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The state of thermal stresses for a periodic two-layered elastic space we-
akened by an interface Griffith crack or a ribbon-like absolutely rigid inc-
lusion is investigated. The analysis is performed within the framework of
linear thermoelasticity with microlocal parameters. The resulting ther-
moelastic problems have been reduced to their mechanical counterparts.
The stress singularities as well as the effects of the layering are discussed
within the framework of the theory of fracture mechanics.

Key words: layered composite, crack, ribbon inclusion, stress intensity
factor

1. Introduction

Extending use of new composite materials in situations involving both
mechanical and thermal environments requires the study of their strength and
fracture behaviour. Interface cracking is considered to be one of the most
commonly encountered types of failure mechanism.

This paper is a continuation of our studies (see Kaczynski and Matysiak,
1997 and references therein) concerning the interface crack and rigid inclusion
problems in a bimaterial periodically layered space subjected to mechanical
loading. Considering of the problems including thermal effects is the main
purpose of the present investigation.

The study is based on the approximate microlocal parameter approach de-
vised by Wozniak (1987). The governing equations of the homogenized model
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in 2D stationary case of linear thermoelasticity are given in Section 2. We also
formulate the general boundary-value problems and present a common method
of constructing the solution for an interface Griffith crack and a perfectly rigid
ribbon inclusion by using an analogy between the thermal problems and their
mechanical counterparts.

The asymptotic analysis of the results for proper assessment of the strength
degradation of composites due to the defects under consideration is given
in Section 3. Unlike the existing solutions for defects lying on the interface
of materials (cf Erdogan, 1972;, Sih and Chen, 1981), the standard (non-
oscillating) crack-tip thermal stress singularities are obtained and the stress
intensity factors are introduced.

2. Formulation and solution of the problem

Fig. 1. Middle-cross section of a periodic composite with an interface defect

Let us consider a microperiodic laminated space, the middle cross section
of which is shown in Fig.1. A repeated fundamental layer of the thickness
0 is composed of two homogeneous isotropic sublayers, denoted by 1 and 2,
with thicknesses &, and 3. They are characterised by Lamé constants
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Ay and gy, thermal conductivities k; and coefficients of volume expansions
361/(3A; + 2p); here and in the sequel, all the quantities pertaining to the
sublayers 1 and 2 will be denoted by the index [ or (/) taking the values 1
and 2, respectively.

We deal with the plane steady-state thermoelastic problems related to the
xy-plane with the interface defect: a Griffith crack, denoted by C or a per-
fectly rigid ribbon inclusion, denoted by I, representing a line segment of the
length 2. This stratified medium is subjected by a certain external loading
resulting in the displacement. stress and temperature fields independent of
the coordinate z. The perfect mechanical bonding and ideal thermal contact
between the layers (excluding the interval (-a,a)) are assumed. The crack
surfaces are required being free of tractions, and the ribbon faces to be free of
displacements.

Owing to a complicated geometry of the solid and complex boundary con-
ditions, the closed solutions of the considered problems cannot be obtained.
The homogenized model of this composite (cf Wozniak, 1987; Kaczyniski and
Matysiak, 1997) is applied to obtain an approximate solution. Without go-
ing into details we present only the final governing equations and constitu-
tive relations of the macro-homogeneous medium (homogenized model) for
the stresses al(;)(x,y), (t,] = y or &), agi)(.r,y) and the heat flux vector

[qy)(.r,y),qy)(:v,y)], given in terms of unknown macro-displacements u(z,y),

v(2.y) and a macro-temperature ¥(z,y) (in the absence of the body forces

and heat sources)

ke + K0,y = 0

Aptlyps H(B + C)vpy +CU,yy — K20, = 0 (2.1)
A1,y H(B + Cluyey +C0pr —h170,, = 0
¢ = —kyd,, ¢ = -K9,,
oll) = Bu,, + Ay, — 19
ol = Cluy +v,0) (2.2)
o) = D, + B, — 19

U TN ) B 1/ S S

o\ =
o2t )T Nt

The positive constants appearing in the above equations are given in the Ap-
pendix. They depend on the material and geometrical characteristics of the
composite constituents. It should be emphasised that the condition of perfect

bonding between the layers is satisfied ( agly), 0532, qy) do not depend on ).
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The components Ogr)., OEQ, qu) suffer a discontinuity on the interfaces. Finally,

assuming that two sublayers have the same thermo-mechanical properties. we
pass directly to the well-known equations of stationary plane thermoelasticity
for a homogeneous isotropic body (cf Nowacki, 1986).

Within the framework of the homogenized model we consider the plane
boundary-value problem involving an interface defect (crack (' orinclusion 1)
occupying the region § =< —a.a > x{0}. Evidently, the associated global
conditions on S are

or =0f =0 for C wt=vE=0 for I (2.3)
Here and below the quantities assigned with =+ refer to the limiting values as
y — 0%, Moreover, certain conditions resulting from a given external loading
(thermal and mechanical) have to be specified.

Making use of the superposition principle, the problem is separated into
two parts and we can write

9 = 9% + ¢ (u,v) = (u°,00) + (ut, v?) oc=0"+o¢ (2.1

where the index 0 is associated with the problem ol the composite without
defect, subjected to a given external load, and the index d refers to the
corresponding problem in which some fields are imposed on the defect faces
to ensure the conditions (2.3) to be satisfied. It is assumed here that the
solution of the first problem on the x-axis is known (see the method of complex
potentials devised by Kaczyinski and Matysiak (1988) and Kaczynski (1993)).
Attention is then focused on the corrective solution of the perturbed problem.
An efficient approach is based on the classical complex representation (similar
to that given by Muskhelishvili (1953) in terms of two potentials &, 2 and
the thermal potential o (corresponding to the thermal loading), taking on
the a-axis the following form (cf Ixaczynski and Matysiak, 1989)

ol —it.olt = ¢ + 0F
2w S+t S5 ] =k 0F - OF + 5.0))T - F(E)T (25)
¥(2,y) = 2Repy(£) € =u +ikgy

In the above, the constants t., p., k.2, ky are given in the Appendix, and
3., 3 are defined in the cited paper.

The thermal potential ¢y should be known to reduce is required to reduce
the thermoelastic problem to its mechanical counterpart. For a thermally
insulated problem it can be easily determined from the Hilbert problem, arising
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from the boundary conditions

q?i = qgi le] < a
(2.6)
gi{o0) = ¢j(oc) = 0

Denote now, from the solution of the problem associated with 0, the known
values of thermal potential j and thermal stresses and displacements on the
upper and lower faces of the segment (—a,a) x {0} as follows

Bl = 3'(@0)T = —[S(z) £ T(2)]

gy — ity = —[Plr) £ Q(a)] (2.7)

2pa[1,0F it 0,95 ) = —[f/(x) £ ¢/(2)]

In view of Eqs (2.5) and (2.3), {2.4). the {fundamental perturbed problem
reduces to finding two single-valued, sectionally holomorphic potentials @ and
2, satisfying the following boundary conditions

dF + 2F = P(a) £ Q(x) lv] < a
k@ — OF = flla) 2 g'(v)+ S(e)+ T(x) 2| < a (2.8)
P(o0) = {2(c0]

By using the results given by Kaczynski and Matysiak (1997), the solution
of the above problem may be written in the common form for the crack ¢
and rigid inclusion [ as

F(3)+gm ‘+’gt
72 _ g2

B(3) = +G(3)
(2.9)

in which the Cauchy integrals F and G of the generalized complex variable

Z (cf Kaczynski and Matysiak, 1989) and the constants g¢,,, g; are defined by
means of the known functions F*(p., 1), G*(ps, 1), T'(1)

- 1 \/ - LQF"(p*1 . PO i G* (P, 1)
F(M) CI(Z) = . PN dt
' 4rp* 1—z 4T p.l t—%
‘ (2.10)
p+ p* / 1% p"‘ /
m o— G * 3 lt e f l
g o= o) (pxit) 9 ip = po) T(t) dt
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provided we set in the problem ' and /:

— for C
P = -1 P = Ky ,
F*(ps,t) = =2P(1) G (part) = —20(1) (2.11)
—for [
P = Fix p=-1 ‘
F*(p.,t) =2f(t)+25(t) G*(part) = 29'(1) (2.12)

From Eqs(2.5) and (2.9)+(2.12) it is seen that the proposed model leads to a
typical stress singularity at the tips a®, contrary to the oscillatory singularity
appearing in the interface problems posed in conventional formulation.

3. Asymptotic analysis

The asymptotic form of solution in a small vicinity of the tips a* on the

x-axis is found to be (see a principle established by the conditions (2.11) and
(2.12))

d +
OW(.I‘,O) :P*—l k7 L+O 0 c e dat
{ od,(2,0) 2o | K | var TOUD rE e
. L+
ng(ﬂf,O) = —cis—t&k—l + 0% r==Hatr (3.1)

2p. /21
wi(z,0) | _ pe—me | K \/Z+O(7‘%> e dasr
v(2,0) | T 2pep. | K V2 C e

where the constants c* are given in the Appendix and the parameters A’j—“, k;—rl

(superscripts ()~ and (-)* refer to the left and right-hand crack (inclusion)

tips, respectively), known from the fracture mechanics as the stress intensity
{actors, are defined by

1 17 Jaxt
=T * 1
W~ itk QW\/E[/ aq:tF (peet)

(3.2)
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From the solution obtained above within the framework of the homogenized
model it is seen that the general character of the asymptotic relations is similar
to that in the homogeneous case. Intensification of local thermal stresses
is measured by the stress intensity factors. The effects of layering on local
crack displacements and inclusion stresses are observed in parameter s, (see
Appendix).

The general analysis may be used to investigation of the thermal stresses in
laminated space containing interface cracks or rigid inclusions and subjected to
specific loads, e.g. under concentrated forces and/or heat sources. It becomes
possible to compare the results with those obtained in the homogeneous bodies
(cf the monographs by Berezhnitsky et al., 1983; Kit and Krivtzun, 1983).

Appendix

Denoting by n = 81/6,b; = A+ 2 ({ = 1,2),b = (1 —n)by + 14 nby, the
positive coefficients in Eqs (2.1) and (2.2) are given by the following formulae
bk by

k= nky+ (1= n)k K = A
nki 4+ (1 —n)k, e s v 1=

4
Ay = A1 + 577(1 — )1 = p2)( A — Ag 4 g — p2)

J12 !
o B = Z[(1 = mMAqby + nAib
=10 + b[( m)A2b1 + nA1bo)
, . MA
Ky = E[(l ~ 1)Baby + 010 D= Zb/ 1

) 1 2

Ko = e + (1= n)B2A1 4 Plipe + (1= m)pm][nfi + (1 = )02
1 1 .

E = 5[4/”(/\: + ) + A Bl k= b—l(Qﬁtm + AKy)

The constants appearing in the complex representation (2.5) are given as

follows
o= s g = —AxA- g, = At Ao
A, 2(A.— AL) A, — A_

provided

J(Ay +2C)A_ [k
A, = VA A, (—++T)_ Ay = \/AA; + B ko = ;—
N
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The constants ¢t in Eqs (3.1) are defined as

¢t =V ¢ =P
provided
2022 2 — A
) g 2HRAE 2~ Ay )
(N +2u)A
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Naprezenia cieplne w periodycznym dwuwarstwowym kompozycie
spowodowane obecnoscia szczelin 1 sztywnych inkluzji
miedzywarstwowych

Streszczenie

Zbadano stan naprezen cteplnych dla periodycznej dwuwarstwowe]j przestrzeni
sprezystej, oslabionej szczelina Griffitha badz doskonale sztywna, lamelkowa inkluz)a.
Analize przeprowadzono w ramach liniowe] termosprezystosci z parametrami mikro-
lokalnymi. Wynikajace zagadnienia termosprezyste zostaly sprowadzone do ich odpo-
wiednikéw mechanicznych. Przedyskutowano z punktu widzenia teoril pekania oso-
bliwoscl naprezen 1 wplyw uwarstwienia.
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