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1. Mathematical models of compressible fluid flow and artificial
viscosity

We consider three mathematical models of compressible {luid flow. The
first one, the lIiuler equations for inviscid gases, can be expressed as the system
of conservation laws

Uz.1), + fAU)y; =0 (1.1)
where
U - wveclor of conservation variables
flE - Lulerian fluxes.

I'or the complete listing of notation sec Appendix A.
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In the second modecl, the Navier-Stokes equations, new viscous and heat
fluxes appear that correspond to heat conduction and viscous forces

Uz, 1)+ fEU) = PUU YUY + f5(U,VU), (1.2)

To close the above system additional experimental relations are supplied, na-
mely Fourier’s law, relating the heat flux ¢ and the temperature gradient T';

¢ = =KT

’

Suthertand’s law, expressing the viscosity coefficient g in terms of temperature

1.457%

= — . ] -6
T+ 110 0

0
the Prandtl number relationship. establishing the almost constant (in the pre-
sented considerations it is assnmed exactly constant) ratio between the coeffi-
cient k/cy, appearing in heat [lnx terms in the Navier-Stokes equations, and
the viscosity coefficient p

pr=2%Y _ g
N

and the Stokes hypothesis. relating two viscosity coeflicients ¢ and A

A= —-%/L

In both models we assume that gas is calorically perfect, i.e. that

\ )
v = const e=crteny = -wu + —-I-
2 (v—=1p
where
e — total specific (per unit mass) encrgy
ey — specific internal energy
erx  — specific kinetic energy.

Obviously. the Navier-Stokes equations are the more accurate of the two
descriptions above. Nevertheless, in many cases one can still obtain good ap-
proximations of real flows using simpler (at least in terms of the number of
physical processes considered) niodel of the Euler equations. The correspon-
dence between the flows described by the two models is based only on heuristic
and phenomenological observations and there is no mathematical evidence or
estimate whetlier the solutions to the Euler equations can approximate, and
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if yes then to which extent, the solutions to the Navier-Stokes equations. Mo-
reover, it is well known that existence ol boundary layers, the phenomenon
neglected by the Euler model, may constitute the most important factor of a
flow, changing essentially its character.

The Navier-Stokes equations can be expressed in a quasilinear form
when natural viscosity matrices Kf{i (ff = KZ(U)UY]-) and matrices K
(ff = K5(U)U ) are introduced

Ute. )+ FEU), = [(Ky(0) + K500 5] (1.3)

1

The third model of compressible fluid flow, regularized Euler equations, can
be obtained by replacing the matrices Ki; and K, in Eq (1.3) by some new

. / . . - . .
matrices Kf}l which represent the model of artificial viscosity

Ulz.0), + fE(0); = [KE (0. VU 4

7

, (1.4)
e

The reason for introducing the rvegularized 1uler equations is the neces-
sity for changing some properties of solutions to the system of equations de-
scribing the fluid flow. The Fuler equations form a hyperbolic system of
equations which in general can posess discontinuous solutions (in which case
the equations have to be understood in a distributional sense). When one
tries to solve the Iluler equations using some straight{forward approximation
method (like central differences or the Galerkin finite elements) the numeri-
cal solutions become unstable. The situation is not much better in the case
of the Navier-Stokes equations. The Navier-Stokes equations form a mixed
hyperbolic-parabolic system of equations (the terms with matrices K and
Ky arc all of the second order but the first rows in matrices K and K7 con-
tain only zeros) solutions of which are continuous!. However the physical and
numerical experiments (as well as some mathematical reasoning in simplified
situations) show that for real gases or their approximate models there still
exist regions of very rapid changes in flow properties (shocks) with the thick-
ness ol approximately several mean free paths of gas particles (= 10="m).
This means that the accurate resolution of shocks in numerical simulations of
flows around or inside macroscopic scale objects would still require very, very
small grid sizes, usually making such numerical calculations impossible for to-
day’s computers. Additionaly. the accurate resolution of shocks is sometimes

I'The mathematical theory of the Euler and the Navier-Stokes equations is still by
no means complete. To procede further, we optinistically assume that the results
which today are proved only for special cases will be confirmed in future for the
general situation of arbitrary flows,
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not necessary and we can achieve the aims of numerical computations using
less accurate approximate models. In this way we arrive at regularizations
to the Luler equations. The aim is to provide an approximate model of fluid
flow in the samne way as the Euler equations do, but without introducing the
discontinuous solutions and. instead. having solutions where shocks are of a
thickness possible to hic resolved during numerical simulations.

The arguments above are presented to justify our approach to the regula-
rized Euler cquations: despite their name (adopted here in accordance with
previous works on the subject) we will treat them as an approximate model
of the Navier-Stokes equations, rather than of the Luler equations. In such a
case several indications can be drawn for their design (which basically means
the design of an artificial viscosity model). I'irst, since the reason for their
existence is to allow an approximation method to be able to resolve all flow
features present in the fluid flow model, the model should somehow depend on
the approximation method. In practice, these means introducing some para-
meters of the approximation method into the artificial viscosity terms (usually
this parameter is a characteristic linear local mesh size, denoted by h). Fur-
thermore, the method should be consistent, i.c. with the increasing accuracy
of the method the model should hecome closer to the Navier-Stokes equations.
Hence, artificial viscosityv terms should vanish with the incrcased accuracy of
computations and, at a certain point (the question at which should also be
specified by the regularization procedure) the original Navier-Stokes second
order terms (with matrices Kff/- and K%) should be recovered. Introduction
of the mesh parameter /h as a multiplicative factor in the artificial viscosity
terms allows for satisfaction of the first part of this requirement, i.e. it makes
the artificial viscosity terms vanish with /i decreasing to zero.

When proving the correctness of an artificial viscosity model the following
procedure is olten adopted: one assumes that the Kuler equations provide the
ultimate fluid flow model and tries to prove that with the increasing accuracy
of computations and artificial viscosity terms tending to zero approximate
solutions to the regularized Euler equations converge to the solutions to the
Euler equations. Contrary to that. we consider artificial viscosity as an ap-
proximation to natural viscosity and heatl conduction and, instead of proving
convergence to the Enler model, we try to establish some, important in our
view, links between the model ol artificial viscosity and the natural viscosity
and the heat conduction terms in the Navier-Stokes equations.
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2. The second law of thermodynamics and entropy production

Systems of equations (1.1) and (1.2) express the principles of conserva-
tion of mass, momentum and energy for the corresponding fluid flow models.
Conipressible gases have also to satisly the principle of entropy production i.e.
the second law of thermodynamics, which. in the formulation of Clausius and
Duhem, looks as follows

et S+ (), 20 (2.1)

where n(U) = pln(pp~7) is the entropy density and f"(U) = nu; are the
corresponding entropy fluxes.

The second law of thermodynamics has to bhe added to the Buler equations
as some extra condition. This is because the Duler equations can possess
solutions which coutradict the principle of entropy production and thus have
no physical meaning. The role of condition (2.1) (with zero heat flux, since
we neglect it in inviscid gas flow)is to rule out all unphysical solutions leaving
the only one (as it is believed) that is phyvsical.

The situation is different for viscous gases. T'he second law of thermody-
namics is already built into the more comprehensive Navier-Stokes equations.
To see this we multiply Eqs (1.2) by the gradient vector 7y and use the,
so-called, compatibility condition for the entropy fluxes, ﬂ,Ufo = f{fu. After
some transformations, we obtain the equation expressing the local entropy
production for viscous gases

ne+ fl+ (g—;) .= %(217-;_,' Dij - %'“i,i“-j,j) + c}—r%(ji(h >0 (2.2)

We believe that the mechanism of entropy production constitutes an im-
portant part of the mathematical model describing the fluid flow. We have
already used the principle of entropy production to prove stability proper-
ties of certain numerical methods (¢f Bana$ and Demkowicz (1996)). Now we
postulate that tlhie model ol artificial viscosity should also provide a proper
mechanism of entropy production, a mechanism that resembles the exact one
presented in Eq (2.2).

3. Quasi-natural artificial viscosity

When trying to design a model ol artificial viscosity with correct entropy
production, the first idea which comes Lo mind is simply to replace the viscosity



238 N.Banag, L.DEMKOWICZ

coefficient (and related to it, by the Prandtl number relation, the heat flux
coefficient ) with some properlv chosen function, such that the correct relations
of an artificial viscosity model with both the physical description of the process
and the approximate model are maintained (cf Dulikravich et al. (1989),
Rachowicz (1993)). Below we will exploit the same ideas as in Dulikravich et
al. (1989), with the difference in the choice of, as is there called, an artificial
dissipation sensor (or indicator), which will be presented in the next section.
We observe that il we substitute into the matrices Kﬁ; and Kj; the relations

K I 2
— == A= —= .
oy Pr 3“ (3.1)

we can find in both K:’J and K}, a common fraction p/p which can be factored
out of the sum of the matrices deflining thus the following set of matrices K-]-

Kij-pK +/pC‘ Kfc

o Pr &

such that
K Kz} = K“ + Kh

In order to obtain a physica.ll_v correct model of artificial viscosity we have to
estimate now the dependance of the natural viscosity coefficient g on the state
variables. We observe that Suthertand’s formmula can be, when we assume that
the temperature chauges are of moderate rauge, approximated by a linear rule
which leads to a linear dependence of . upon the ratio p/p. This leads to
the first of our new artilicial viscosity models, which we choose to call "the
quasi-natural artificial viscosity”™ (QN)

KON = en LK
: p
where ¢ is a parameter and the mesh parameter h has been included as a
multiplicative factor in accordance with our previous considerations.

To find another physically "almost™ consistent model of artificial viscosity
we proceed by analysing the simplest model of artificial viscosity with matrices
K_;-‘}V having only one variable parameter ¢ Kg = ¢b;;1 (D due to the diagonal
structure of matrices K_g). We compute the entropy production for this model
in the same way as for the Navier-Stokes equations, substituting additionally
(nu): = Ulnuu to get

N+ f,", - ('I]_(;G(S,'j U‘_,) = UI-_(—'I]'UU)G(S-,'J'UJ' >0 (3.2)
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The last inequality results from the fact that the matrix —nyy is symmetric
and positive definite. When we compare the corresponding terms in Eqs (3.2)
and (2.2)

; K l
(L) = —(———[61\' - (’1-—1Lk,1]U,-i) .
e€r/a cy opog 1
with
: € _
—(77,U£b.,'jU_]~) = —(;—[F’]\' —ver+ In(pp™)er, —ug, 1]U,,-) ,
¥ e 7 ,
and
ey 1 kol (en —ep)?  —ujlex —er) en —er
— =04 = — 53U | —wilen —eq) U —u; U,
K € cy pet
I v peey e , 1
Cno— € —u;
with
. vet+¢f —ujen ex —ep
T T
U;(-nuvv)edi;U ; = —?U_,' =i erby +ouiu; -y U,
r ! Clo— €} —'LLJ' 1

we observe that the entropy production due to the heat flux ¢, in the Navier-
Stokes model is very similar to the entropy production due to the artificial
dissipation in the diagonal model. The D model of artificial viscosity provides
only an approximate mechanism for entropy production, however now the
artificial viscosity terms make the system ol equations elliptic (all equations
have some form of dumping) which should make the method more robust.

4, Dependence of the coefficients in the artificial dissipation
models on the flow field

Models of artifieial dissipation usually consist of two parts: one that con-
tains information on how the artificial viscosity terms are oricnted in space
and how they change depending on the equation they are applied to (in our
representation this information will be carried by the structure of matrices
Kﬂ-v), and the second part usnally in the form of some variable parameter in
front of all artificial viscosity terms. The role of this parameter (an artificial
viscosity sensor, Dulikravich and Dorney (1989)) is to indicate the points at
which we shiould apply artificial viscosity and to determine the actual amount
of artificial viscosity to be applied.



240 K.Banas, L.DEMRKOWICZ

In our QN model this coefficient is derived from physical considerations:
we demand that it depends upon the flow variables in the same way as natural
viscosity and heat conduction coellicients do. However this results in a situ-
ation where in the regions of smooth although not constant flow, the terms
of QN artificial viscosity arc of several orders of magnitude bigger than the
corresponding terms in the Navier-Stokes equations. Hence in these regions,
where the original flow is practically inviscid aund where we expect that ac-
curate solutions can be obtained without artificial viscosity at all, the QN
artificial viscosity introduces substantial dumping and the quality of approxi-
mation deteriorates. So there arises the question what else can be put in front
of matrices K,; instead of the factor p/p??

The answer consistent with physical rcasonings we try to accept in this
paper could be as follows. We have to apply artificial viscosity near shocks
where the standard approximation methods become unstable. Shocks are the
places where the right-hand side of Eq (1.3) is big, and so is the lelt hand side
of the equations. IHence, it is reasonable to base the indicator part of artificial
viscosity on the residual of the Euler equations (cf Hausbo and Johnson (1991))

rp=Ulz ), + FEU),

In other words, we should just apply the artificial viscosity terms at the places
wliere departure of approximate solutions [rom the [Luler model is the big-
gest, requiring the change of the model of a fluid flow. Once again we would
like to stress that this reasoning turns out to be natural and straight{orward
when we understand our simulations as an approximation of the Navier-Stokes
equations.

When based on rg the quasi-natural viscosity takes on the final form

KON = Ch?|lrisfIK;,

where |[rg]| is some vector norm of rg and R in RQN indicates the fact
that we have used the residual of the Euler equations. We implemented the
RQN model of artificial viscosity with the norwm ||rg|l, = \/=TgnuuTE which
naturally arises in the context of coinpressible Tuid flows. Another A in {ront
of the matrices R,-j appears in order to maintain the original relation between
the artificial viscosity and the mesh size (the artificial viscosity should vanish
with increasing density of the mesh). Since rp depends on the gradient of
solution in a quasi lincar way. the product hrp is ol the same order during
mesh refinements so the whole artificial viscosity terms behave asymptotically
in the same way as in the QN model.
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The residual 7z can be used as an artilicial viscosity indicator also in a
slightly dilferent form. I we multiply it by the gradient vector 7y we get the
local departure [rom the inviscid entropy balance at a point

e = e+ [

Now the absolute value [y -rpz| can be used as an indicator where we should
use artificial viscosity with the clear physical interpretation as an indicator of
places where the entropy balance should be restored. A new model in which
this form of rg is used

KEQN =Ch - TElRij

has a letter [ to indicate the entropy balance considerations.

Both the abovementioned artificial viscosity coefficients or indicators can
also be used with the diagonal model yielding the next two models of artificial
dissipation

RD _ a2 ,
Kii™ = Chllrel|é;l
ED _ oy, ~
KI',/' = ( h ]1/.(/ . T];'b;j‘

5. Performance of the proposed artificial viscosity models

We implemented the proposed artificial viscosity models in our 2D h-adap-
tive finite element code for compressible fluid flow problems (cf Banas and
Demkowicz (1994)) based on the second order Taylor-Galerkin time marching
algorithm. Tor space discretization we employed an automatic h-adaptivity
with an error indicator developed by Irikson and Johnson (1993), once again
based on the residual ol the Iluler equations.

The solution to a well known benchmark problem of 2D compressible gas
dynamics, the so-called ramp problem (c¢f Woodward and Colella (1984)) was
chosen as a test for the models of artificial viscosity. A shock, of a strength
Mach 10, is travelling along and perpendicular to the wall, represented by a
sloped part of the boundary (sec Fig.1 and Fig.2). At time t = 0 it meets a
corner of a wall with which it makes an angle of 60 degrees. A complicated
structure of double Mach reflection of the shock at the wall developes with a jet
of a dense fluid along the wall just behind the shock. The problem has simple
conditions (the bottom part is just a reflecting wall while the motion of the

3 — Mechanika Teoretyczna
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=04 -QN model, C=3;(h) Ap=04-ED model, C =1.5;
= RQN model. ("= & The smallest grid size Az = 1/98, Ay = 1/56,
three levels of refincment
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Fig. 2. The ramp problem - an example h-adaptive finite element mesh (a) and
two density contours at the time ¢ = 0.2s: (b) Ap=0.4- RD model, C = 4;
(c) Ap =104 - FEQN model, (" =4. The smallest grid size Az = 1/196,
Ay = 1/112. four levels of refinement.
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shock along the top boundary is directly enforced by the Dirichlet boundary
conditions) so the performance of the computer code depends solely on the
algorithm.

We present a series of results. for dilferent artificial viscosity models and
two different maximal reinement levels of 7 adaptive meshes. For both cases
of maximal relinement levels (three and four) the limiting value for refinement
indicator was chosen small enough to ensure that the most complicated featu-
res of the flow are solved on portions of the mesh with a uniform element size.
In Fig.1 the results are presented for three levels of refinement allowed, with
the smallest grid size Ax = 1/98 and Ay = 1/56. In Fig.2, for four levels of
refinement, the smallest grid size was Az = /196 and Ay = 1/112. In all
cases the Courant-Iriedrichs-Levy (CF1L) number was kept constant during
the simulations and cqual 1o one (the clement size used to compute the CFL
number was taken as h = /A2 \y/2).

As one could expect the first AV model, @QN, the only one which has
not been based on the residual of the Fuler equations, gave the poorest results
with overly smeared thick shocks. The other models gave comparable results,
each having its advantages and disadvantages. Although all the models requ-
ire much more computational tests in order to evaluate their quality, certain
obscrvations can already be made. ‘There have been no important differences
between the methods based on the norm ol 7z and the local entropy pro-
duction |ne - rg[. The methods based on the quasi-natural model resulted
in the solutions with thicker shocks and small oscillations after the stationary
shocks. The methods based on the diagonal model had a worse resolution of
contact discontinuities and produced overshots close to shocks, often leading
to the appearence of negative pressure.

6. Conclusions

We presented a derivation ol several new and a justification for several
existing artificial viscosity models based on the idea of approximating in the
numerical solutions the entropy produoction mechanism present in the Navier-
Stokes model. The models proved to give accurate and stable results for
a difficult transient henchmark problem of 2D gas dynamics when applied
along with the second order Taylor-Galerkin (inite element scheme. We believe
they can be also elfectively used with dilferent time and space integration
algorithms.
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Appendix A. Notation

- point inside (2¢

- time

— computational domain. ¢ C IR™. n = 1,2,3

- outward unit vector normal to the boundary 98¢
- density

— ith component of velocity
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e —  total specific encrgy, ¢ = ¢ + ey
e - specilic kinetic energy. e = ,]Eu[-ul
~ specific internal energy. e = —2

ey pecific internal energy. ey Ry

P - pressure. p = (y = L)(pe — 3puiug)

o — ratio of specific heats, v = ¢y/c,, ¢y at a constant
volume, Cp at a constant pressure

U ~ vector of conservation variables, U = [p, puy, pe]T

o tensor of viscous stresses. oy = 20D 4+ Abi; Dy

D — rate of deformation tensor, Dj; = %(ui,j + u;;)

b A - coefficients ol viscosity, (A = —%;L by the Stokes hypo-
thesis)

q - heat flux vector, ¢; = —kT;, Kk — coefficient of thermal
conductivity

T - temperature. 7= #r—;

n(U) - nondimensional entropy density, n(U) = pla(pp™7)

JHU) - Mluxes of nondimensional entropy, f(U) = nu;

nu.nee - gradient and hessian of nondimensional entropy with re-

spect to conservation variables (—n gy is symmetric and
pasitive definite)

|

no = —low = e+ nipp ™ er, — g,
a
L 7(12’ + (?\' — Uy EN —€F
nov = ——; —Uie Crépy + i —u;
Ny (i — ¢ . 1
N -] u;
fF Eulerian Muxes. f5 = [pug. puju; + pbdij, (pe + p)us]T
(f)o —  Jacobians of Fulerian fluxes
f - viscous fluxes. f = [0.0u, 05u;)T = Kfj(U)U']-
KZ-(U) ~ natural viscosity matrices
0 0 0

: ‘
Kf; = - —/I/IL/(S,", - /III,'(S‘/[ - /\(l,l,;(‘);j /l.b,'.}'(‘);..[ + /L(S,'/\-(S]'[ + /\(Sjkéil 0
~(AN+ pua, = 2pcc by, pugds F b+ Augbyr 0
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r-

KAV(U,vVU)

TG
K?,

e (),
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vectors containing components of heat flux ¢,

.
fi= [0.(). ~'/z} = K5,

- 0 0 0

Ky = 6 —— 0 0 0
Ly J(.\, p

c — € — Uy 1

malrix lunctions corresponding to a particular mo-
del of artificial viscosity

matrix functions of sccond order Taylor-Galerkin
(Lax-Wendrolf) approximation method,

KLC = 3 fouefu

time step Jength. 30 =+l ¢n

characteristic lincar local mesh (element) size
constant

identity matrix

Kronecker delta

subscripts corresponding to space dimensions,

g k=1....n

subscript, [or free stream values

subscript denoting normal component of a vector
superseript for values at time ("
partial derivatives, 9/df, d/0x;

summation convention is always implied by repeated indices

in all vectors and matrices the middle rows and columns should be expan-
ded according to the number of space dimensions n

Nowe quasi-naturalne modele sztucznej lepkosci dla symulacji
przeplywéw gazdéw Scifliwych, z poprawionym mechanizmem produkeji

entropii

Streszezenie

Zaprezentowano wyprowadzenie nowych modeli sztuczney lepkosel dla numerycz-

nej symulacji przeplywow gazow scisliwych w oparciu o zasade produkcji entropii dla



248 N.Baxas, [L.DEMKOWICT

przeplywdw lepkich zawarta w réownaniach Naviera-Stokesa, Modele, po implemen-
tac)i w programic adaptacyinej metody elementdw skoticzonych, zostaly przetesto-
wane na przykladzie symulacji interakeji fah uderzeniowej z klinem. Uzyskane wyniki
potwierdzaja przydatnosé wypracowanych modeli do symulacji przeplywéw z silnymi
falami uderzeniowyvmi.
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