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The internal structure of elastomers allows for great elastic deformations
to take place. Breakdown of such hyperelastic materials or the trans-
ition into plastic stress state 1s discussed. The elastic potential with
the material constants determined experimentally is derived, and cri-
tical conditions based on the Huber-Mises and Tresca material [ailure
theories are specified. As an example, the stresses and deformations in
some of machine elements loaded in a combined way are determined.
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1. Introduction

Structural materials sensitive to strain rate, such as polymers and elasto-

mers, differ much from metals in their mechanical and rheological properties.
The deformation process in these materials depends directly on the atomic
and molecular structure. The mechanisms of deformation result from the na-
ture of the material. The structure of the material is spatially disordered and

it consists of transversal and longitudinal chains of particles. Between the
bonded chains there are the forces of internal friction and the intermolecular

forces (van der Waals), Dudziak and Anisimowicz (1990).

Main bonds are the chemical ones. which affect the magnitudes ol elastic
strains ¢, and creep strains ¢, (cf Dudziak, 1990), Fig.1 and Fig.2.
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Fig. 1. Tensile test of elastomers

Fig. 2. Tensile characteristic (stress-strain curve) of elastomers;
Nio, N1, ..., Nis = cycles of load increase, Ngo, Nai, ..., Ngg — cycles of load decrease
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In principle, the bonds ol van der Waals forces influence the deformation
mechanism of creep strains ¢, and also the mechanical and rheological pro-
perties such as; for example, tensile strength. different elasticity moduli for
loading and unloading to thic point I, see Fig.2.

The ultimate tensile strength 24y of a material depends mainly on inter-
molecular (interbonds) forces. If the external load exceeds the intermolecular
forces of the bonds (point A'), Fig.1 and I"ig.2, the rapid clongation of the ma-
terial can be observed and then it breakes (point Al). The point I is called
the critical point of the loading and the corresponding load is called the criti-
cal loading. The area of elfective use ol the loadiug acting upon the structure
made of such elements extends up to that point. The experiments have proved
that the critical point A is contained within the range of 0.9583; = 0.93 )y,
Fig.1 and Fig.2.

The use of critical loads in the design process of structural elements made
of elastomers enables more complete use of their strength, in accordance with
the physical nature of the material. However, one may find serious diflicultics
in determination of the critical state of stress or deformation in the case of
structural compound loadings. In the paper, the use of TTuber-Mises or Tresca
material failure theories enables formulation of a general form of the limit
conditions. The elastonieris treated here as a hyperelastic material (in Green’s
formulation, Green and Zerna (1968), it is known to be nounlincar clastic) so,
we need to know the function of eclastic potential for the description of this
material.

2. Equations of hyperelasticity; limit stress

The clastic behaviour of clastomers is well defined by the constitutive equ-
ations of hyperelasticity (¢f Green and Zerna, 1968) formulated on the base of
strain potential W. The cquations of motion of such medinm can be written
in the form

b= 2 (XY (2.1)

where  X* are initial coordinates (state B9) with metric tensor (g, and
a* are the current coordinates (state [3) with the metric tensor g¢;;. The
Cauchy-Green strain tensor and strain invariants are as follows

]}ij = IT:Lz F[)(:aﬂ = -[l (/U - giT.(/iSC"Ts (22)
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[1 = Grs!/”

1 .
I = 5(]12 - f/rnf/snG'rSGmn) (2-3)
]3 = grmes

wheras f3 = 1 for elastomers (incompressibility ).

If the material is homogeneous and isotropic within the elastic range, the
elastic potential is a function of strain invariants, i.e. W = W([,, I, I3), and
the stress state is expressed by the following relations, (see Green and Zerna,
1968; Wesolowski and WoZniak, 1970)

7 = ¢g' + Yy BY + pGY (2.4)
where
2 oW 2 oW ow
=% o V= Unan p=2hoy
In the case of axial tension the critical stress state is achieved for ¢ = oy.

To determine the limit state in three-axial tension we will use the Huber-Mises
and Tresca material failure theories. The material reaches a critical state when
physical components of the stress tensor satisfy the following general condition
(see Mielniczuk and Sawczuk, 1972 and 1975)

1 2 3

J(oy,05,05) =0 (2.5)

The physical stress components have the same numerical values as the
mixed components of the stress tensor, i.e.

:

T =7"Ghj = 0

J

Taking into consideration the fact that the deviatoric part of stress tensor
is responsible for the critical state (destruction) of elastomers, i.e.

1 = i %T;ffGij = o(g" - %]1(7”) +(BY - gfgaif)

the Huber-Mises and Tresca limit conditions are as follows

2 .
(W) + (3 + ()" = Sok (2.6)
and
max{ |t} = 73], 113 - 8,13 - 1]} = ox (2.7)

Hereinafter the limit strain states are specified for the two boundary pro-
blems. It enables one to determine the limit loads.
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3. Deformation of a spherical shell

A thick-walled spherical shell is loaded by the external pressure P., and
internal pressure P;. The material of the shell is assumed to be incompressible
I3 = 1. The internal and external radii are 7, and 7, for the initial state B°,
and R, and R, for the deformed state B, respectively (Fig.3). The critical
strain is expressed as follows

Q(R) = % (3.1)

Fig. 3. Deformation of a thick-walled shell

The invariants of the strain state arc of the form
2 1
Q? Qt
and the components of the stress state, according to Eq (2.4), are

3= 2l - @) +4( - )

L=0Q"+ L =20Q%+ Ir=1 (3.2)

(3.3)
. 1
=13 = -51)

The limit condition is the same for both material lailure theories, and it is of
the form

(@' - ;) + (@ - %) = tox (3.4)

If the elastic potential (functions ¢ and %) is known then the critical
strain and critical load of a shell can be determined from the above criterion.
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Mechanical properties of some elastomers (e.g. rubber) are acceptably
represented by the potential [unction which depends on the first strain tensor
invariant Iy, We have W = C{/, — 3) for the so called neoHOOKEan, where
(' is a material constant (cf Wesolowski and Wozniak, 1970).

Thus, the limit condition (3.4} has the following more simple form

an

6 _
AT

This equation has two real roots, which, otherwise, represent the solution
to the boundary value problem, therefore

The limit stress state can be determined from Iiq (3.1) for @ 2.

Q*—1=0 (3.5)

4. Critical bending of a strip

2 A RO

Fig. 4. Cylindrical bending of the strip

A plate strip made of elastomer is shown in [Iig.4. The strain tensor
invariants are of the form

I = A%? + + 1 I, =1, Iy=1 (4.1)

A 2 7 2



[N
NN
-1

LIMIT LOAD OF ELASTOMER ELEMENTS

where
2/10

The physical components of the stross Lensor doviator are as lollows (el Dau-
dziak and Mielniczuk, 1990)

3 = qﬁ(A;zﬂ — A%? — J) + L'(A‘Jr? — 2% 4 1)

A2y2
1 . 1

: (A2 - ‘2)
A27'2> * t/( * A?r?
and the limit conditions according to the luber-Mises and Tresca matcerial
failure theories are expressed in the following way

3&3 = ¢(2 — A%p? -

( I b, 1

(6% 4 4 (A + = — A )
At A2

(4.2)

1 g 2
N 4.4 9, 2.2 . 2
—}—gb(r//(/l r+ ‘{11]‘4 + 2057 + 12,2 - ()) =0y

and

(¢+ '@!v)(A'Z-r'z — ,1'21,-'z> = toy (4.3)

From the distribution of stresses it can be seen that the extreme fibres,
situated at 7 = 7y and » = 7o, are subject to the highest stresses. Assuming
the same model of the material as above the ITuber-Mises condition takes the

form )
1 . o
4, 42,2 = %k
A71+A27"1‘ A71_40
Substituting for @ = r; — 73/7? we obtain the equation
A R S "
ah 1608 22 4hE  AC '

from which the solution curves have been determined for the bands with diffe-
rent thicknesses (Fig.5a), and for the band of constant thickness with different
values of the axial limit stress (IMig.5b).

For the Tresca criterion we obtain Lhe following simple formula

[ [N

A2 - — = n
! /lzl'f 2('
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Fig. 5. Solution to the bending problem according to the Huber-Mises material

failure theory
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Fig. 6. Solution to the bending problem according to the Tresca material failure
theory
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The same substitution as above yields

ﬁm“ + ;212 = 1h? (4.5)
Fig.6 illustrate the solution contour lines obtained from the above equations
for variable band thicknesses and dillerent limit stresses.

Knowing the solutions of Eqs (3.9) and (3.10) we determine the limit stres-
ses in a bent band loaded by the limit bending moment.

Concluding we must say that the determined boundary conditions are im-
portant from engineering point of view. The first boundary condition can
be used to determine the limit pressures for thick-walled rubber coats (tyres,
balls). The second one can be used to determine the limit loads for rubber
belts.
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Obcigzenia graniczne clementéw z elastomeréw

Streszczente

Wewnetrzna struktura elastomeréw, odmienna od struktury metali, wplywa
na przebieg procesu odksztalcania 1 powstawanie duzych deformacji sprezystych.
Rozwaza sie problem zniszczenia lub uplastycznienia takiego materialu jako materialu
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hipersprezystego. Slormulowano warunki graniczne w oparciu o hipotezy ITubera-
Missesa i Treskl wykorzystujac postac potencjalu sprezystego okreslona doswiadezal-
nie. Wyznaczono odksztalcenia 1 w elckcie naprezenia dla elementdw maszyn podda-
nych zlozonym obciazeniom.
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