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An alternative way to obtamn the kinetic equation for dispersed particles
in turbulent flows i1s presented. The method uses some tools developed
within the theory of the stochastic differential equations. They are pre-
sented first in an outline, including the cumulant expansion of linear
stochastic equations as well as the approach to non-linear equations.
Then. the general method 15 applied to the cquation of motion of small
pactticles 1 turbulent Aows. The governing kinetic equation for particles
is derived; it involves the correlations of the fluctuating Huid velocity
along the particle trajectories.
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1. Introduction

The governing equations of fluid dynamics, representing principles of mass,
momentum and energy conservation, are usually derived in the integral form
using the balance of a corresponding physical quantity in some finite volume.
Then, the equivalent differential form of the equations is obtained. However,
there is an alternative way of proceeding, supposing that one starts the de-
scription at a lower, more fundamental level. This means that the dynamics
of individual fluid molecules is considered. It is governed by the kinetic equ-
ation, i.e. a transport equation of the probability density function (PDF) of
position and velocity in the phase space. Various kinetic models of gases and
liquids have been proposed in the literature (see, e.g., Résibois and De Leener.
1977). They include the classical Boltzmann kinetic equation (by far the sim-
plest one) and the Enskog equation where the Boltzmann model is improved
by treating interacting molecules as hard spheres and not the material points.
thus enabling better description of dense fluids. So. starting from a kinetic
equation, and defining mean variables like velocity or pressure in terims of the
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appropriate moments of the PDF. the "classical” equations of fluid dynamics
can be derived using the ensemble-averaging (see e.g. Huang, 1963). We can
make an attempt to look at such a procedure from a more general standpoint:
if only one manages to propose a sound model that describes the behaviour of
a given system at a microscopic level, the corresponding formulae governing
the macroscopic description are readily found. For the case of the Boltzmann
gas, elastic collision and molecular chaos (Stosszahlansatz) hypotheses count
among the assumptions of the microscopic model.

At this moment. it may be worthwhile to mention that a similar procedure
based on the probability density function approach has recently been proposed
for turbulent (one-phase) flow computation (sce Pope. 1994 for a review).
Here. the governing PDF equation for the fluid instantaneous velocity and
possibly also turbulent energy dissipation rate can be shown to be derived
from the underlying physical model of fluid particle behaviour (Minier and
Pozorski. 1997).

The basic idea of the paper is to perform a somewhat analogous reasoning
for the case of two-phase turbulent flows. In the following, we will consider
particulate flows with the dispersed phase present in the form of small spheri-
cal solid particles (or liquid droplets) suspended in a gaseous or liquid carrier
phase. The study of such flows is both of theoretical interest and of consi-
derable practical importance, to mention only particle separators, hydraulic
and pneumatic conveyors. combustion chambers, turbine blade cascades in a
wet steam flow regime, nuclear engineering, dispersion of pollutants in the
atmosphere. The computer codes written for solving two-phase flow problems
in industrial and environmental applications usually solve the discretised ver-
sion of the equations formulated in the Culerian way: both phases are {rea-
ted as continuous. interpenetrating fluids. Hence, the conservation cquations
are written also for the dispersed phase. These equations are, however, more
complicated than their fluid equivalents because of the unclosed terms that de-
scribe the influence of turbulence on particles. To state our problem precisely:
in the paper we Jimit our attention to dilute suspensions with no interparticle
collisions and to the so-called one-way coupling case wlere the presence of
particles does not modifv the characteristics of the carrier phase turbulence.
Closure proposals for two-phase turbulent flows are a subject of intense rese-
arch, both in the Eulerian (two-fluid) formalism as well as in the Lagrangian
(trajectory) approach.

A recent idea of Reeks (1991), (1992) has been to establish the correspon-
ding kinetic equation for dispersed particles in a turbulent flow and to derive
the conservation equations next. Given the fluid velocity (decomposed into
its mean (Uy) and fluctuation uy). the starting point of the reasoning is the
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particle equation of motion. In the absence of external forces. the equation is
written in the form

%:v %:f.j'v—f-/'j<Uf>+f (1.1)
where # = 1/7, is the particle inertia parameter (7, stands for the relaxation
time of particle momentum) and f = fu; is a random part of the force
(viscous drag) acting on the particle.

Like in the case of fluid. the kinetic equation for particles is an evolution
equation of the probability density function P(z,v,t) in the phase space of
particle position x and velocity . 1t was first derived by Reeks (1991) for
particles in homogeneous turbulence. The Random Galilean Transformation
(RGT) was used there. Then, in the subsequent paper of Reeks (1992), the
equation has been obtained for the general case by methods developed within
the Lagrangian History Direct Interaction Approximation (LHDIA), first pro-
posed by Kraichnan: see also McComb (1990) for a comprehensive description.
Hyland {1995) presented his alternative derivation of the kinetic equation for
dispersed particles, based on results from advanced functional calculus. The
resulting equation writes

0 0 J
(— + v -

A b) N —
ot 0 m;“j“)““*f)

(1.2)

o dq70 0
T O [a'—l}j#”(z’v’u * 0:
Here, p and A are diffusion tensors in the phase space; they depend on f
and on the statistics of the random force f. The other term, =, reflects the
inhomogeneities of the fluid turbulence.

In the Boltzmann equation for gas, the only mechanism to change the
velocity of molecules is via the collision term and the interactions between
molecules are supposed to be instantaneous (with no history). On the other
hand, in the case of the kinetic equation for particles in turbulent flow, the
history terms are present. Roughly speaking, these terms are (as we will
see below) the time integrals over the correlations of fluid velocity along the
particle trajectory (fluid "seen” by particles).

In this paper, we present a different way to obtain the kinetic equation
(1.2). The method uses some tools developed within the theory of the sto-
chastic differential equations. It is believed that this alternative derivatiou
will be, both mathematically and physically, more easily understandable, as
it avoids the explicit introduction of Kraichnan’s (1977) LHDIA. The presen-
ted method is based on the cumulant expansion of the governing stochastic
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differential equation (SDE) which is the particle equation of motion with a
random term.

The mathematical formalism relating to stochastic differential equations
presented below is taken basically from Van Kampen (1992).

2. General method
2.1. Characteristic functions and cumulants

As we want the presentation of the mathematical method to be more com-
prehensive, we first recall a handful of definitions that will be used in the
following. Moments m and central moments g of a random variable X,
respectively, are denoted by

mj = (X7) py = (X = (X)) = (X)) G=1.2...

As often used. angle bracketsindicate the ensemble niean whereas double angle
brackets are a shorthand notation for moments about the mean value (X).
The characteristic function ¢ of a random variable X Is defined as

Plw) = (expliwX)) w € R
The expansion of o into a Tayvlor series reads
=om, :
)= 142 Sy (2.1)
= !

————

i
NN

Because of m; = d/o(0)/dw/ = 1.2....), 2 is also called the moment
7 & J %
generating function.  Next, consider the second characteristic function ¢

defined by

>/

Pw) = lnp(w) = In(1 + Z) = I’i(w)’* (2.2)

WM@

where Ay are called cumulants (semi-invariants). We expand In(l+ 7) into
a Taylor series and compare the coefficients at the respective powers, (iw)’.
in Eq (2.2) so as to find the relations between the moments and the semi-
invariants; the first ones are

2
A = my Ay = my — My = iy

Az = 3 Ai = pus = 3uh
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Hence. substituting into I5q (2.2). we have the following cumulant expansion

o0

A, 1
In p(w) = Z J,uf = imyw — z,ltzu.) + - (2.3)
j=1

It can be demonstrated that in the case of the Gaussian random variable.
the expansion reduces to the two terms written above explicitly. Moreover.
the name ”semi-invariants” has its origin in the following property of the
second characteristic function . If we consider a "shifted” random variable
Y, defined by the transformation Y = X + b, then it is easily shown that
wy(w) = 1bw + wx(w). This means that all cumulants, except the first, are
invariants of the transformation.

2.2. Characteristic functional

Let Y (1) be a stochastic process (a random function of an argument t);
the characteristic (moment generating} functional of V is introduced by

[ae)

Glk] = (exp (i / E(1)Y (1) dz))

—00

where £ is an arbitrary test function. The characteristic functional deter-
mines all moments and cumulants; it is a generalisation of the notion of the
characteristic function in the sense that for k(1) = wé(t — o), G[k] becomes
the characteristic function of a random variable Y'(1g). Similarly, the cumu-
lant expansion of G generalises Eq (2.3) and writes (cf Monin and Yaglom,
1971)

IHG ’_1/]» 11 (“1‘\— r\’/Im tl\]/\,(iz)“ ll)Y lz)>> d'/..ldi‘z—}—..,
(2.4)
As in the definition of i, double angle brackets stand for the central moments;
for example, the symbol

({ab)) = ((a = (a))(b— (b))

denotes the covarlance of two random variables «, b. We also note that
the cumulant expansion (2.4) of a Gaussian random function is limited to
the exactly two terms because all cumulants of tlie order three and higher
dissapear.
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2.3. Stochastic differential equations

In general, a stochastic differential equation (SDE) can be written in the

form y
u .
= F(u.,f.Y(-z;)) (2.5)

where u, I are vectors and Y is a stochastic process of given statistical
properties. A solution of the above SDE is also a stochastic process. For a
particular realisation (1) of Y(t), Eq (2.5) becomes an ordinary differential
equation (ODE) and its solution can be found. Solving an SDE usually means
finding the stochastic properties of u(t) like the mean value (u(?)) and the co-
variance matrix ((u;(¢)u;(t))) at every instant ¢ as well as the autocorrelation
({u;(t)u;(t + 7))) of the process.

2.4. Cumulant expansion of linear SDE

Let us consider a stochastic differential equation of the type

du .
- [Ao + oA (1)]u (2.6)
where Ag, 4; are linear operators (they can be thought of as matrices or
differential operators); Ag is deterministic while A, is random with a finite
autocorrelation time 7.; « represents the level of fluctuations; it is supposed
that o7, < 1; wuis a vector. Using the substitution

u(t) = etoy( 1)

our SDE is transformed to

v

Y _ 4 et g (1)t o (2.7)
d1 NI AN

S(1)

The symbol ef. where B is an operator. is formally defined as tlhe sum
A |
o< k
B _ B
LT
k=0 ’

From
dv = aS(t)v dt
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with »(0) = vy we have by a direct substitution

t 1

L/
v(1) = vy +a/rl[ St = vo+a/(11' .5'(t’)[vo+a'/dt” St =

0

0
t t tf
= [1 + a/dt’ Sy + a'z/dz’/ dt” S(t")S") + .. .]vo = (2.8)
0 0

= {exp(a/S(i') dt')}vo
0

In the above equation the time-ordering symbol [-] has been introduced.
It rearranges all operators within the brackets in chronological order, from the
right to the left. To better understand its meaning, we invoke the following
two identities

= (2.9)
t ot t 1f

% //B VB(") dt'di"] = /dt B(t )/dt”B(t”)
0 0 0 0

where B is an operator and t, <ty < --- < t,. We take the ensemble average
of Eq (2.8)

t
(v(1)) = [(exp(a/S(t’) dt’))]vo (2.10)
0
Applying the cumulant expansion, Eq (2.4), with k(t) = —i, to the above

equation, we obtain

—

S()S()) di'dt” +.. o (2.11)

O\N

¢ :

(v(t)) = exp a/ (5(1")) dt’ +§a2/
' 0 0

The expansion limited to the first order in o writes

(v(t)) = [exp{a ) dt’}]vo (2.12)

(e}
-
n
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This represents the solution of the following deterministic ordinary differential
equation (ODE) with no effect of random fluctuations

d(v)

— = elsn(u) (2.13)
More interesting is the second-order expansion
t t ¢
(o(1)) = [exp{a/(S(t’)} dt’+a2/dt’/dt” (SE)SE")) Vvo =
0 0 0
=R (1)
(2.14)
¢
= [exp{/ [a(S(t’» + 0‘2]{(1,’)} dt’}}vo
0
It is the solution of
d% S {a(S(t)} + oK (1) po(1)) (2.15)

The above can be thought of as a "renormalized” form of the initial equation,
Eq (2.7), where the effect of fluctuations appears in the form of an additional
deterministic operator; see Eq (2.13) for comparison. The original representa-
tion in terms of u writes
¢
= [[110+CY<A](Z)>+032/((,41(_1)67‘40‘41(15—T')>>e_7‘4o dr}<u(z,)> (2.16)
0

d(u(t))
dt

2.5. Nonlinear SDE

Let the function gy(t) be a single realisation of a stationary stochastic

process Y (t). Consider the deterministic ODE

du;

e (3X0) (2.17)

dt
where the subscript ¢ denotes any component of the vector u. The equation
gives the trajectory of a particular realisation of the process u in the phase
space. Density of the flow in u-space satisfies the Liouville equation

Op(u,t) _ _ O[Fi(u.t.y)p]

ot - du; (2.18)




DERIVATION OF THE KINETIC EQUATION... 39

where summation over ¢ is imiplied. When Y is substituted for y, the above
ODE becomes a linear SDE for p. At any value of ¢, the density of the flow
in the phase space of u. averaged over all possible realisations y(1). is equal
(cf Van Kampen, 1992) to the probability density of u

(p(u. 1)) = Plu,t) (2.19)
Moreover, the flow density in u-space verifies

Du~!

Du (2.20)

plu, 1) = plu='.0)

where Du’ /Du stands for the Jacobian of the transformation u = wu(t) —
u = u(l+ 7).

The superscript notation represents a rather important point and is used
as follows: if wu denotes a value (at time ?) of a particular realisation of
the stochastic process, then u” stands for its value at the instant {4 7.
In particular, »~! stands for the value at the initial time. More generally,
suppose that f is any function defined along the trajectory of w. Then
f(u”,t + 7) denotes a value of the function at time t 4 7 on the trajectory
that passed by a particular value of w at t. In the LHDIA notation, we would
write

flu” t+ 1)Y= flu t|t+71) (2.21)

t 1s called the labeling time and ¢+ 7 the measuring time. This generalized
notation contains both the Eulerian (for v = 0) and Lagrangian descriptions.
Let us suppose that F; can be split into two parts

Fi(u,1,Y) = F2(u) + aF (u, 1) (2.22)

where [P is stationary and not stochastic while F!' is random and of zero
mean; the explicit dependence of I} on Y(t) will henceforth be skipped in

the notation. In this case, the Liouville equation reads

et = [_ R T ]p_ [Ao(u)+o,A1(u,t) b (223)

where the operators Ap and A, are introduced as

A9 . L.
A= _OE) 4 _OE0)

Juy ou;
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The form of Eq (2.23) is identical to that of Eq (2.6) with w replaced by p.
Thus, we can write an equivalent of Eq (2.16) as

0 t - 174

o) _ OO, famw ., 0ne-), .

T a /( 5o Je~T0 dr| (o) (2.24)
0

Now, consider the unperturbed Liouville equation, i.e. Eq (2.23) with a = 0.

[t is easily verified that its solution is given by et4e f(u) where f(u) is any

function. Then, the following identity is obtained from Eq (2.20)

Du~?
Du

et flu)y = fluh) (2.25)

We also note in passing that, in particular, one can make the substitution
exp(TAg) = Du~7/Du in Eq (2.24). By virtue of Eq (2.25), we have

Du™
TT0p(u,t) = plu 2.26
e p(u,1) plul 1) (2.26)
and, with the use of Eq (2.19)
e A0 (p(u,t)) = P(uf,f)D" (2.27)

Du
Substituting this into Eq (2.24) and using the identity (2.25) with

OFM(u,t — 1) Du”
_ J T
<p(’ll,,t)> - au] P(u ’t) Du

flu) = —aFjl(f” ~7) o
du;

the final form of the transport equation for the probability density function

JP(u,t) B I[FPP(u,t)] N
ot B duy

(2.28)

o Du~" ¢
—I—Ozz,i d7{F}(u,1) ¢ 0 Fliu™",t~ 1))

U

v Plu.t

Ju; Du du;7 (1)
0

Du-7

is obtained. The equation deserves some comment. The first expression on the
right-hand side represents the transport of the PDF by a purely deterministic
operator F9 while the second corresponds to the influence of the stochastic
term which depends on the correlations of a random component [,
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3. Derivation of the kinetic equation

Now, the problem of the particle motion in turbulent fluid. considered by
Reeks. is reconsidered. The governing equations write

T =

(3.1)
v = —U‘U-I-U(Uf)-I-FE-l-f

with 2 and o being the particle position and velocity, respectively. 3 is
the particle inertia parameter (the inverse of the aerodvnamic relaxation thue
7p); (Uy) stands for the mean fluid velocity and Fp for an external force
field. fis a random force exerted by the turbulent fluid; f = Ju; where u;
is the fluid fluctuating velocity.

The method described in the preceding section is applied as follows. Eq
(3.1) is equivalent to Eq (2.17), u; = F;, with

v

u:[i] F(O):[—,B‘v+_z3(Uf>+FE]
=G
(3.2)
FU = [?] F = Flo) L p()

The unperturbed equation for a deterministic (non-stochastic) system wu(g)

writes ugg) = FO o, explicitly
a:(d) = ’l)(d) ’l)(d) = —’B’U(d) + G (33)

The subscript (d) will now be skipped; as before, we note

v =v({) v =w(t-T)
For G = () we obtain
T = ve FT v =0l
v /. _3r orT v’ (34)
T —(1 = 3 — T pr
z T+ ﬁ( e > r==z 3 (e 1>

For any function
h = h(m(z_r,v”),v(z”,v”))
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we have

oh oh dx; Ok v,

— . 3.5
dv. " OIJ dv; ' - dv; o7 (3.3)
Thus, using Eq (3.4)
d 1 3\ O 9, 0
= (1= -Bry_Y - 37 3.6
Jo G- g +e g (3.6)
Substitution into Eq (2.28) results in
oP(zv.t) 0 J N
T e, .
(3.7)
t
0 —G‘r 9 - 9 =T
o O/fl u t) e g e g I =) dr}P(z,v,1)
In the notation of Reeks we obtain
JOP(z.,v,1) 0
_— — - —/ »JLP =
o +0$i(?'P)+0ni< pol)
¢
0 . J -7 --3r .
- %{I/(fl(u,t)af%.[](u =y dr 4 (3.8)
0

( i
+O/<fi(u,t)3%fj(u‘w - /-))%(1 - e*/ﬁ) dT}P(z,v,z‘,)

After substitution for s = ¢ — 7 the expression in curly brackets on the right-
hand side of the above equation writes

4
- d
/eﬁ(s_t)“i(“ '[)ﬁfj(“ 8)) ds +
t
¥ O ot 1) ds
+O/El—e (fzutajf( ,8)) ds

We recall that in the LHDIA notation, cf Eq (2.21)
™ s) = fz,v,1]s)

and f should be meant as the generalised Lagrangian force acting at time
s on the particle that passes through z with a velocity v at some labelling
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time t. The force depends on the particle trajectory; this somehow explains
the words ”Lagrangian History”. [{' ¢ is considered as the initial time, f is
the "classical” Lagrangian force. On the other hand, for s =t we identily f
as the Eulerian force and note

Juf 1) = flz.1)

Thus Eq (3.8) becomes identical with Eq (41) in the paper of Reeks (1992)

+ v

( d 7] _()_
ot 0z, dv;

/3vi>P(ac,v,t) =

t .
/eﬁ SO filz,1)= 0 [ilz. v, t|s)) ds + (3.9)
/ dv; "

J filz v, t]s)) d }P(xvf)

<1~e )(/1x/dj

+
o
@l =

In a general case of non-unitorm flows, the unperturbed equation takes the

form

T(g) = V() ,
(3.10)

vy = ~B(z(q), Do) + Gz, 1)
So, unperturbed particle trajectories are more complicated than those given

explicitly in Eq (3.4). Following our standard notation, for 7 =¢— s they are
symbolically written as

r

" = z(g)(T,v,1]s) v = v(d)(x,v,t|5) (3.11)

and should be read as: the position (velocity, respectively) at time s of a
particle that passes through (z,v) at time t. We define

01@)1
duv; 7

. d .
gL](S|[) = gL] |t di gu |t) (312)
So, instead of Eq (3.6) we have

0 d 0 L
Jor " = 9i(slt) 5~ +J1J(5,7‘ 9] (3.13)
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Then, we follow the same steps as in the derivation of the PDF transport equ-
ation in the previous case, Eq (3.9). Finally, the corresponding PDF equation
for dispersed particles in general non-uniform flows writes

0 0 4]
(E -+ via_—'pi - a—p{ﬁ'lﬁ)P(.’Z‘,‘v,t) =
t
0 . : a .,
= o [ gtslti e, 0o, 0,s) ds + (3.14)
2 0 7

¢
+b/ gik<.s|w<fk<x.z>a%f,,-<x«u,ti.s>> ds} P(z.v.1)

It is identical to Eq 88 in Reeks (1992). Comparing the above equation with
the shorthand form Eq (1.2), the explicit expressions for diffusion tensors u,
A and for « can be easily found.

4. Conclusion

In the paper, we have proposed a different way to derive formally the ki-
netic equation for particles in a turbulent flow. As seen above, the equation
is not closed, because of the unknown form of the correlation of fluid velocity
along particle trajectories. There are some recent proposals to overcome this
inherent key difficulty { Reeks, 1993; Simmonin et al., 1993; Simonin, 1996). Mo-
reover, using the Lagrangian approach, a valid model for particle dispersion
in homogeneous isotropic turbulence can be obtained (Pozorski et al., 1993).
Once a general model for the correlations of fluid velocity "seen” by the partic-
les is proposed and validated. it can be expressed in the formalism presented
above and the governing Eulerian (i.e. two-fluid) equations for the two-phase
flow can be derived from the kinetic equation.
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Wyprowadzenie réwnania kinetycznego dla czastek w turbulentnym
przeplywie dwufazowym

Streszczenie

W pracy przedstawiono alternatywny sposdéb wyprowadzenta rownania kinetycz-
nego dla czastek w turbulentnym przeplywie dwufazowym. Wykorzystano metody
rozwiniete w ramach teorii stochastycznych réwnan rézniczkowych. Przedstawiono
je w zaryste, lacznie z rozwinieciem liniowych i nieliniowych réwnan stochastycznych
w szereg polnmzmlennll\ow (kumulantéw). Nastepnie, to ogdlne podejscie zastoso-
wano do réwnania ruchu matych czastek w przeplywie turbulentnym i wyprowadzono
odpowiadajace mu réwnanie kinetyczne. Zawiera ono korelacje fluktuacji predkosci
plynu wzdluz trajektori czastek.
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