.b), Karafiat et al. (1993). Numerical experiments
were presented in the papers of Demkowicz et al. (1992), Demkowicz (1991b),
Karafiat et al. {1993). Practical realisation of the chosen methods was there
given in details. For basic results concerning BEM we refer to Burczynski
(1995). The adaptive BEM approach was a subject of at least two Ph.D.
Theses of N.Heuer and M.Maischak (Heuer, 1992; Maischak, 1995). New re-
sults concerning applications of BEM to similar problems were given e.g. by
Stephan et al. (1996).

2.  Acoustic scattering problem

A 3D model problem of elastic scattering of acoustic waves is considered.
Let 2 C IR® be a bounded domain occupied by an elastic solid and 2° its
complement with the boundary 1.

Piuu

Fig. 1. Acoustic scattering problem

An incident wave propagates in a homogeneous, isotropic medium with the
sound speed ¢ (inviscid fluid). It is scattered on an elastic body, producing
a scattered wave. We consider only small amplitudes of vibrations and we
accept usual assumptions of the linear acoustics (cf e.g. Colton, 1992) and
linear elasticity (Fung, 1965).

The time-harmonic process with frequency w of acoustic waves may be
described by one complex-valued function, being the total pressure

p(z) = p"(z) + p(z) (2.1)
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where p'" is a given incident pressure and p°® an unknown scattered pressure.
This function fulfils the Helmholtz equation in §2¢

— Ap(z) — k?p(z) = 0 e F (2.2)

where £ = w/c is the wave number. The scattered pressure satisfies the
radiation (Sommerfeld) condition at infinity

op®
ar

(z)—ikp®(z) = o(r™ 1) r=|z| = o0 (2.3)

On the boundary [I" the impedance condition is imposed

anr(x):sp(x) Vzel (2.4)
where mn, is the unit outward normal vector at z. For ¢ = 0 this condition
corresponds to the rigid scattering. The case ¢ > 0 describes scattering
by a rigid body covered with a smooth rubber coal. This kind of surface is
nowadays used in submarine constructions.

In practice, the boundary-value problem (2.2)-(2.4) is replaced by a boun-
dary integral equation. We assume that ' is a manifold ol the class (1,
l.e. derivatives of its representation fulfil the Hélder condition

lp(2) ~ (y)| < clz - y|* (2.5)

with some « € (0,1].
The 3D fundamental solution of the Helmholtz equation is

thr
Bir)= < (2.6)

4rr

The solution p of the BVP (2.2}-(2.4) satisfies the Helmholtz integral equation
forall 2 e I
0 oP

1 y .
FPle) + F/[ﬁb(w,y)éfy(y) - a—ny(z‘,y)p(y)] dSy =p"(z)  (2.7)

and its derivative in the direction of the vector n,, the hypersingular equation

. ) L - 2 4
10[)(10) /(0@ dp 0*d

5077@ Onl.(z’y)any(y) - anlﬁny(z’y)p(y)] dSy = 55—



426 A KARATFIAT

Regular solutions of Eqs (2.6) and (2.7) on " may be extended onto the whole
external domain (2¢ by the formula

p(z) for z € ¢

0P Op -
[ [tz i) - e y)z )] 45, = { Spie) for wer (29
e " 0 for z e

Any solution (2.1) of the BVP (2.2)-(2.4) fulfils Eqs (2.6). (2.7). The
reciprocal theorem is true for some k& only; there are two sequences of k (for-
bidden frequencies), being eigenvalues of the corresponding internal problems,
for which Eqs (2.6) or {2.7) have infinitely many solutions or none.

There are some methods for assuming the equivalence of the classical and
integral formulations. One of them is the Burton-Miller approach (Burton et
al., 1971), wlere a linear combination of the both equations is solved

0P » )
ZP +/ (2.9) any (W) = 5, (@ ypy)] dsy +
ol @p 9P 923
+10{§0nr(fv)+ /[@721( )Ozy ) anlany(:v y)ply } ds, } _
(2.10)
= p"(z +1a()pmc(x) Ve el
-7 ) On,
which, with the Robin boundary condition
87711 (z)p(e) = (<) (2.11)

has, for any &, a unique solution.
FEquation (2.10) with the condition (2.11) may be reformulated as a varia-

tional problem:
~— Find p e HY(I') such that

1 v .
5/(.1 +iae)p(x)g(z) dS, + // &z, y)eply)g(z) dS,dS, +

// 7 (z,y)p(y)g(z) dS,dS, Ja//gb T, y)rot, p(y)rotq(z)dS,dS, +

Ly
(2.12)

s L 09

+iak //nxny@(z,y)p(y)q(z)dSy(lSI —la//an (
rr rr "

ep(y)q(z)dS,dS, =
() inc
= /[p““( )—f-m p

r

—(2)]a(2) d5. Vg€ HYT)
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where
rotf(z):=n, x Vf(z) (2.13)

In terms of the functional analysis the above problem can be written as follows:

Problem P. Find w € V such that
a(p.q) = l(q) VgeV (2.14)

where V' = HYZ[) is a closed subspace of the Hilbert space
H = L*(I'), with the usual norm ||-||in H. a: HxH — { is a sesqu-
ilinear, continuous form given by the left-hand side of Eq (2.12) and the
semilinear continuous form [ : H — @ is given by the right-hand side
of the same equation. It is known, that the form « fulfils the Garding
inequality, i.e. there is a sesquilinear, compact form ¢: H x H — {
and vy € R

Re[a(v,v) + c(v,v)] > 7]v]) YoeV (2.15)
In the Galerkin approximation method we choose a sequence of finite-
dimensional subspaces 1, C V which approximate V and we solve an
approximate equation
Problem P,. Find p, € V), such that
a(prsqr) = H{qr) Vg € Vi (2.16)
Basis functions e;, i =1,..., N are polynomials up to the order s. The

approximate solution p, and test function g are assumed to have the

form
N

N
pr(z) = piei(z) g(z) =) qieilx) (2.17)
=1 =1

and the approximate problem reduces to a system of linear equations
N
Z(Lijpj:bi 1=1,....N (2.18)
=1

obtained by substitution of (2.17) to (2.16).
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3. Adaptive boundary element method

BEM accepts general assumptions of FEM. In a given plane domain G an
initial mesh of triangular or rectangular finite elements is defined. Hereinafter
we restrict ourselves to the triangles (rectangles are used analogously). The
elements are mapped onto I

X

I'ig. 2. Mapping of elements onto the surface

Each of the triangles T; C G is a range of a master element T by an affine
mapping F;. Basis shape functions and degrees of freedom are defined on T.

The boundary element approximation on the master triangle T coincides
with that for finite elements, and the geueral algorithm of evaluation of the
system (2.18) is analogous. The values of integrands like the fundamental
solution @ and its derivatives are taken from I', multiplied by corresponding
shape functions with jacobians and integrated numerically on T. The values
of corresponding integrals become entries of a stiffness matrix. The presence of
& in Eq (2.12) implies that the stiffness matrix is fully populated, in contrast
to finite element formulations.

To enrich the mesh by an A-refinement, the elements 7; are divided into
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XA

Fig. 3. Master element

two or four. In subdivision into four, a 1-irregularity rule is often assumed,
l.e. an element may be subdivided only if its neighbours are equal or smaller.
Otherwise the neighbours are subdivided first (Fig.4).

In the subdivision into two. where the largest side of the element is divided,
there is no problem of irregularity, although shapes of elements may be changed
(Fig.5a).

A combination of these subdivisions joins the both methods (Fig.5b).

In p-enrichment seven generalized nodes are introduced: vertices a,,
a9, d3, mid-side nodes a4, as, Gg, and a central node @;. Nodes a4 — a7
have, in general, many degrees of freedom. They may have separate orders of
approximation. We adopt here a maximum rule which says that the higher
polynomial degree dominates at the interface of two elements. This means
that when two neighbouring elements are of different order, then the shape
functions of higher order are added to those of the lower order element so
as to obtain continuity of the global basis functions across the interelement
boundaries.

The third adaptive method, the hp— method, is a combination of the
both previous ones. The method is especially effective at points, where the
exact solution is singular. An exponential convergence of this method is there
observed and proved.

In numerical realization of this method everyone is faced with the choice,
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Fig. 4. 1-irregular subdivision

(a)

(b)

Fig. 5. (a) — Subdivision into two; (b) — combination of the both subdivisions

which method — A, p, or both — should be applied to each element separately.
The quantity

ae (3.1)
Ad
where Ad is a number of additional degrees of freedom and Ae is an error
reduction obtained with the use of these additional discrete variables, seems
to be a good indicator of the refinement.

The presented approaches are based on the works of L.Demkowicz,
J.T.Oden, W.Rachowicz and others (c¢f Demkowicz et al., 1989; Oden et al.,
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1989; Rachowicz et al.. 1989). The adaptation techniques described above are
used in approximation of a solution and in modeling of the boundary, which
are independent problems, although solved often by the same algorithms and
procedures. The both approximations contribute to the approximation of the
whole problem.

4. Adaptive integration

In the variational formulation (2.12) of the problem considered. the func-
tions appearing are integrated twice over the whole boundary. The integration
is performed numerically over each element. According to the position of a
Gaussian point 2z of the external integration with respect to the considered
element 7 (domain of the internal integration), the following three situations
are possible:

(a) z€T,
(b) s €T, diz,T)) < do
(¢) d(z,T;) > dp

where d(z,T;) denotes the distance between z and Tj, dg is a fixed constant.
In the case (a) all integrands in Eq (2.12) are weakly singular. They are
usually evaluated in terms of the Duffy coordinates

=6 1y = &6 (4.1)
the polar coordinates
Ty = p1€OS P2 Ty = p1sinpg (4.2)

or by subtraction of the singular part. The above substitutions transform all
weakly singular integrands into the bounded ones. Those are evaluated by
Gaussian quadratures.

In the case (b) the regular quadratures give poor results. Adaptation
based on an uniform subdivision of the integration domain (Lyness, 1978)
is expensive. Adaptive methods help to get satisfactory results at a smaller
expense of time and memory. The h-adaptive method uses a changeable mesh
density for integration (Fig.6). By moving mesh nodes without change of its
structure, we obtain an r-adaptive method (cf Karafiat, 1996b).

In the case (c) the usual Gaussian quadrature is applied.
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Fig. 6. Subdivision for adaptive integration of almost singular functions

5. A posteriori estimates

To reduce the error by subdividing of elements or rising the shape functions
order, one has to get some means to judge the error distribution in a numerical
solution. The only data available is the approximate solution itself.

The most popular technique for an a posteriori estimation is the interpo-
lation method. It uses the interpolation theory in Sobolev spaces and values
of the corresponding norms over particular elements are error indicators. The
method exploits the Babuska and Mikhlin Theorems (c¢f Demkowicz, 1994 ),
which extend known Cea’s Lemma to some non-elliptic problems, including
the problem (2.14). When /v denotes an interpolant of a given function »,
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the interpolation theory yields the following error estimate

o = Hollyjz < CH*HY2fo), (5.1)
for the h— method
lo = Mollys < Cs~ Do,y (5.2)
for the p— method and
lv ~ Mv|ly2 < C Rt /2= (mTD) 1y 4 (5.3)

for the hp— method, provided that the interpolation order s is less than
m (cf Karafiat, 1997; Stephan, 1989). | -||;/2 denotes here the norm in the

Sobolev space H/%(TI).

Another technique is the residual method. where the residual of numerical
solution is the error indicator. Let us write the Helmholtz integral equation
(2.7) in the form of operatar equation

M(p) = p (5.4)

where M is an operator from H/?(I')intoitself and let p, be an approximate
solution of the Galerkin equation (2.16). The term

r=p" — M(pn) (5.5)

is the residual of the solution py. [ts norm is globally related to the norm of
the error. We have

712 < 1M1 - lp = prllaye (5.6)
and, if k is not a forbidden frequency of the Helmholtz equation (2.7)
P = prllye < (1M 7l -1p2 (5.7)

Consequently, the residual norm is equivalent to the error norm. Moreover,
for I smooth and ¢ =0

i lp = palliye

=1 5.8
h—0 “TH1/2 (58)

holds. The same inequalities are true for the usual norm in the space L2%(I).
See Demkowicz et al. (1992), Demkowicz et al. (1991b), where this method
was explained in detail.

The most exact a posteriori estimate may be obtained solving local
boundary-value problems. These subdomain-residual methods were developed
for few problems only, see e.g. Yu (1991). A post-processing method, where
the exact solution is replaced by its refined approximation, were considered
e.g. by Rencis et al. (1989).

14 — Mechanika Teoretyczna
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6. Conclusions

The variational formulation with Galerkin approximation is only one of
possible approaches. More popular is the collocation method, which needs a
single integration only. For external problems, however, numerical realization
of singular integrals in this method may cause some troubles. Advantages of
the Galerkin approach are the following:

Symmetric stiffness matrix
Easy elinination of singular integrals

Mathematical analysis of the method is advanced and the convergence
is proved

Asymptotic convergence rates coincide with the interpolation ones

Costs of the both methods with the same accuracy are of the same order.

It is possible to extend the presented research to other areas. One of them
is the coupled BEM/FEM approach, which fits better to the problems of fluid-
solid interaction. Another one is scattering of electromagnetic waves, which is
a subject of current research at the University of Texas at Austin.
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Adaptacyjna metoda elementéw brzegowych w zadaniu rozpraszania fali
akustyczne]

Streszczenie

Przedmiotem pracy jest zastosowanie metody elementéw brzegowych do zadania
rozpraszania fali akustycznej w plynie przez zanurzone w niej cialo sprezyste. Przy)-
muje sie postulaty liniowej akustykl i teori sprezystosci i uproszczony model interakcji
ciala stalego i plynu. Do rozwigzania zadania stosuje si¢ wariacyjne sformulowanie
rownania calkowego Burtona-Millera, rozwiazywane w sposéb przyblizony za pomocy
metody Galerkina. W pracy oméwiono w skrocie zastosowanie metody elementow
brzegowych z réznymi rodzajami adaptacji do aproksymacji 1ozwlqzama modelowa-
nia brzegu 1 calkowania numerycznego. Podano takze najczescie] stosowane metody
szacowania bledu a posteriori.

Manuscript received December 19, 1997; accepted for print February 3, 1998





