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The boundary element method applications to dynamic fracture mecha-
nics are presented. In the present approach displacement and traction
boundary integral equations are used for crack representation. The time-
dependent solutions are obtained using the time domain method, integral
transform method or dual reciprocity method. The dynamic stress in-
tensity factors are calculated using crack opening displacements and the

path-independent j—integra]. Some new applications of these methods
are also shown.
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1. Introduction

Dynamic fracture mechanics deals with analysis of the growth, arrest and
branching of moving cracks in structures subjected to dynamic loads (Freund,
1990; Neimitz, 1994). The structures with arbitrary shape and time-dependent
boundary conditions need to be analyzed using numerical methods. The bo-
undary element method (BEM) has been successfully applied to stationary
and growing cracks in infinite and finite domains in elastostatics (Cruse, 1988;
Aliabadi and Rooke, 1991) and elastodynamics (Dominguez, 1993). The ap-
plication of BEM in fracture mechanics is particularly attractive, because it
allows for accurate determination of the stress field, and because a remeshing,
which is required for propagating cracks is much simpler than in the domain
numerical methods.

Solution to a general crack problem cannot be achieved in a single-region
analysis by a direct application of BEM, because the coincidence of crack nodes
gives rise to a singular system of algebraic equations. The boundary integral
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equations for two coincident points on both surfaces of the crack are identical,
because they have the same coordinates, and integrals are calculated along the
same boundary. Several formulations have been developed to overcome this
difficulty.
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DE - displacement equation
TE - traction equation

Fig. 1. Crack modelling methods using BEM: (a) subregion method,
(b) displacement discontinuity method, (¢) dual method

In the subregion method the structure is divided into subdomains along
a continuation of crack surfaces (see Fig.la); these subregions are assembled
using the equilibrium and compatibility conditions along the new internal
boundary. The displacement boundary integral equation is used for all nodes.

Another method is the displacement discontinuity method. In this method
only one of the crack surfaces is discretized (see Fig.1b). The displacement
boundary integral equation is used for nodes on the external boundary and
the traction equation for nodes on the crack surface. These equations are
expressed in relative displacements of the crack surfaces.

A non-singular system of equations can be obtained by using two different
boundary integral equations for coincident points, for example the displace-
ment and traction equations (see Fig.1c). The displacement equation is used
for the remaining nodes. The unknown absolute values of displacements and
tractions along the crack surfaces and other boundaries of the body are obta-
ined directly by solving of the system of equations.

The last method, called the dual boundary element method (DBEM) was
developed by Portela et al. (1992), (1993) for stationary and growing cracks
in 2D analysis. This method was extended by Mi and Aliabadi (1992), (1994)
onto stationary and growing cracks in 3D analysis. The dynamic solutions are
usually obtained by three different formulations; i.e., time domain method,
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integral transform method and dual reciprocity method (Dominguez, 1993;
Burczynski, 1995). The details of numerical implementation of these methods
in dynamic fracture mechanics were presented in several papers. Fedelinski et
al. presented applications of the DBEM combined with the dual reciprocity
method (1993a,b,c), (1994a). the time domain method (1994b,c), (1995a) and
the integral transform methods (1996a) and Fedelifski (1996) for stationary
cracks in structures subjected to dynamic loading. The accuracy and efficiency
of these methods were compared by Fedelifiski et al. (1995b), (1996b) and
Fedelifiski (1997a,cj. The application of time-domain method to dynamic
analysis of growing cracks was shown by Fedelinski et al. (1997) and Fedelinski
(1997b). The methods were extended to three-dimensional dynamic crack
problems by Wen, Aliabadi and Rooke (1997a,b) and Fedelinski (1998a,b,c).
In this paper the DBEM and the three approaches: time-domain, integral
transform and dual reciprocity method, respectively, are presented. For each
method the displacement and the traction boundary integral equations for
cracks are formulated. The forms of the final matrix, which are suitable for
the numerical application are given. The dynamic stress intensity factors are
calculated using both the crack opening displacements and the path indepen-
dent J-integral. Some new applications of these methods are also shown.

2. Time domain method

’

x',x" - collocation points
X - integration point

Fig. 2. Collocation points on crack surfaces

Consider a homogeneous and isotropic linear elastic body limited by a
boundary [I'. For the body which is not subjected to the body forces and
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which has zero initial displacements and velocities, the displacements of points
z’ and z” on the smooth crack surfaces, shown in Fig.2, can be represented
by the following boundary integral equation

i
%ui(z",t) + %ui(x”,t) = /[/ Ugla' iz, m)tj(z,7) dl(z)| dr +
o r

(2.1)
t
_ /[][Tij(a:’,t;xm)uj(xﬁ) dF(x)] dr
o r
where
Uj(2' ti2, 7). T2’ t;2,7)  —  fundamental solutions of elastodyna-
mics
uj(z,7),t(x,7) —~ displacements and tractions, respec-
tively. at the boundary
z — boundary point
t — time of observation
£ - Cauchy principal value integral.

The summation convention is used for the repeated subscripts.

The traction integral equation is obtained by differentiating the displace-
ent equation, applying Hooke’s law and multiplying by the outward normal
at the collocation point. For the points which belong to the smooth crack
surfaces the traction equation is

1

1 1 '

it](x’,t) — Etj(x”’t) = nz-(a:’){/[]Z Upijla' iz, mit(z, 1) dl' ()] dr +
o r

(2.2)
1
- /[%Tkij(x',x;xm)uk(x,ﬂdf(x)} dr }
o T

where
Upiy(z' sz, 7), Tig, (2", 1;2,7)  ~  other fundamental solutions of ela-
stodynamics
n;(2') — components of the outward normal at the collocation po-
int z’
£ — Hadamard principal value integral.
The numerical solution to a general mixed-mode crack problem is obtained
after discretizing both space and time variations. The boundary I"of the body
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is divided into boundary elements. The observation time f is divided into time
steps. The displacements and tractions are approximated within each element
using space interpolation functions, and within each time step using temporal
interpolation functions. The boundary integral equations are applied to all
nodes of the boundary elements. A distinct set of boundary integral equations
is obtained by applying the displacement equation to collocation points along
the external boundary and along one of the crack faces, and the traction
equation to collocation points on the opposite surface of the crack.

(a) (b)
1 2 523 o 1 2 3 o
-1 0 1 < -1 £ 0 £ 1 &
X - element end point O - element node

Fig. 3. Quadratic boundary elements for 2D problems: (a) continuous element,
(b) discontinuous element
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Fig. 4. Quadratic boundary elements for 3D problems: (a) continuous element,
{b) discontinuous element

Quadratic elements are used for the discretization of the boundary. The
displacements and tractions are interpolated using continuous elements for the
external boundary and discontinuous elements on the crack faces. The geome-
try is approximated by using continuous quadratic elements. The continuous
and discontinuous quadratic boundary elements used for 2D and 3D problems
are shown in Fig.3 and Fig.4, respectively. The elements are shown in the
local coordinate system, where the parameter ¢ < 1. The displacements are
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approximated within each time step by using linear interpolating functions
and the tractions are piecewise constant.

The time integrals with simple temporal shape functions can be calculated
analytically. The set of discretized boundary equations can be written in a
matrix form at the time step N as

N-1

~NN ~N ~Nn ~Nn |

HY N = 6™ 4 ST 6 e - e (2.3)
n=1

where ", t" contain the nodal values of displacements and tractions at the

. ~N ~ Ny X
time step n; H “and G depend on the integrals of the fundamental
solutions and interpolating functions. The superscripts Nn emphasize that

the matrix depends on the difference between the time steps N and n. The
. ~NN ~NN .

columns of matrices H , G are reordered according to the boundary

e ) , . ~NN ~NN X ~NN |

conditions, yielding new matrices A and B . The matrix A 1s

multiplied by the vector ™ of unknown displacements and tractions and the
. NN . ;
matrix B by the vector y" of known boundary conditions as follows
NN v NN oy NS N mNm
A 2N =B N+ > (G M -H (2.4)
n=1
At each time step only the matrices, which correspond to the maximum diffe-
rence N —n are computed. The remaining matrices are known from previous

. ~NN ~NN , . .
steps. The matrices A and B are calculated in the first step only since

. NN ~ ~NN ~
they are the same at each time step; A =Aand B = B. Eq (2.4) can
be rewritten in a simpler form as

Az = f (2.5)
where .
~N o~ e xNn ~Nn
=By + Y6 e - i (2.6)
n=1

iIs a known vector. The matrix equation is solved step-by-step giving the
unknown displacements and tractions at each time step.

3. Integral transform method

Accepting the same assumptions as for the time domain method, the in-
tegral transform of the displacements of points 2’ and z” which belong to
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smooth crack surfaces can be obtained {rom the following boundary integral

equation
L_ ., 1
Eui(x ,S) + 51/,1-( , U” z',z,s) 1;(z,s)dl(z)+
(3.1)
][ (2, z.9)u (2. s) d'(z)
r
where _
Usij(2'.z,s), T,z x,5) integral transforms of fundamental solu-
tions of elastodynamics
w,(z,s),(z,s) integral transforms of the displacements
and tractions respectively, at the boun-
dary
s — integral transform parameter.

General forms of the boundary integral equations and transformed {unda-
mental solutions of elastodynamics are the same for the Laplace and Fourier
transform methods.

The integral transform of the traction equation for the points which helong
to smooth crack surfaces is

: I ]“ 1 7 T7 ! )
tj(:r’,s) — 575]-(:1: ,8) = ny(zx )[][Uki]-(z T, 8)k(z,s)dl(z) +

% (2’ z, s)ug(z, s)dl“(z)]
r

where Uki]-(x’,a:,.s) and Tkij(x’,a:,s) are the integral transforms of other
fundamental solutions of elastodynamics.

In order to solve a general mixed-mode crack problem the boundary is
discretized in the same way as for the time domain method. The boundary
equations are applied to the boundary nodes. The set of discretized boundary
integral equations can be written in a matrix form as

Hz = Gt (3.3)

where % and % contain nodal values of the transformed displacements and
tractions respectively, and H and G depend on integrals of the transformed
fundamental solutions and the interpolating functions. The matrices H and
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G are reordered according to the boundary conditions, in the same way as in
elastostatics, to give new matrices A and B. The matrix A is multiplied by

the vector T of unknown transformed displacements and tractions and B by
the vector 3 of known transformed boundary conditions, as follows

Az = By (3.4)

or

T=f (3.5)

where f = Bgis a known vector.

Eq (3.5) is solved giving the unknown transformed displacements and trac-
tions for a particular integral transform parameter. For simple time variations
of the prescribed boundary conditions their integral transforms can be calcula-
ted analytically. In order to obtain the unknown displacements and tractions
as functions of time, the unknown transformed variables must be computed
for a series of parameters. The final time-dependent solution can be obtained
from a numerical inversion.

4. Dual reciprocity method

In this method the equations of motion are expressed in a boundary integral
form using the fundamental solutions of elastostatics. This can be achieved by
approximating the acceleration of a point z of the body by a sum of N coor-
dinate functions f*(z*,2) multiplied by unknown time-dependent coefficients
ap(r)

N

iz, 7)= > aHT) 27, z) (4.1)
n=1

where the dot above the variable denotes the derivative with respect to time.
The approximation function f*(z*,z) = ¢+ r(z™,z) is chosen, where c is
a constant and 7(z*,z) is the distance between a defining point z* and the
point z. The defining point can be a boundary or domain point.

Using this assumption the displacement boundary equation of motion for
the points which belong to the crack in a homogeneous and isotropic linear
elastic body can be written as
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%’LL«,;(CL",T)*F—UZ'((IIH,T)—/U (2 z)(z,m)dl(z) +

r
N

+ 7[TZJ ¢ x)u,(z.7)dl(z Zpa, [ uf(z”,a’) +

n=1]
- / (/Z]-(a:’,m)f',’}(m*,x) dl'(z) + f Tij(2' 2 )uf; (2. z) dI ()

The traction integral equation for the points which belong to smooth crack
surfaces, has the form

%tj(z',r) - _—;—tj(x”,r) - ni(x’)[f Uij(a' z)l(z,7) d](z) +

1’\ o "
%TM a2 )up(e, m)dl } Zpa { e x)—ﬁt?j(x"‘,x )+
n=1

(4.3)
—n,( ][l’m z'. 1)11A(x .x)dl(z jélk,, (z".2)uj(z",z) dl(z )]}

where p is the mass density; U, (z',2), T;;(2',z). Uk (2',2) and Tiy;(2',2)
are fundamental solutions of elastostatics; ﬂ';lj(xi:z:) and 'B“J:-(x*,:c) are parti-
cular displacements and tractions, which correspond to the function f"(a*,z).

The boundary of the bodv is discretized as in the previous approaches. The
displacements and the tractions, u;(z,7), t;(z,7) and ﬂ@-(z*,x), lA,?‘J-(x*,.r)
within each element are approximated using the same interpolation functions.
The boundary equations are formulated for the boundary nodes as in the other
approaches. The displacement equations are formulated for the domain points,
when they are used to improve the approximation of accelerations. The set of
equations can be written in a matrix form as

Hu — Gt — p(Ha — Gt)a = 0 (4.4)

where Hand G depend on integrals of fundamental solutions and interpolating
functions; they are the same as in elastostatics. The vectors u, ¢, @ and %
contain nodal values of the real and particular displacements and tractions.
The relationship between % and « is established by using Eq (4.1) at every



412 P.FEDELINSKI

boundary and domain node. The resulting set of equations can be written in
a matrix form

i = Fé (4.5)
where the entries of matrix F are the values of function f*(z*,z) at all
N nodes. The unknown coefficients & can be expressed in terms of the
accelerations # as follows

a = Eu (4.6)
Substitution of Eq (4.6) into Eq (4.4) gives
Hu — Gt — p(Ha — Gt)Ei = 0 (4.7)
or
Hu — Gt + M = 0 (4.8)
where M = —p(Hu — Gt)E is the mass matrix of the structure. The system of

equations of motion (4.8) is modified, according to the boundary conditions,
and can be solved using a direct integration method.

5. Dynamic stress intensity factors

One of the most important parameters in dynamic fracture mechanics is
the dynamic stress intensity factor (DSIE), since it characterizes the stress
field in the vicinity of crack, and controls the crack growth. In the present
approach it is determined from the crack opening displacements and the path
independent J-integral.

In the first method, the DSIFs are calculated by comparing the numerical
values of crack surfaces displacements with the known analytical form of the
expression for the displacement field at the crack tip. The DSIFs obtained
from the crack opening displacements (COD) are

. 2 / . 2 .
Iy = a % Aty and K= iy R Awy (5.1)

Kk+1 k+1V2r
where
7 ~ shear modulus
Auy,Auy  —  relative displacements in the tangential and perpendicu-
lar directions, respectively, of the corresponding points
on opposite crack faces
T - distance of these points from the crack tip

v - Poisson ratio
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and k = 3 — 4v for plane strain and « = (3 —v)/(1 + v) for plane stress.
In the second method, the DSIFs are calculated {from the path independent
J-integral

JP = / (WP, — ) d.5'+/pufufl dA 3 =111 (5.2)
S+S. 4
where
S - arbitrary curve surrounding the crack tip
S. - crack surfaces
A - areaenclosed by 5 and S,
W - strain energy density
ny — component of the unit outward normal to the boundary of A

and a subscript preceded by a comma denotes differentiation with respect to
that coordinate, the superscripts [ denote the deformation modes [ or I1.

Displacements, derivatives of displacements, strain, stresses, tractions and
accelerations are calculated using the appropriate boundary integral equations
and they are decomposed into components for the symmetric mode [ and
antisymmetric mode [1.

Knowing the fﬁ—integral we can calculate the stress intensity factors, as
follows

Ky = T and  Kg =)Mo

K+1 K+ 1 (5:3)

The sign of Iy and Iy is determined by the relative displacements of the
crack surfaces.

6. Numerical examples

In this section three different numerical examples are shown to demonstrate
the application of the methods. First example, a crank with two edge cracks
presents the application of the time-domain and Laplace transform methods.
The second example, a rotating disc with two edge cracks shows the application
of the dual reciprocity method for a structure subjected to the body forces.
The third example, a rectangular bar with an internal square crack, shows the
application of the Laplace and Fourier transform methods to 3D problems.
The DSIFs are obtained from COD calculations for the time domain and the
integral transform methods; and from the J-integral for the dual reciprocity
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method. The structures are instantaneously loaded by a stress g at the time
7 = 0. The DSIFs are normalized with respect to

IX’O:UO\/WQ (()1)

where « defines the crack length. Dynamic loading and the normalizing factor
for the second examples are defined in the subsection. The material properties
are: Young modulus F = 0.2 -10'?Pa; Poisson ratio v = 0.3; mass density
p = 8000kgm~3. In the third example, the Poisson ration is v = 0.2. The
plane strain is assumed for two-dimensional problems.

6.1. Crank with two edge cracks

et B AIOO - ’:

Fig. 5. Crank with two edge cracks

A crank with two holes contains two edge cracks. The dimensions of the
crank, expressed in millimeters, are shown in Fig.5. One hole is constrained
and the second is loaded by a suddenly applied normal pressure with a sine
distribution. The boundary is divided into 68 quadratic elements. The solu-
tions are obtained by using 50 parameters for the Laplace transform method
and the time steps A7 = 3us for the time domain method. The normalized
dynamic stress intensity factors versus time for both crack tips are shown in
Fig.6. It can be seen that the solutions obtained by both methods are similar.
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Fig. 6. Normalized DSIFs versus time for the crank with two edge cracks (Laplace
transform method - solid line, time domain method - dashed lne)
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Fig. 7. Rotating disc with two edge cracks
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6.2. Rotating disc with two edge cracks

Fig. 8. Initial (dashed line) and deformed shapes (solid line) for the rotating disc
with two edge cracks

A rotating disc with seven holes contains two radial edge cracks at the
splineway. The dimensions of the disc, expressed in millimeters, are shown in
Fig.7. The disc rotates at a constant angular velocity w and is subjected to
centrifugal forces. Because of the disc syminetry only a half of the plate with
the proper boundary conditions along the line of symmetry is considered, as
shown in Fig.8. The boundary is divided into 66 quadratic elements and 44
domain points are used. In Fig.8 the initial and the deformed shapes of the
disc are shown. The DSIFs are normalized with respect to

. -2v ..
Ky = 8(1 )pw R*/Ta (6.2)
where R is the disc radius. The normalized stress intensity factors are calcu-
lated as /Ao = 2.158 and A'p;/ Ko = 0.333.

6.3. Rectangular bar with an internal square crack

A rectangular bar of width 26 and height 2k contains the square crack
of length 2a situated in the centre of the bar, as shown in Fig.9. The ratios
are h/b=2and a/b=0.5. The ends of the bar are subjected to the impact
tension &p. The boundary of the body is discretized using 90 quadratic
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Fig. 9. Rectangular bar with an internal square crack
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elements. The normalized DSIFs are plotted as functions of normalized time
Tcy/h in Fig.10, and as function of normalized frequency wa/e¢q in Fig.11.
where ¢; is the velocity of longitudinal wave.

10
- b
E -
e [
w8
8 "
o i
L
S 6k
T‘: -
E .
c [
Z. -
a4k
2_
I | I IR T S S N AT J IS S N T T U Y | N AT PR B T 1
0 1 2 3 3 5

Normalized frequency @hjc,

Fig. 11. Normalized DSIF versus normalized forcing frequency for the rectangular
bar with an internal square crack

7. Conclusions

The boundary element method is combined with the time-domain me-
thod, the integral transform method and the dual reciprocity method. These
methods are used to compute the dynamic stress intensity factors for three
different problems. Numerical examples demonstrate possible applications of
the developed methods.
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Metoda elementéw brzegowych w analizie dynamicznej peknied

Streszczenie

W pracy przedstawiono zastosowanie metody elementdw brzegowych w analizie
dynamicznej pgknie¢. W przyjetym sformulowaniu stosuje si¢ brzegowe réwnanie
calkowe przemieszczen 1 sil pomelzchmowych dla pekniecia. Rozwiazania zalezne
od czasu wyznaczono metoda rozwigzan w dziedzinie czasu, metoda transformacji
calkowych i metoda podwdjnej zasady wzajemnosci. Dynamiczne wspélezynniki in-
tensywnoscl naprezen obliczono na podstawie przemieszczenn powierzchni pekniecia
1 calki J niezaleznej od drogi calkowania. Przedstawiono nowe przyklady zastosowa-
nia metod.
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