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1. Introduction

Superfluid helium II is the only known fluid that is able to remain liquid at
temperatures close to zero degrees. Moreover it exhibits some other fascinating
properties due to quantum effects which become apparent at the macroscopic
scale. Such properties have been first observed in pioneering experiments by
Kapitza (1938), Peshkov (1944), Allen and Jones (1938), Allen and Misener
(1938) and then investigated, from the theoretical point of view by Landau
(1941), London (1939), and Tisza (1938). It is generally accepted that the
most fundamental aspect so of the behaviour of this liquid can be explained by
using the so-called Landau two fluids model. According to this representation
helium II is regarded as a mixture of two different liquids: a normal fluid
with mass density p,, velocity w, and normal viscosity, and a superfluid
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one, having density p,, velocity w;, vanishing viscosity and extremely high
thermal conductivity. The following relations are assumed to hold

p=PstPn
(1.1)

pY = PsVs + Pnp

where p and v stand for the mass density and velocity field of the mixture
regarded as a whole, respectively. At the A-point (2.17 K) we have only normal
fluid so that p,/p = 1 while at 0K all the helium is in the superfluid state
and p,/p = 0. Some motivations of Landau’s idea can be found by regarding
helium II as a degenerate Bose gas in which the Bose-Einstein condensation
has set in (Greco and Miiller, 1984).

Dozens of papers have been written on that subject but here we consider
only the approaches directly related to the principles of continuum mechanics.
Let us start with the paper by Greco and Miller (1984), who approached the
problem in the spirit of the extended thermodynamics. Their aim was to show
that the extended thermodynamics of a degenerate gas offers an alternative to
Landau’s model of superfluid. However, their results are only partially consi-
stent with the experiments. The reason for this discrepancy must be sought in
the fact that superfluid helium is only a first crude approximation of a Bose-
Einstein condensate. On the same line is the paper by Mongiovi (1991), where
it is shown that at least the main properties of superfluid helium can be found
by imposing the entropy conservation condition in the extended thermody-
namics of a single fluid. Let us quote now two papers in which the Landau
idea of two fluids is accepted. Atkin and Fox (1984), proposed a set of con-
stitutive equations for a class of materials in which the independent variables
were density, temperature and some generalized velocity field together with
its gradient. Their theory encompasses the Landau’s one as a special case.
Finally, one should mention the non-local theory of superfluidity by Fabrizio
and Gentili (1987). Those authors accepted exactly the Landau model as it
is. However, for the superfluid part of helium they introduce a particular con-
stitutive equation of the differential type, which is equivalent to a non-local
relation between stress and density.

Another method used Bekarevich and Khalatnikov (1961), who presented
a phenomenological deduction of the equations of motion in He II based on the
conservation laws. In their derivation two main assumptions concerning the
forms of flux of energy and momentum are accepted. Moreover, dissipative
processes are taken into account. As one of consequences an evolution equation
governing the changes of the vorticity w = rotw, has been derived.
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In the present paper we propose a continuum model of the liquid helium II
based on the model with internal state variables and with the vanishing vor-
ticity. In fact, as pointed out by Dreyer (1983), any mixture of two fluids
may have some thermodynamic properties of helium II. Its behaviour may be
described by a two fluid hydromechanics whenever some additional quantities
appear as an argument of state functions (see also Fiszdon, 1992).

According to such a point of view, we introduce in the constitutive equa-
tions a vector quantity h as the spatial gradient of a scalar internal variable ~,
is such a way that the so-called counterflow velocity w = v, — v, is related
to h. Indeed, to such a velocity are related most of the characteristic pro-
perties of superfluid helium II. Our model occurs to be less general than that
by Atkin and Fox. However, it is wide enough to contain the Landau’s one.
Furthermore, it describes the properties of liquid helium in the whole range
of temperatures below the A-point, taking into account also the possibility of
dissipative effects.

To make the contents of the paper better understandable for more readers
we are giving some general introductory ideas concerning the thermodynamic
model used in the present paper. The model with internal state variables
may been known in the thermodynamics of continua for some 30 years (cf
Coleman and Gurtin, 1967; Valanis, 1967) and was firstly introduced in order
to describe a response of a visco-elastic material. In general the model is
obtained by postulating (or better to say — by enriching) the description of the
state, given in terms of the so-called conservative state variables (in our case
p, U, ¢s) by additional quantities called internal state variables. Besides the
constitutive relations, certain kinematic equation for the internal variables are
postulated. The additional equations are evolutionary differential equations
of order one. The right-hand side of that equation has to be postulated in a
way similar to the that used for constitutive response functions. In this way
governed by the constitutive relation the response of the material becomes
not only a function of the (conservative) state variable but also a functional of
their histories, since solutions of those additional kinematic equations depends
not only on the initial conditions but also on the history of the state variables.

In 1989 the first author Kosifiski (1989) introduced, for the first time, a
gradient of a scalar internal state variable [ as a state variable in response
functions of a thermoelastic material. In the course of derivation of consequ-
ences of the laws of thermodynamics he obtained a modified Fourier’s type
law and finite speeds of propagation of thermal and thermomechanical waves.
Postulated by Kosifiski (1989) the right-hand side of the evolution equation for
the scalar internal state variable was a real-valued function of the temperature
¥ and 0. In this way, the internal state variable has represented a history of
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the (thermodynamic) temperature.

The paper is organized as follows. In Section 2 we give a short resumé of
the main properties of liquid helium, in order to point out the experimental
starting points of the theory. Section 3 is devoted to introduction of meaningful
physical quantities and then to writting the thermomechanical balance equa-
tions together with the second law of thermodynamics. Then in Section 4 the
second law of thermodynamics is exploited, in order to derive some analytical
restrictions on the constitutive equations. Finally, in Sections 5 and 6 a com-
parison is made between the present model and the Landau’s one; moreover
some main physical properties of helium II are analyzed in order to determine
material functions.

2. Some properties of helium II

Now we shall give a short review of the main properties of helium below
the temperature ¥, = 2.17K. We refer to classical books on superfluid hy-
drodynamics, as Wilks (1967), and Putterman (1974). Helium liquefies at
4.2K and between that temperature and 2.17K (A-point) it behaves as an
ordinary fluid, called helium I. However, below the A-point helium passes to
a new phase, helium II, which presents some unusual thermomechanical pro-
perties. For instance, it is able to flow through a narrow capillary (~ 107%cm
in diameter) without measurable resistance. This phenomenon is known as
the fountain effect. This property can be observed by connecting with a nar-
row capillary, called superleak, the two vessels — both containing helium II.
Heating one of those leads to a flow of the liquid from one to another vessel
and in consequence to cooling the second container. Then the temperature of
the fluid in the first vessel is found to be higher. This apparent paradox can
be explained by supposing that helium is capable ofo flowing in the capillary
without carrying entropy. The fluid remaining behind has the same total en-
tropy distributed over smaller amount of a substance; hence it has a higher
temperature. In the same way the fluid in the second vessel conserves the
same total entropy distributed over more mass and then it is cooled.

3. Balance equations and the second law of thermodynamics

From now on we will regard our material as a binary mixture of fluids.
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Hence, we postulate balance laws for mass, linear momentum and energy for
the mixture as a whole together with a law of mass balance for each consti-
tuent, (Gurtin and Vargas, 1984). Eqs (1.1) are supposed to be valid. Due to
gradient of concentrations of each constituent, diffusion of matter takes place
in the fluid. In the classical theory of mixtures, account is taken of this dif-
fusion, either by supposing that the entropy flux may differ (Miller, 1968).
from ¢/9, where ¢ and 9 mean the heat flux and the absolute temperature.
respectively, or by introducing an energy extra flux I. which allows for an
additional mechanical energy (Gurtin and Vargas, 1971). Since these choices
are mathematically equivalent, we may adopt the second one without loosing
the generality. Let B, represent the moving fluid an the actual configuration.
The vector position of the points of B, (in the Eulerian description) will be
denoted by =z while v = dz/dl denotes the velocity field defined on B;.
Moreover, let ¢{z,t) be a scalar density defined on By, #(z,1) and R(z.t) be
two fields defined on 0B, and By, representing the influx and supply of @,
respectively. We a.ccepL the following integral balance equation

/qb(l@-k/t nds—/Rdv:O (3.1)

B, 0B,

where n means the outer normal to the boundary 0B,. The localization
procedure, in the case of differentiable fields ¢ and 1, leads to

b+ ¢dive + divi— R = 0 (3.2)

where div is the divergence operator calculated with respect to Eulerian coor-
dinates and

gb— d)+v grade (3.3)

Owing to Eq (3.2), the complete set of local balance laws for the whole mixture,
regarded as a single body, is

p+ pdive =0
pv = divT + pb (3.4)

jt<e+ —v- v)—d1v(vT)+d1v(q+) pb-v—pr=90

where
p — mass density of By
T - Cauchy stress tensor
b — body force
€ — specific internal energy
¢ - heat flux vector
7 — body heat supply.
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As far as the second law is concerned, Eq (3.2) must be understood as an
inequality; then we get the unilateral differential constraint
Lo pr
divz - —= >0 3.5
P+ diveg = =5 2 (3.5)
where 7 means the specific entropy.
Besides the above equations we postulate the balance of mass for each
constituent in the form

pés + divlps(vs — v)] = my
(3.6)

pén + div[/)n(vn - v)] = My

In Eqs (3.6) ¢; = ps/p and ¢, = pn/p represent the mass concentrations
of the superfluid and normal components, respectively, while mgs and m,
are the mass productions of the same components. In the theory of reacting
fluid mixtures mg and m, should take into account the mass production
of each constituent due to chemical reactions. Although in liquid helium II
there are no chemical reactions, the fractions of normal and super components
are varying with temperature so that an actual mass production takes place.
Since the total mass remains constant, we have m; = —m,,.

One should note that Eqs (3.6) are not independent since Eq (3.6), follows
from Eqs (3.4)1, (3.6); and (1.1);. Henceforth, to describe our fluid besides the
variables p and v, we have introduced two additional scalar fields, ps, p,, and
two vectors v, v,, but only five additional equations given by Eqs (1.1) and
(3.6)1. Usually, in theories on superfluidity an extra balance equation for the
linear momentum of the superfluid component is postulated. This equation is
of the type

D
where D P
D—;vs = % + v, - gradv; (3.8)

denotes the convected (material) time derivative based on the velocity field
vs. The vector f represents a driving force acting on the atoms of superfluid
matter and its form must be determined by a constitutive equation. For
instance, the Landau conjecture is that f is due to the gradient of chemical
potential while Fabrizio and Gentili postulate the non-local relation

divf =lp (3.9)

where [ is a suitable material parameter.
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In the present paper we follow a slightly different procedure. First of all,
we postulate the existence of a superfluid velocity field v,. Moreover, if

wp = Qult)r, + et (3.10)

where ();;(1) are the Cartesian components of an orthogonal tensor-valued
function and c¢;(¢) are the components of a vector-valued function of time ¢,
that represent a change of the frame of reference, then v, transforms as an
absolute velocity, i.e.

O O,L']"l)sj + Qi]’(l‘j —cj)+ & (3.11)

S T

with

25 = QirQix (3.12)

Furthermore, the evolution of the scalar field 7(z,1) regarded as an internal

state variable (and at the same fine a potential for h) is goverend by an initial
value problem

7 =H(p.J,¢5,7,h) 7(to) =70 (3.13)

where H(-) is a suitable smooth function to be specified in a similar way to
other constitutive functions appearing in the model. Finally, let h = grady.
Our main assumptions are the following:

1. There exists, at least local in time, a solution v(z.t) to Eq (3.13) (for
any 7o from an open set of initial conditions to Eq (3.13))

2. The function ~5 and its spatial gradient h appear as state variables in
constitutive equations of the model

3. The counterflow velocity w is related to the gradient h by a suitable
constitutive law which will be specified later.

What actually we are doing is to considering helium II as a first gradient
fluid with a scalar internal state variable, playing the role of the potential.

For the first time a consistent thermodynamic model of a gradient gene-
ralization of the internal state variable approach has been recently developed
for a rigid heat conductor by Kosinski and Wojno (1995). On the other hand,
it is worthwhile to notice that the concept of potential, related to the counter-
flow velocity has already appeared in the literature, (see e.g. Lhuillier, 1975).
Moreover, we will see that such a model is too general for our scope and hence
we can confine ourselves to analysis a particular case.
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By taking the spatial gradient of (3.13) we get
h = -hL + gradH (3.14)

where L = gradw. Once the relation between w and h is specified, the above
equation furnishes the additional kinematic relation necessary for describing
a two-fluid model. This relation plays a similar role as Eq (3.9) or (3.5) do.
However, at the moment our approach is more general and could be applied
not only to a superfluid but to any fluid with an internal state variable the
gradient of which enters the constitutive equations.

4. Exploitation of the second law of thermodynamics

Our aim here is to develop a thermodynamic theory of the fluid under

consideration. To this end we need to characterize its thermodynamic states
and processes. According to our approach a thermodynamic state is defined
by the values of the following 13 functions of & and ¢:
1) total velocity field v, 2) counterflow velocity w, 3) symmetric Cauchy
stress tensor T, 4) specific body force b, 5) specific internal energy ¢, 6) heat
flux vector ¢, 7) heat supply r, 8) energy extra flux [, 9) total mass den-
sity p, 10} superfluid mass density ps, 11) specific entropy n, 12) absolute
temperature 9, 13) scalar internal state variable .

Such a set of 13 fields, defined for all 2 in B, and all ¢ in some interval
[to,to + 7] of an amplitude 7, will be called a thermodynamic process of
duration 7 if and only if it is compatible with the local balance laws of mass,
linear momentum and energy together with the evolution (kinetic) equation
(3.13). Furthermore, a thermodynamic process is called admissibleif it satisfies
the Clausius-Duhem inequality (3.5) for all z in By and all ¢ in the interval
[to,to + T]. Here, ouly the differentiable processes are considered, the case of
non-smooth processes needs more elaborated arguments. Now, we postulate
the constitutive equations

l/) = /L/)*(pvﬂﬁcsvvl‘rh) 77 = 77*([),’0,(15,7,}1)
T=T(p,7,¢5,7,h) ¢ =q"(p,0,¢57,h) (4.1)
= l*(PvﬁaCSa7>h)

H = H*"(p,9,c5,7,h) w=W(p,J,c5,7,h) (4.2)
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where % is the Helmoholtz free energy given by
Y =€— 19y (4.3)

These equations require some comments. It is rather a classical result of the
continuum theory of binary mixtures that free energy, pressure and entropy
depend only on p and 9, together with the concentration of one of the
constituents, (see Gurtin and Vargas, 1971). Besides the above mentioned
variables, however, due to a superficial properties of liquid helium we suppose
the constitutive equations to depend on the vector variable h, related to the
scalar internal state variable <. Moreover, some of the properties peculiar
to the superfluid state, namely those related to the assumed existence of the
counterflow velocity has to be described by an additional dependence of the
state function on the gradient of 7.

Let us suppose we are given at an initial time {g, an initial value of the
internal state vector ~o(z) for any =z in By, and moreover the motion
Y : By, — By, some temperature distribution, mass density and superfluid
concentration on B, for all t € [tg,lp + 7]. Suppose further that ~o(z,1),
plz,t), cs(z,t) are smooth enough to ensure the existence of a unique solution
¥{(z,1), to Eq (3.13) for all tin [to,to + 7| and such that y(a,%) = yo. Then
we can compute h = grady(z,t) and v = dyx/dt. Moreover, owing to the
balance laws together with the constitutive equation in w we can compute
the fields p., v, and wv;. Hence, from the constitutive equations we get the
fields 7, ¢ = ¢ — ¥n, T, g and [. If the constitutive laws are compatible
with the Clausius-Duhem inequality then the corresponding thermodynamic
process will be admissible. Thus, to any sufficiently smooth choice of ~g, x,
9, p, and c¢; there corresponds a unique admissible thermodynamic process of
duration 7, provided the constitutive laws are such that the entropy inequality
is satisfied.

Let us now investigate the conditions under which our constitutive laws
are compatible with the second law of thermodynamics.

To this end we follow the classical procedure introduced by Kosinski and
Perzyna (1972) and by Valanis (1967) or Coleman and Gurtin (1967). First
of all we may rewrite Eq (3.5) as follows

—pzb—pm?—kT-L—divl—%q-gradﬂzo (4.4)

Moreover, owing to the constitutive equation (4.2), the prolongated evolution
(kinetic) equation yields
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h = -—hlL+gradHd = —-hL+ 8—ngadp +
dp
(4.5)
OH ., 0H 0H
+ a—ﬂgmdﬁ + e, grades + ﬁgradh
inequality (4.4) may now be rewritten in the form
00 Ny (Db OV, 0% L Ow
~pl = ) —pl— — T-L
p(819+77)1)‘p(8pp+8 Cs ()h h+a}])+ +
(4.6)
ol ol ol o\ T q
-y - = (=) -er — 2 oradd >
op gradp — 59 - grad?y Be. -grade, (8h) gradh 3 gradd > 0

On the other hand, the balance of mass together with the prolongated kinetic
equation may be used to compute the material time derivative of p, ¢; and
h; then (4.6) may be rearranged as follows

9 , 0% o
— . h"\
(819+77)19+[ 8,0I pscsptsl + ph ¢ _8h+T L+

oy OH oly
+[ paha + esps (s —v)—%J-gladwr
g, 1] i o
ovoH ol qy oH ,, (711
~[p5i 5 ¢ 5yt ) e = o S+ (55) ] eraah +
—pg¢H + psmg + puscsdives > 0

In Eq (4.7) the symbol & stands for the tensor product, lis the identity tensor
while ps = 0¥ /dc, is the reduced chemical potential due to the superfluid
constituent. Let so = (po, Yo, ¢s0, ko) be an arbitrary point of the domain of
the response functions ¢, n, T, ¢, and H, while vy an arbitrary value of the
velocity field. Moreover, for a given point zg and initial time {#p let p(z,1),
I(z,t), cs(z,1), v(z,t), h(z,1) be a solution to the field equations such that:
p(:l)o,io) = po, '19(11:0,10) = 9y, Cs(xg,to) = ¢s50, ’1)(1120,’[0) = v, h((L‘,t) = hg.
Then the Taylor expansion of such a solution around the initial point yields

plz,t) = po+0(t—1to) + 1o [z —20] +b [z —20](t —t0) + ...
e, t)=do+a(t —1p) + 9y - [z — zo] + @[z — zo](t — 1) + ...
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cs(z,t)=cso+c(t—1to)+ 8o-[2—xp]+e¢ [z —zo](t—to) +... (4.8)
v(z,t) = vo+ V(t — to) + Lo[z — zo] + Alz — zo](t — to) + ...
grady = h(z,t) = ho + M(t — tg) + Holz — 20] + Plz — zo](t — t0) + ...

where the meaning of the symbols is obvious. Hence for the process under
consideration, Clausius-Duhem inequality at the point zg and time tg yields

v L0y o
—p[Gg 1], 0t o7, 1~ pscamsl b SEHT] Lot
00l | o
+[_p’éz5;+cs#s(vs_v) ap}so o +
o OH ol
"k ac, Trrs(vs — )~ acsLo 3o + (4.9)
o OH ol q OH Oy
_[pﬁw—i_% _} . 0_[/)@[1 ah+(8h) ]SO'Ho-I-
—P(?—wH + psms + ppscsdivo, > 0
v

Here the subscript so means that the response functions are evaluated at the
point $g of their domain of definition. Due to the arbitrariness in the choice
of the points (zg, %) and g, the previous inequality must hold for any value
of a, hy, Lo, Ho, 70, S0, gg, if and only if

n=—g—1§ TZ—PQgﬁ |—ph®%
g/!)' pg‘»’f% + csps(vs — v) ;_cls:_p%%gz (’l)s—’l))
(4.10)
ol oY oOH q ol oY _ OH
5= "3h o0 " 9 oh = 35 © 3]
oy

—po—H + pspsdiveg, — psmg > 0

dy
Although a number of severe restrictions has been placed on the constitutive
equations by the preceding analysis, the theory is still too general and some
simplification is desirable. Hence, we pursue our analysis under the additional
constitutive assumptions

1
¢ = 101(/?, 19,63) + §¢2(P, 797 Cs, 7)|h|2
(4.11)

1
H = Ifl(paﬁacsa 7) + §H2(P719,C377)|h|2
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Finally, we specify the constitutive equation in w. As a first approximation
let us suppose for a while w to be proportional to h, i.e.

h = f(p.v,co)w (4.12)
Under the above hypotheses we get the following thermodynamic restrictions
T=—p ;bl +5pse cspsl — pipoh & b
' ' E d
3—: = —péd—?'¢!zh ; o ]zlhlzwthr Cspts(vs — v) +Pcsll'.sf_1?£w
ol 1L 9Hy , 5 L, 0f .
Bl A2 _ . _
de, .210 dec, |[R|“0oh + pris{vs — v) + pespis f (?Csw (4.13)
ol OH, df
Ew s h— = sks !
55 = P g Vb~ g+ pea ] g
ol
gh = ~PYeHzh ©h—pespus [T 'l
together with the reduced entropy inequality
psitsdive, — psm, — p%]{ >0 (4.14)
;i

Although the theory conserves a certain generality, the obtained relations allow
Landau’s results to be discussed satisfactory. This will be the subject of the
next Section.

5. Comparison with Landau’s theory

The main problem related to Landau’s theory concerns the vorticity of the
superfluid state. Indeed, on the basis of some microscopic considerations, (see
Landau, 1941), Landau postulated the condition

rotvs = 0 (5.1)

having the meaning of a kinematic constraint. In the framework of continuum
mechanics such a requirement seems to be questionable. On the other hand
the relation rotw = 0 was adapted by Atkin and Fox (1984), who showed
that it is frame-invariant (objective). In the present theory, as a consequence
of our main assumption, we get

roth =0 (5.2)
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It is easily proved that owing to the property of transformation of vector wv,,
the above condition results to be frame invariant. It is enough to ohserve that.
due to (3.11)

w = Quw (5.3)

so that
roth’ = rot[ f'w’] = rot[fw'] = rot[fQw] = Qrot[fw] = Qroth (5.4)
Finally, if f satisfies the differential equation
flgradf x w+ rotv, = 0 (5.5)

then, Eq (5.1) is fulfilled. Such a condition is verified in the case considered
below, if the fluid is in the superfluid state. Indeed let us pursue our analysis
under the hypothesis

h=w (5.6)

Note that there are still some free parameters in the theory, represented
by the material functions ¥ and H. To get the constitutive equations of
Landau’s non-dissipative theory we have to assume

H = 1y = CsCp (57)

Due to Eq (5.7), together with the thermodynamic restrictions we get

1
P = 1hy(p, 0, ¢5) + Ecncs|w|2

T=-pl- Mw & w
P (5.8)
201 1P§Pn|w’2

p=2p (‘)—p_§ 2
q:pscnﬂnw—ﬁ—%

These relations represent just Landau’s two fluid model unless for the last
equation (5.8) an additional term due to the vector ! does not appear. Since
Landau regards helium II as a non-conventional mixture, (in the sense that he
does not apply the canonical balance equations of mixture theory) this term
is absent in his theory.
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6. On the experimental determination of the evolution equation

In this section we will discuss determination of the RHS of the evolution
equation (3.13), the most crucial property of the theory. For the class of fluids
analyzed above, function A should be assigned on the basis of the experi-
mental results at hand. Indeed, as noted by Maugin and Muschik (1994),
any physically meaningfull internal state variable should be related to some
detectable macroscopic quantities and, in this way, it must be considered me-
asurable.

In the particular case of superfiuid helium, by the constitutive equation
{4.12) we have related this function to the velocity and density fields and
then, at least from the theoretical point of view, its nature is clear. However,
it is worthwhile to note that, from the experimental point of view. it could be
rather difficult to project suitable measurements. Our aim here is to show how
it is possible to assign the evolution equation in a particular case. Suppose for
a while that function ;(p,?) could be split as follows

P1(p, V) = Yio(p) + Y11(V) (6.1)

Then to get the heat flux in the form of Eq (5.8)y, it is enough to assume
H = ¢ (9) (6.2)

and our problem reduces to determination of function 41(#). This can be
done owing to one of the most fascinating superfluid phenomena, the so called
Sfountain effect, discovered by Allen and Jones in 1938. They observed that
the level of helium contained in a vessel and communicating with a helium
bath trough a narrow capillary, were higher than the level of the neighbouring
bath, provided the helium in the vessel were suitably heated. According to
Landau’s conjecture, only the supercomponent flows trough the capillary so
that all the helium in the vessel is in the superfluid state. Taking into account
that the exterior force in this case is exerted by the gravitational field U, at
equilibrium, the equation of motion (3.4), yields

gradlp+ U] =0 (6.3)

or, equivalently
p+U=20 (6.4)

by a suitable choice of the reference level of U. Moreover, since

U = pagy (6.5)
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where a, represents the acceleration due gravitational field and y the altitude
of the fluid in the vessel, we conclude that

P -
; = —ayy (6.6)

If u denotes the chemical potential of the fluid, classical thermodynamic
relations yield

OH _o¢ _ __dp/p) _du _ O(p/p) (6.7)
g9 —ov T 90 a9 oV '
since in the superfluid state the chemical potential remains constant (see Put-
terman, 1974). By combining (6.4) and (6.7) we get finally
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Fig. 1. Curve fitting with the help of the analytical expression
n/ay = ~0.21817 4 257529:95:195253

Eq (6.8) shows that function H can be obtained by measurements of the
altitude of the helium column in a superleak, or, equivalently, by measuring the
function n/a,. Such an experiment were performed by Kramers, Wasscher,
Bots and Gorter (cf Zemanski, 1968). We have found a fit of their data by
a least squares method and the fitting curve is shown in Fig.1. Its analytical
expression is

oot g9 (6.9)
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with
a=—0.21817 0 = 0.257529 n = 5.195253

In this way H can be determined by solving a simple differential equation.
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Gradientowe uogélnienie wewnetrznych zmiennych stanu i teoria
nadciekltosci

Streszczenie

Jako punkt startowy rozwazanego w artykule modelu, przedstawiono podsta-
wowe wlasnoscl cieklego helu. W ramach gradientowego uogdlnienia podejscia przez
wewnetrzne zmienne stanu dyskutuje sie termomechaniczne réwnania bilansu wraz
z drugim prawem termodynamiki. Poréwnuje sie obecny model z modelem Landau’a,
a ponadto analizuje sie glowne fizyczne wlasnosei helu 1T w ramach rozwinietego po-
dejscia.
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