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The problem of transient contact with frictional heating and wear for
two non-uniform shding half-spaces is considered. One of the two half-
spaces is assumed to be slightly curved to give a Hertzian initial pressure
distribution; the other is a rigid non-conductor. On the assumption that
the contact pressure distribution could be described by the Hertz formu-
las during whole the process of interaction, the problem is formulated in
terms of one integral equation of the Volterra type an unknown radius of
the contact area. A numerical solution of this equation is obtained using
a plecewise-constant representation of unknown function. The influence
of operating parameters on the contact temperature and the radius of
the contact area is studied.
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1. Introduction

An approach to definition of the surface temperature of a disc brake ba-
sed on the solution (cf Barber, 1980) of an axi-symmetrical contact problem
for a half-space with frictional heat generation was proposed by Barber et
al. (1985). Variations of the contact radius and temperature during uniform
deceleration were investigated.

The effect of simultaneous frictional heating and wear on the temperature
rise was studied by Yevtushenko and Chapovska (1995) on assumption that
sliding was uniform. This paper is continuation of the investigation (c{ Ye-
vtushenko and Chapovska, 1995) undertaken the case of uniform reduction of
speed from an initial value to zero.
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2. Statement of the problem
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Fig. 1. Geometry of contact

Two semi-limited bodies are being compressed by a force P. One of the
bodies slides on the surface of the other (Fig.1) at the time-dependent speed

v t _ _
L(t)_h)(l—i) 1<, (2.1)
where
t - time
ts — stopping time (duration of the stop)
Vo — initial speed.

The sliding is accompanied by frictional heat generation over the contact
interface having the form of a heat flux

q(r,t)y = fV(t)plr.O)H[a(l) — r]H(t; — t) (2.2)
directed into the elastic moving body. Here
f — coefficient of friction
P — contact pressure
7 - radial coordinate
a(t) - radius of the contact circle
H(-) - Heaviside step function.

It is assumed that:

1. The motionless body is a rigid thermoinsulator;
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2. The convective heat transfer from the free surface of bodies is absent;

3. The relation between normal and tangential stresses in the contact area
may be neglected. This does not mean that the tangential traction on
the surface is neglected. Indeed, the work done against these tractions
is the source of heat. However, the elastic displacement normal to the
surface, caused by the tangential tractions, is much smaller than that
produced by the normal tractions, and the coupling effect is negligible;

4. The wear takes place; we use the Archard law of wear with the coefficient
of wear k,, (cf Goryazcheva and Dobychin, 1971);

5. The surlace of the elastic body is slightly curved with the radius Hg to
give an initial Hertzian pressure distribution.

Due to the friction forces of sliding acting in the contact region the thermal
distortion of the surface of elastic half-space appears, and the same time its
wear takes place. The condition for the contact of bodies has the form

2
uS(r, )+ ub(r, 1) + u¥(r,1) = A(l) — TR r < a(t) t>0 (2.3)
0
where
us — elastic displacements of the half-space boundary point in the
direction of z axis
'~ normal temperature displacements
W~ vertical displacement of the elastic body as a rigid solid.

At the initial moment of time ¢ = 0 the elastic displacements u$ and the
contact pressure p, according to the assumption (5), are given by the Hertz
formulas (cf Johnson, 1987)

. 3P(1-v)[2a%(0) — 1] _ 3BV =0y (24

ta = 161a3(0) S )
where
/¢ — shear modulus
v — Poisson’s ratio.

We approximate the normal displacements u§ due to frictional heating by
the heat flux {2.2) and due to wear u¥ at every moment of time ¢ > 0 by a
quadratic surface

ut (1 1) + u¥(r.1) = Colt) + C'1(1)r? r < a(t) (2.5)
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Taking into account the Eq (2.5), the boundary condition (2.3) has the
form

us(r,t) = Cy(t) — Cr(t)r? r<a(t) t>0 (2.6)

where

and, therefore, we may use the Hertz formulas (2.4) to find wé(r,t),t > 0
and p(r,t),¢ > 0. The comparison of coefficients at 7% in Eqs (2.4) and (2.6)
yields

3P(1—-v)

652300 t>0 (2.7)

Cit) =

Substituting for value of the contact radius a() into Eqs (2.2), (2.4) from
Fq (2.7), we obtain for » <a(t),t >0

8uCr(t)/a?(t) — 12
m(1—v)
RV (DuC; (1)

p(r,t) = (2.8)

a?(t) —r2H(a—r)H(t)
T(l—wv)

q(r,t) = (2.9)

From Eqs (2.7) = (2.9) it follows that to define the contact pressure p(r,t),
frictional heat flux ¢(r,t) and contact radius a(?) it is enough to know a kind
of the function C7F(1).

We also note that the solution of the corresponding contact problem in the
steady state of heat generation was obtained by Barber (1976). It is found
that the contact radius is

Th(1-v)

ag = - 2.10
07 15660 fVo(l+ 1) (2.10)
where
I~ coefficient of thermal conductivity
a; — coefficient of linear temperature expansion.

The parameter ag, as it is evident from Eq (2.10), does not depend on the
force P and is a limited value of @« at P — oco. In a pure isothermal problem
such a limit does not exist.
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3. Reduction to the integral equation

We find the normal displacement w'(r.t), + > 0, t > 0 on the surface
of elastic half-space heated by the heat flux ¢(»,t) (2.2). To this end, we
use a fundamental solution of the equation of thermal conductivity for an
instantaneously acting point heat source of a constant power ¢ (cf Carslaw

and Jaeger, 1959) on the surface 2 = 0 of the elastic half-space
T(r t):*exp(—i) r>0 t>0 (3.1)
' 4pe\/(mkt)3 4kt = '
where
k  — coefficient of thermal diffusivity
p — deusity
¢ — special capacity.

The vertical displacement corresponding to the temperature field (3.1) of
the half-space surface is (cf Barber, 1972)
2
4kt

og(l + v)

to. ¢
) = — b(1.5;2; - r>0 t>0 2
ul(r,1) i (1.5:2;- ) r > (3.2)
where @ is the degenerated hypergeometric function.
On the basis of the solution {3.1), (3.2) temperature and the vertical di-
splacements of the boundary = = 0 of the half-space heated by the ftux ¢(r,?)

Eq (2.2) can be rewritten as follows

t alt)2x
dfdsdr

T(r,t / / /sq s, 7)exp(—X %) ———s 3.3)

()4/)67000 RN = I

A+ F dbdsd

i _ Ofi v 2 saT

u(r,t) = i / 0/ /sq (s,7)P(1.5;2; — ) (3.4)
0 0

where
r? — 2rscos(f) + s?

2 _
X7 = dk(t — 1)

r < a(t) t>0

We use the wear law in the form (cf Goryazcheva and Dobychin, 1988)

t
ul (r,t) = ky /p(?‘,r) dr r < a(t) t>0 (3.5)
0
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Such a relationship is valid in rigid regimes of wear by abrasive particles
and in some cases of the fatigue wear.

In view of Eq (2.10) the normal displacements u%(r,t) and u¥(r.1), see
Eqs (3.4) and (3.5), for the heat flux ¢(r.t) Eq (2.9) take the form

t A7) 27
t _ - _ 2 2
wl(r,1) = — 15567ra0/ / / (1 01 2y/k(t — 7)(A2 - §2)-
0O 0 o0
(3.6)
®(1.5:2;—(B? - 2RS cos 6§ + 5%))§ dbdSdr
1
wirg) = oo [ (1 @ (r) -2 dr (3.7)
U 0
2 .2 2
2 _ a 2 _ 7 2 _ S .
AT = dk(t — 1) B = 4k(t — 1) 5= 4k(t — 1) (3.8)
We denote
2
1(R,5) = / B(1.5,2 —(R? — 2RS cos(6) + 57)) dt (3.9)
0

In the vicinity of zero the degenerated hypergeometric function permits
one to perform the following decomposition

2 = i (2 + 1)1~ R2):

5-D-
B SR P TE)

(3.10)

Substituting the series (3.10) in the right-hand side of Eq (3.9) and calcu-
lating the integral (cf Gradshtein and Ryzhik, 1971)

2m

/‘<1—2§c059+ ?—;)idﬂz‘h i(C’j)?(g)Zj 0

0 J=0

I
»| =

<1 (3.11)

where C]‘ is the binomial coefficient, we find

e 21+l” : .
ZO Z+1 ]Z:: () (3.12)
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By virtue of Eqgs (3.9), (3.12) from Eq (3.6) it follows

t A1)
. _ 16k / / T _ 9
wAm) = T 5o, 1 ) (r)yfk(t = 7)(A? — 52).
0 0
(3.13)
P1(R,S5)S dSdr R < AX) t>0
We define the function
A
(R, A) = / VAT~ 52¢,(R, $)S dS (3.14)
0

Taking into acount the form of the function ®;(R,S5) given by (3.12) and
the value of the integral (cf Gradshtein and Ryzhik, 1971)

A . .

/ /42— GIg2i-2j+1 4o _ (20 — 29! 22543 (3.15)
. (2i —2j + 3)!

0

we have

(20 + 1= AZ)iH1 & 2)  Ry\2i
ol R, A) = ZAZ (20)1(i + 1)! Z( QT@”()

1=0 j=
(3.16)
Including Eqs (3.14), (3.16), from Eq (3.13) we obtain

16k & (—1)H1(2i 4+ 1)1 & (2i — 25)!!
t i = 2— .
u{rs) 1.566ag - Z 21 (it 1)! Z( (2i - 27 1 3)!

=

(3.17)

t
T\ o TN 0540
/(1 - Z)Ci(r)(a) A%+ dr
0
Having changed the order of summation in the right-hand side of Eq (3.17)
and taking into account the first of two terms with respect to j, we find

t Lok S S (1)@, (2 20
t) = '
u(rt) 1566a0;); 21)”2—#—1)' () (2z 2j +3)!!
(3.18)
t
TN ;o (T2 202
/(1-—Z)Ci(‘r)<a) A% a dr

0

8 — Mechanika Teoretyczna
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The normal surface displacement of the half-space surface owing to the
wear (3.5) is given in the form

4
u¥(r, 1) = SVO“kw/ T)a(T)< %+) dr (3.19)
0

Comparing the coefficients at 72 in Eqs (2.5), (3.18), (3.19), we obtain

t

o - —A?) ‘“C (1)
cit) = 1566aoz(z+1'0/ dr +
t
_ AV()pky / _ Th\Giln) ] :
=) ts) 2 4t o) (3.20)
0
) 1
ci(0) = e

Going on to dimensionless variables and parameters by the substitution
into Eq (3.20)

t A
1*24_{62_ T*:‘lk_; b(t*):a( )
ag a§ ag
(3.21)
5 b(t) . 4kt . Vouk.,,
B = ts = 2 w o 71 N
- as T(1 —v)k
and taking into account that
< (- B2)iH
=1-¥(B 3.22
Z T D) (B) (3.22)

=1
where
W(B) = (1+ B?)exp(~B?)

we come to the integral equation of Volterra type for the function b(t*)

i

1 ™\ 10783k, —¥(B) 1 ) ‘
_ T __ >0 (3.
=) 1277/(1 =) ey g U 20 (329

0 S
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4. Numerical algorithm

We build a numerical procedure of the solution of the nonlinear integral
(3.23). To this end we divide the integration interval [0,%*]into [ equal parts
of the length At using the points tx = kA?, k = 0,1,2,...,0, 0 <1t <, =
sAt. For small times (¢t — 0) we have B — oo, ¥(B) — 0, Eq (3.23) may be
rewritten as

1 T dr~
— 1.2 - )[p-wsB
) 77 / (1 ;)[D (B iy +
’ (4.1)
t'
T*\ dt* 1

. - <r <t

+1.277D / (1 1t;)wﬂ)+b.3(0) 0<t <1

t*— At

where D =1 - 0.783k},.
At the first time step t* = t; = At and from Eq (4.1) it follows that

15
1 Codrr 1
— 1.277D 4.2
By / bi(r) T 53(0) (42)
0
The solution of the Eq (4.2) is
_ _ L
b = bta) = b(0) — 0.425D; (1 - g) (4.3)
where 0
bo = b(0) = 40 (4.4)
ag

At the kth time step t* = ty = kAt, by = b(tx) and by the quadrature
formula of the trapezoidal rule it follows from Eq (4.1)

k-1
1 hi hk-—l hk 1
— = 0.638A132Y " X[D - ¥ (B;)]+ D + =) by = (4.5)
G N G rall g
where
t; }
h1 =1- t— 1= 0, ]., k
’ (4.6)
2 b2
B} = % B? = : i=1,2,.,k—1
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(here and hereinafter the summation signy.” means that the first and the
last term of the series must be multiplied by 1/2). Having multiplied the
both parts of Eq (4.5) by 6{ # 0 we have

bf — digbe + dox = 0 k=1,2,..,5 (4.7)
where
1 hy
dip = — dor = 0.638 DAL=
1k Bk 0k Bk
, Ak hi hi_1
By = 06384t {2} D - w(B))+ D 1} +
1=0 4 :—

The largest positive real root of the order polynomial fourth (4.7) will give
a required value of the dimensionless radius of the contact area b(1;) at the
kth time step.

It may be shown that in the absence of wear (kX = 0, D = 1) the existence
of such a root is ensured by satysfying the condition

35h
At < 1390k (4.8)

.3/_Bk
From Eqs (4.8) and (4.6) it follows that the time step duration depends
essentially on the stopping time ;. If k¥ # 0, then it is difficult to obtain
an estimation of the type (4.8) and the choice of At is made by means of
selection.

5. Temperature

Owing to the symmetry of the problem the maximum temperature is rea-
ched at the centre of the circular heating region = < a(t). Taking Eqs (2.1),
(2.2), (2.10) and (3.21) into account, from Eq (3.3) at r = 0 we have

.
4 * d *
(1) = Tma*/(1_l)¢3(3) T o< <t (5.1)
0

Here
_ 3fVOP _ 0587Cl’¢f2V02P,LL(] + l/)

T ax — - -
m 8apg KX Tl2(1 - v)
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is the maximum temperature at the centre of the circular contact region r < ag
in the steady state of heat generation in long braking (¢{; — oo) (cf Barber,
1980). From Eq (5.2) it follows that for a given power of the heat source
fVoP, the maximum temperature may be reduced if we use materials of low
shear modulus p. Such are composite materials of brake shoes pads which
are more effective in exploitation than cast iron shoes of large shear modulus
{cf Barber et al., 1985).
The function @3(B)in Eq (5.1) is

25(B) = 5B - Fy(B)] (5.3)

where

B
Fi(B) = B exp(~B?) [ exp(€?) dg
0

is the Dousson integral (cf Abramovitsand Stegun, 1979).
The function Fi(B) is computed using its expansion into a polynomial
series (cf Barber and Martin-Moran, 1982)
0 (—232 1
PO TR B<3
Fi(B) = (5.4)

20 — ! .
Gy oo

6. Numerical analysis

Input parameters of the problem are the following three dimensionless
values: stopping time % (3.21), coefficient of wear £} (3.21) and initial
radius of the contact circle bg (4.4).

The dimensionless contact area radius b (3.21) variation versus the ratio
t* /1% at the fixed values by = 10, k¥, = 0 (continuous curves) and k% = 0.2
(dashed curves) for two values ¢} are shown in Fig.2a. The corresponding
distribution of the dimensionless temperature T* = T'(t*)/Tas is shown in
Fig.2b. The value of the coefficient of wear £} = 0.2 is appropriate for
ceramics/metal interfaces at high sliding speeds (cf Richardson and Finger,
1983). From Fig.2 one can see that the maximum temperature in the contact
region is reached at the instant when the contact area radius is minimum.
Wear reduces to increasing of the contact area and to decreasing of the contact
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Fig. 2. Dimensionless contact radius b (a) and dimensionless temperature 7 (b)
charts versus the t*/t; without (4] = 0, continuous curves) and with (k% = 0.2,
dashed curves) wear

temperature. At small (7F < 20) values of the stopping time the influence
of wear on the contact radius b and on the temperature T is negligible.
Another picture is observed in long (t¥ > 50) regimes of braking. In this
case at (* ~ 0.8¢%, k% # 0 a sharp increase of the contact region takes place
(Fig.2a). So, the contact circle radius at t* = ¥ = 50 in the absence of wear
(k%, = 0) is only 30% of the corresponding value at k}, = 0.2. The maximum
contact temperature is reached approximately after the half stopping time
(t* ~ 0.5t%).
The stopping time depends on the friction force and can be determined
from the equation
d(MV)
dt

where M is mass of the system referred to the radius of the braking surface.
Since the reduction of mass M due to wear is small and taking Eq (2.1)
into account, from Eq (6.1) we obtain

- _fP (6.1)

MV

fP ; (6.2)
Further, using Eqs (3.21), from Eq (6.2) we find
2%
7 4k fP (6-3)
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Thus, the maximum steady temperature T, (5.2) takes the form

IMV
where MV2/2 is the initial kinetic energy of the system.
We note ,
3IMVj T T
T, = T = = — ).
! 2a3c VT Tt T (6.5)

In the physical sense ajc is the heat capacity of a cube of given material
with a side length ag. Therefore, T is the temperature which is equal to the
ratio of initial kinetic energy of the system to the amount of heat in one third
of this cube.

(a)

(®)

50

1.0

t* e}

Fig. 3. Dimensionless temperature 77 charts versus the t*/t% at by = 10 in
absence of wear (a) and at by = 10 and &} = 0.2 (b)

Fig.3a shows the dependence of T} on t*/t7 at the absence of wear
(kz, = 0) for the fixed values t*. The behaviour of T} will be different in
relative to the values of stopping time. Two intervals of its change may be
choosed:

¢ Rapid regime (¢} < 50). High contact temperatures do not develop and
with increasing of ¢ the temperature falls. In this regime the maximum
temperature T7 is reached nearly in the half of the stopping time
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e Long regime (t; > 50). The braking period is so large that the surface
temperature is sufficient for hot spots to arise. The temperature will
reach the maximum value T,,,, in the steady state and, therefore, from
Eq (6.5) we have

;=L (6.6)

15
Tltmax 103

10

Fig. 4. Maximum temperature T} on braking time 1 without (&% = 0, continuous
curves) and with (kX = 0.2, dashed curves) wear

The influence of wear on the contact temperature is shown in Fig.3b. In
this case the maximum contact temperature is reached during the rapid regime
of braking. The maximum temperature 77 variations versus the stopping
time {7 at bo = 5; 10 and k;, = 0 (continuous curves) and k% = 0.2 (dashed
curves) are shown in a semi-logarithmic scale in Fig.4. We see that there is
the stopping time t; at which the temperature reaches the minimum value.
At slow braking (t3 > 100), the temperature reached the steady state value
and T} asymptotically tends to the value (6.6).

7. Conclusions

The following main conclusions can be drawn from the obtained solution:
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The introduction of wear into the analysis of the thermoelastic contact of
two sliding half-spaces with uniform retardation resalts in the maximum
temperature and increasing of the contact radius

The maximum contact temperature and the minimum contact radius are
reached near the half of the stopping time (¢ =~ 0.5t;)

Significant increasing of the contact area due to wear takes place at the
end of braking (¢ > 0.8¢,)

In a slow braking regime at absence of wear the increase of contact
temperature is sufficient for developing of the hot spots

When the wear takes place. the greatest value of the temperature 77,
which is independent of the initial kinetic energy, is reached during rapid
braking.
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Osiowosymetryczne kontaktowe zagadnienie podczas hamowania
z uwzglednieniem generacji ciepla

Streszczenle

W pracy rozpatrzono zagadnienie kontaktowe z uwzglednieniem generacji ciepla
dla dwéch slizgajacych sie polprzestrzeni. O jednej z pélprzestrzeni zalozono, ze jest
gladko zakrzywiona co powoduje Hertzowski poczatkowy rozklad cisnienia. Druga
z polprzestrzeni jest izolatorem. Wykorzystujac zalozenie, ze cisnienie kontaktowe
moze by¢ zalozone w postaci rozkladu otrzymanego przez Hertza podczas trwania od-
dzialywania, zagadnienie zostalo zredukowane do réwnania catkowego typu Voltera na
nieznany promien obszaru kontaktu. Rozwiazanie numeryczne zostalo przedstawione
wykorzystujac kawatkami stala reprezentacje nieznanej funkeji. Zbadano wplyw para-
metréw charakteryzujacych ciala na temperature w obszarze kontaktu oraz promied
obszaru kontaktu.
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