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Following the moderate rotation theory of shells, we develop a similar
treatment of elastic and elastic-plastic beams, undergoing small defor-
mations and moderate rotations. We assume that a beam can deform in
a fixed vertical plane only, and that the applied load does not act on its
vertical walls. No Bernoulli-type constraints are imposed.

The one-dimensional problem studied is described by a system of four
ordinary differential equations, being the equilibrium equations (with
boundary conditions) ol the considered beams. These equations have
been derived on the basis of variational techniques.
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1. Introduction

The problem of geometrical nonlinearity in beam theory was investiga-
ted by many authors. Most of them seem to deal with elastic problems, e.g.
[2,3,6,7,10]. Galka et al. (1994) formulated the complementary energy princi-
ple for two models of geometrically nonlinear compressed elastic beams. Also
Mikkola (1989) dealt with variational approach to elastic geometrically nonli-
near beams and trusses.

The novelty of the beam theory examined by Reissner (1972) was an incor-
poration of the transverse shear deformation. A geometrically non-linear plane
problem was considered. Shear deformation beam-bending theories as adequa-
te models for anisotropic and composite beams were investigated by Rychter
(1993). A refined Bernoulli-Euler type theory was treated as a special case.

Shield (1992) considered a small strain pure bending of a beam or wide
strip using finite-deformation theory and neglecting some higher-order terms.
The shell theory was used as a starting point.
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Reffering to elastic-plastic structures like beams, plates and shells, one has
to cite the book by Washizu (1975), where a variational approach to linear
and geometrically nonlinear problems is consequently used.

Schmidt and Weichert (1989) explored the rate variational principle due to
Neal (1972) for the case of quasi-static problems of elastic-plastic shells. On
the basis Schmidt and Weichert (1989) we will carry out a variational study of
elastic-plastic beams. It is interesting to note that Telega (1976) showed that
Neal’s principle can be included into the variational framework of potential
operators.

Novozhilov and other authors, see Pietraszkiewicz (1980), pointed out that
in the case of thin structures; such as: shells, plates and beams, rotations are
often large or moderately large, although strains are small.

The aim of this paper is to formulate an approach to the geometrically
nonlinear theory of elastic and elastic-plastic beams using consistent strain-
and rotation-based order estimates. In the case of elastic beamns the variational
principle of virtual work will be used. The equilibrium equations and static
boundary conditions will be deduced {rom this principle.

For the elastic-plastic beams the rate variational principle due to Neal
(1972) will yield their rate equilibrium equations and static boundary condi-
tions. The only effective dimension and the straight-line reference configura-
tion of the middle axis make the beam problem easier than the adequate one
for shells.

2. Geometry of the problem and essential assumptions

We will consider a homogeneous beam of the length [ and a constant
rectangular cross-section of height h and breadth b. A coordinate system
in space is chosen in such a way that the middle axis of the beam in its
reference configuration occupies the segment (0,/) on the first coordinate
axis and the vertices of the "left” end surface of the beam have coordinates
(0,—h/2,-b/2),(0,—h/2,b/2),(0,h/2,-b/2),(0,h/2,b/2); see Fig.1. We use
the samne coordinate system to parameterize the reference position of material
points and current spatial points as well. The marterial (Lagrangian) coordi-
nates are denoted by ©¢, i = 1,2,3 whereas the spatial (Eulerian) coordinates
are denoted by 2*. The toral boundary surface of the beam in the reference
configuration will be denoted by .4 and its interior by V. The boundary
planes with @3 = h/2, O = —h/2, O? = b/2, % = ~b/2, 0! =1, O = 0,
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are denoted, respectively, by As:, As-, A+, Ay—, A1+, A —. The beam axis
is denoted by M.
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Fig. 1.

A simple geometry of the problem and the above choice of adapted coor-
dinates imply that the corresponding field of local bases g¢;, ¢ = 1,2,3 in the
beam continuum is constant and coincides with the system of basic versors

gl = [1,0,0] g, = [0,1,0] g3 = [0,0, 1] (21)

Being orthonormal this system coincides with its own dual basis, ¢,

t = 1,2,3, because the metric components take on the standard Carte-
sian values g¢;; = 6;;. Therefore the notation used by Schmidt and Weichert

(1989) simplifies significantly; particularly, there is no need to introduce a
separate symbol a; for the midline values of g¢;.

Configurations of the beam will be described by a vector mapping
6 = z(0), ie., analytically, by the systems of functions z'(01,02 03).
The corresponding displacement vector is given by V(@) = z(0) - 6, or
Vi = 2{(07) - O

We assume that the beam deforms only in the (©},03) coordinate plane.
Thus, all the involved fields will not depend on @?. Therefore, we may write

2(6',6%,0°) = (0! + u(6,0%), 62, 6° + w(6},0%) (2.2)
and we see that
V(6',0%,0% = (u(0',0°), 0, w(e',6%) (2.3)

Next simplifying assumption is that of flat and homogeneously deforma-
ble cross-sections; thus, displacements u(0!,0%) and w(O',02) have the
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following form

u(61,0%) =1 (1) + 6% u (@)
(2.4)

w(0',0%) =w (6") + 0% w (01)

In the literature this condition is usually referred to as an assumption of
flat cross-sections. We do not assume cross-sections to remain ortogonal to
the middle axis during the deformation process, i.e., no restrictions of Love-
Kirchhoff or Bernoulli (cf Schmidt and Weichert (1989)) type are imposed.

Our study is confined to the important in practice case of small deforma-
tions and moderate rotations.

We use the Cartesian orthonormal coordinates, thus we do not distinguish
between contravariant and covariant objects. Let us first recall some essential
kinematical relations.

The gradient of deformation is given by

¥
X = % =6+ Vh; (2.5)

The finite deformation tensor has the form
1
E;; = :Z_(Vi’j + Vi 4+ ViiVis) (2.6)

The infinitesimal deformation tensor 7;; and the rotation tensor {2;; are given
by

1

i = 5 (Vig + Vi) (2.7)

1 !
25 = 5(Vig = Vi) (2.8)

Expressing E;; by n;; and §2;; oune obtains

1 1 1

EZ_[ = Ty + 597'1'91']' + 5(771'1'9”' + 771‘]'-(21'2') + Enrinrj (29)
Only for infinitesimal gradients V;; the quantities #;;, {2;; may be inter-
preted physically as rigorous measures of deformation and rotation respectively
(cf Eringen (1962)). Nevertheless, they are always well — defined, and in a mo-

derate range they provide a convenient approximation tool (cf Pietraszkiewicz
(1980); Schmidt and Weichert (1989)), which consists in neglecting some, but
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not all, higher-order terms. We shall follow the approximation method used
by Schmidt and Weichert (1989) for shells and adopt it to the theory of beams.
According to our simplifying assumptions, the beam deforms in the

(@1,03)-plane, thus
.Q23 =0 921 =0 (210)

and the only non-vanishing component of 2 is
.Q = 031 = —.ng (211)

We assume that the angle 2 (in radians) satisfies |£2] <1 and 2 = O(9) is
moderate, i.e., there is no assumption |f2| < 1. Instead, it is assumed that
2? « 1. Next, it is assumed that n;; is small, i.e., of the order of O(9?).
Then also the total tensor F;; is of the order of O(¥?).

Our approximate treatment of geometrically nonlinear beams consists in
retaining in Eq (2.9) of all terms up to the order O(¥3), and rejecting of all
higher order terms. This approximation is physically justified and effective in
practical problems.

By substituting Eqgs (2.10) and (2.11) into (2.9) we obtain

1
Eyi =m0+ n 82 4 592 + O(9*)

1
Eyz = ni3 + 5(7733 — )2+ 0 = By (2.12)
1
Faz = m33 — 1212 + 592 + 0(9%)

Obviously, the approximation assumptions have been taken into account (the
accuracy order is O(94)).

Accepting kinematical assumption (2.4) we can express the quantities {2
. : 01 0 1
and 7;; through the generalized displacement fields u, u, w, w

1 1
2= 5(.31'_ ) + 5 w'Q3 (2.13)
Ui =0'+ u'03

1 1
ma = 5+ w') + 5 w'6° (2.14)

1
N33 =W

where (+)' =

Cdet
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We observe that no Bernoulli-type orthogonality assumption is used. Ne-
vertheless, it may be interesting to see how such additional constraints could
be taken into account within the {framework of our approach. We have admit-
ted configurations of the form

.’l:(@l 62 @3) (6 +U(@ ) 63&(61),62,@3-{-?9)(61)-1-63?})(61))
(2.15)
The field of vectors tangent to the deformed midline is given by

NCHE (91 0,0) = [1+ u/(O") ((9 )] (2.16)

861
The vectors tangent to the deformed @3 and ©2-lines and attached at the
deformed midline M are given by

12(0") = (‘)052 0',0,0) = [0, 1,0]
(2.17)
5(0") = 22(607,0,0) = [ (O1), 0, 1+ b (%))
963 » 0,

The Bernoulli constraints mean that ; and 3 are orthogonal to t; for any
value of admissible @1, thus

-t =0 t - t3=0 (2.18)
It is clear that the first condition is fulfilled automatically, without imposing

. , 01 0 1 Ce
any constraints on the variables u, u, w, w. The second condition in Eq (2.18)

gives
0, 1
PR Ch i) (2.19)

14 o/

Constraint (2.19) is of a differential form, and U is expressed by means of

derivatives of @ and . This is the reason for which the Bernoulli beam is
described by a higher-order differential equation.

However, we do not impose the Bernoulli constraints and the beam will be
described by a system of four second-order ordinary differential equations.

3. Variational formulation of a theory of geometrically nonlinear
beams. Elastic problem

Let us formulate general ideas of reducing of the problem of three-dimen-
sional continuum to the effective one-dimensional system. We will follow the
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two-dimensional reduction carried out by Schmidt and Weichert (1989) for
shells.

The theory of elastic-plastic problems is based on the rate variational for-
mulation due to Neal (1972). The last formulation is relatively complicated,
thus, it seems instructive to begin with a simpler and less complicated elastic
problem.

The principle of virtual work will consequently be used to derive the gover-
ning equations. Let us mention, incidentally, that the incremental principle
due to Neal was developed just on the basis of principle of virtual work. Let
us remind the formulation of this principle. First, we recall the formulation of
this principle for the three-dimensional problem.

We assume that in the reference configuration the body occupies a domain
V with the boundary A. On a part A, C A of this boundary external sur-
face forces *t' are prescribed, whereas on the remaining part of A i.e. on
A, a displacement field is prescribed. Let F = (F') denote the density of
body forces (per unit mass), and p - the mass density in the reference con-
figuration. Internal elastic forces are described by the second Piola-Kirchhoff
stress tensor S. The constitutive law 5;; = §ij(E) is known and will be used
in the variational principle. There is a wide range of practically important
geometrically nonlinear problems for which the linear constitutive relation

Si; = CiniEw (3.1)
may be used. Then, in the special case of isotropic bodies we have
Si]' = CYEi]' + ,BEkk(Si]' (3.2)

The principle of virtual work has the form

/(SijéEi]-(V) — pFi§V;) av - /*zfmdA =0 (3.3)
% A,
where V = (V;) is any kinematically admissible displacement field and
V = Vgon A, is prescribed. When deriving equilibrium equations we

must express the variations 6E;; by éV;; one can easily show that
SEij = L (V) (3.4)

where

1
L3 = S (8000 + 8260 4 61V, 80Ve) (3.5)
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The variational procedure with boundary conditions imposed on kinematical
fields

V|, =0 (3.6)

gives the equilibrium equations, whereas on the surface A; we obtain the con-
ditions of equilibrium balance between internal elastic and external prescribed
forces.

One of the known advantages of using variational principles is, due to
modern numerical techniques, that they enable one to find approximate solu-
tions. Besides, passing on from the three-dimensional model (3D) to a one-
dimensional (1D) beam problem, defined along the midline, is almost automa-
tic.

Let us carry out the dimensional reduction by using Eq (3.3). To this end
we must perform integration with respect to the variables 0%, ©3. Let us
consider the separate terms appearing in Eq (3.3). The first term is

I b/2 h/2
11:/51'1'5131»]- dV:/d@l / 107 / SUSE;; dO° (3.7)
v 0 —b/2 —h/2

Eqgs (2.13), (2.14) enable one to write the expansion (see (2.12))

BES(V) =Y (0%)"6E; n=0,1 (3.8)
We can express 6%‘1-]- through variations 610L, 6111, 61.%, §w. The quantities FEj;

and S;; are independent of ©2 while j??ij and 6%,’1- are independent of @3,
Thus, performing integration in Eq (3.7) over d@?, d63 we obtain

l§
I :/d@lZZ%Zzij n=0,1 (3.9)
G k13
where
b2 h/2
L= /(192 /(93)”51'1' 63 (3.10)
~b/2 —h/2

is the nth moment of S% with respect to the variable ©3.
The next term of Eq (3.3) is

L= /prm o (3.11)
v



COMPARISON OF TWO THEORIES... 29

where pF* - components of the vector of body force.
Assuming F! =0, F? = 0, F3 = —¢ (gravitational origin of body forces),

we obtain
!

I, = /d@l S” B ovy(0) (3.12)

0 n

provided the mass density p is constant within the beam. The coefficients B
in the above formula are given by

B= npibl (g)"“ (1+(-1r) (3.13)

thus f?: 0for n = 1and B= pgbh for n = 0, and Vng are expansion
coefficients of V3 at (©3)*, thus, as it is seen from Eq (2.3)

0 0 1 1 n
Via=w Va=w Va=10 for n > 1 (3.14)
The third term of Eq (3.3) is
L= —/*msvk dA (3.15)
As

This quantity must be expressed as a sum of terms corresponding to the bo-
undary planes, orthogonal to respective axes. For the faces perpendicular to
the coordinate line ©2 we have

I}
o = —b/z Pk 6V(O1) dO! (3.16)
0 n
where

T w3k, a3ya] T2

Pr = [1%(0°) ]_m (3.17)
V=1 Vi=t

0

Vo= 0 Vo= 0 (3.18)
0 0 1 1

Va=w Va=w

The difference structure of (3.17) is due to the fact that the external normal
versors of As; and Asz- are negative to each other.
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The last contribution to [z, denoted by [31, is obtained of an integration
over the surfaces A;_, A;+. This term occurs when the external loads are
applied at the ends of beam. One can show that

=) - (§)k VK(0) = Y *(Z{)k 6V k(1) (3.19)
where
h/2
»(Z:k S / mtlk( (93)77. d@S
(0) =
—h/2
(3.20)
hf2
-k « 1k 3\n 3
L= [ o], e de
—h/2

and, obviously, I7k are given by Eqgs (3.18).
When the external loads *1'* are absent, *(V)k (@3) or *(Il/)"' (63) are
0

prescribed on A;_, A;+, then the corresponding term drops out of Eq (3.19),
and we put

VH50,0%,60% = *gg)k (©°%)

(3.21)
Vk(l, 92’ (_)3) — x«(vl)k (@3)
Now, we can come back to the variational principle (3.3)
I=L+L+1a+13=0 (3.22)

where the separate contributions to [ are given by Eqs (3.9), (3.12), (3.16),

and (3.19) + (3.21). Thus we have obtained a one-dimensional variational

.. . . . . . . . 01 0
principle with the integration variable @' and kinematical variables u, u, w,

1 L . . .
w. This principle leads to a system of four ordinary second-order differential
equations; if at @' = 0 and/or @' = [ external loads are prescribed, it
contains also static boundary conditions at the beam ends.
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4. Equilibrium equations of geometrically nonlinear elastic
beams; plane deformation

Let us come back to Eq (3.22) which is our virtual work principle for
geometrically nonlinear elastic beams. We remaind here that §* is the second
Piola-Kirchhoff stress tensor, and E;; is the Green strain tensor. We are
dealing with beams at small strains but moderately large rotation of the cross-

section points (see Eq (2.13)). The quantities 2, ® denote an elongation and
a deflection of the midline points of the beam.

The coordinate plane (@!,@3) is a deformation plane of the beam (see
Fig.1).

Let us compare the kinematical hypotheses used in the present and Ber-
noulli’s beam theories, respectively.

Present theory Bernoulli’s theory

v =1 +03u w =1 —@3(1%)'

w=+03%w w =1 (4.1)
v=10 v=20

where (-) = g—(i%.
Assumptions about the order of magnitude of certain quantities (see Sec-
tion 2) yield

b= 0(9?) (D)= 4 = = O(9)
(%) = 0(v?) (D) + 4 = &= 0(9?) (4.2)

()6 < O(¥?)

These estimations will be applied below. Let us note that the following two

substitutions
1

Y= (w)—u 9?9 = (1%)'—}— U (4.3)
have been introduced above.
Now, let us use an expansion of E;; in the form (cf Schmidt and Reddy
(1988))
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0 1

En(01,0%) =E1 (01 + 02 £y (0Y) + 0(9Y)
0 1

E13(0',0%) =E13 (01) + 03 Eq13 (0") + O(9) (4.4)
4]

E33(01,0%) = E33 (O1) + O(9")

where, because of the order of magnitude, E;j: 0for n>2,4,5=1,3.
From Egs (2.12), (2.13) taking into account Eqgs (4.2) we have

0 112 1,1

Fu= (2)1 + Z Yy +§(99)2

1 11

Eu= (%L), + 3 ¥ (110)/

o ,

Enz= % % —% P ((y- w) (4.5)
1

Ero= S(bY - 2 (4)

0 112 1.1

Esg=w 1 PP ()

It will be convenient to distinguish the following three integrals in the principle
of virtual work

/SijéEi]-(V) v — /prm 4y - / 16V, dA = 0 (4.6)
\% 1% As
—
[1 12 [3

The above variational principle becomes effective when éFE;;, ¢,7 = 1,3 are
expressed through 6V, and the constitutive law is assumed. The variatio-
nal procedure with boundary conditions imposed on independent variables:

8V; W= 0, yields the equilibrium equations of the beam.

. 0 1 .
Now, we have to determine the variations dF;;, 0 F;; from the integral Ij.
In order to simplify the expressions which will occur next we involve the
substitutions
0 2 1

Sy g=1-5 b +%(3)' (4.7)
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Calculating the variations of (4.5) we get

0 2
§E11= 6’ + %(3 D' 46w’ — ll @ 61

1 1
SEnm =60 — L sk yoht 4 L b s
2 2 2
0 11 11 2
6E18= — 7 © 60 + 5 b 6w + % wb%&:ad}
1 ] 1 12 1
6E13— —Z {Llél%l — Z {Llé'l}l. —‘Z @ 6,&/ + 56'&)1
0 12 0, 1.1 o0, 1
§E33= —= ¢ w 4—(3 u— wéu +éw
Let us change now the notation of coordinate axes
O' =z 0% =2
and introduce the stress resultants as follows
hj2
"Y(z)=b / 2" SY(z, z) dz n=20,1
—h/2

Then

/ 0.. 0 l 1.. 1
I = /L”éEi]- d.”c+/[,”(5Eij dv =
0 0
!

O S — . O —,

!
Z“éflj‘n dm+2/bl35}1§13 dz
0

+
Taking into account Eqs (4.8) and (4.10) we obtain

{
0 0
L = /(s'u S+ é’u s + Sw S0+ é"w 61})’) dz +
0

(;Zu St + jlzw (51})) dz

+
o\_\

3 — Mechanika teoretyczna

33

(4.8)

(4.10)

0410 / 033,90 / 043,90
L76E (lz+/L 0F33 d$+2/£ 0F3 dz+ (4.11)
0 0

(4.12)
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where
-g'u — 211_%213(8);_ ,th)
-;'u _ Zn _ % 213(1%/_ ,th)
o _ L1i0n.,0, 33,9/ 13 11 1o,
Su = FLMEW- )= LPW W]+ L1+ b - ) +
n 1(211 o — [1:13 11/)
2 (4.13)
é.w — 2:13+ % [1:“(1%1— 11L)
Lo Ii033,1 0,0 0450, 13 11 1o,
Re = [£P@u— )= L0+ i)+ L2 (1- 5 b 45 07) +
_ %(Z:n e 2213 ,LIL/)
1 0 1o
Ru = 633+§£13(3ﬂ )
Next, integrating /; by parts we get
!
0 1 0 1
I= = [Suysh +(Suyeh +(Suyeb +(8u)sb] da
0
(4.14)

{
1 0 0 {
+/(Ru 6% + Ru 80) do + (S 80+ Sy 6% + Sy 6 + Sy 60)),
0

From Eqs (3.12) and (3.13) yields that
I, := B = pghd (4.15)
Let us consider the third integral of Eq (4.6)
I3 = I31 + Is3 (4.16)

First, we assign a virtual work of the resultant forces applied to the left and
right ends of the beam, i.e.

It = Fu (0)6% (0)+ Fu (0)6® (0)+ Fu (0)8% (0)+ £ (0)6% (0) * i
17

o (D62 () Py (D60 (D Fu (6% (D4 Foy (160 (1)
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where, for simplicity, new notation has been used

n n n n o= u,w
Fo(0)= ~LF Fo ()= *L* n=01  (4.18)
(0) ( k=13

h/2 h/2
“pk :b/*z“‘ " dz [k :b/*zlk 2 dz (4.19)
(0) r=0 (0 =l

—h/2 —h)2

Next, we determine I33 (i.e. the virtual work of external loads applied to the
upper and bottom planes, of the beam, respectively) as

{

L0 o ,O o L1 1 1 1
I3 = — /( Py bu 4Py, bw +* Py bu +*Py, bw) dx (4.20)
where h)2
L _n*33k .
Poi= *P* = b }_m k=1,2,3 (4.21)

. .. 0 1 .0 .1 . ]
Since the variations &u, éu, dw, dw are unrestricted, we obtain
0 0 v, « 9
bu 1 (SW) +TP.=0

St (Su) 47 Pu— Ru=0
(E.Es) (4.22)

0 9 ! *O
bw (Sw) + Pu} -B=0

1 1 1
bw (Slu), + *Pw — Rw= 0
The above system ol the equations will be called later on as (E. Es) The

quantities *Pa, a = u,w, n = 0,1, are components of the external loads
applied to Az+ and .A3_.

So, we have got the equilibrium equations for elastic beams in the geo-
metrically nonlinear range ol deformation. The associated static boundary
conditions have been obtained simultaneously. E.g. for the clamped left end
of the beam from Eqgs (4.14) and (4.17) yields

0 0 1 1
Su (1)_ I (1):0 Su (1)— Fu ([):0
(4.23)
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These relations together with the kinematic boundary conditions for z =0
%(0,z) =0 W (0,z) =0 w'(0,2) =0 (4.24)
so for z = 0 we have
61 (0,2) =0 ow (0,2) =0 sw'(0,2) =0 n=0,1

determine completely the boundary quantities for the equilibrium problem
represented by (4.22). Naturally, suitable constitutive equations have to be
assumed.

Similarly, the other associated static boundary conditions can be derived
and the appropriate question can be formulated.

5. Variational formulation of a theory of geometrically nonlinear
beams. Elastic-plastic problem

In the case of elastic-plastic material of the beam our considerations are
based on the incremental variational principle due to Neal (1972), cf also
Telega (1976), 61 = 0, for

1) = [[$90NE5(00) + L5900~ oV W] av ¢

Y (5.1)

- / KV dA
A

where W = W(S) is a potential function depending on the state of stress
rates (cf Neal (1972)).

The rates V; are independent kinematical variables subjected to the varia-
tional procedure only. The second rates E,](V) are calculated under an addi-
tional assumption of the quasi-static process: V; = 0 thus E,](V) =Vk,; Vk,j.

Let us pass to the dimensional reduction of the functional (5.1).

The first term: [, = fS”(V)E,J(V) dV becomes
Vv

i
I, = /Z Eijﬁ‘ij do’ (5.2)

0
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where
h/2
n

£ = /(93)715“'1' 46° (5.3)
~h/2

The next term: I}, = %f S'ijE,'j dY may be expressed as
\%

i
Ly = /%Xn: Byl do? (5.4)
0
where
/2
L =b / CRERERTOS n=0,1 i,j=1,3  (55)
—h/2

The body-forces term is given by

I = - /prVi Y (5.6)
v

It is natural to assume here that £ = 0for i = 1,2,3 (whereas in the elastic
case it was: F1 =0, F?2 =0, F3 = —F). So, we have I, = 0.
Let us consider the surface integral

I=- / iV, dA (5.7)
A,

which, in fact, consists of two terms (for one pair of rectangular faces and for
the ends of the beam). Using the same notation as in the elastic case, we have

l}
Ly = _/Z PrVL(O) dO! (5.8)
0 n

where P* is given by Eq (3.17). Similarly,
n n n n
Iy = bZ"(g)k V(0) - bZ*(%k V(1) (5.9)

where "(%k and "(L:L)k are defined in Eq (3.20).
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So, in general, Neal’s variational principle (cf Neal (1972)), for quasi-static
processes of elastic-plastic beams, may be written down as

(g + T+ I3+ 131) =0 (5.10)

. 0 1 0 1
It becomes effective, when V is expressed by the rates w, %, w, w with

the help of Eqs (2.2) and (2.3). Obviously, the appropriate rate constitutive
relations for the elastic-plastic material should be used.

6. Rate-equilibrium equations of geometrically nonlinear
elastic-plastic beams; plane deformation

In this section we will present a treatment of geometrically nonlinear
elastic-plastic beams that is based on the 1D version, see (5.10), of Neal’s
formulation. We restrict ourselves to the quasi-static processes (i.e. we consi-
der the case: V; = 0,4 = 1,3). The rate principle: &/ = 0, for the functional
[(V), defined in Eq (5.1), will yield the rate equilibrium equations, (R.E.Es),
and static boundary conditions of the considered beams at moderate rota-
tions. The notations introduced in the previous sections are obligatory here.
The strain-displacement relations (4.5) yield the following first-order rates of
the Green strain tensor components

g : 0 1,1 110 1
Ep=t'+ % 0 — 7 i —Z(zlw')'+ D' 1)
1 1 11 1 1 1
En:?l'-i-—lb's@-f-—l})'@

2 2
0
. 12 1.1 111 1 110,11
E13—§90+Z'L1“<P+Zw‘?*z 3'99“1 i (6.1)
1 1 1119
Ela_w'—%&'ga—za'@
© 1 10,2 11 1 o,
Egp=w —~w ¢ +-u(3u-—w')

4 4

n

So, we get the variations of E‘,-]', n=0,1,i3 = 1,3, as follows
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0 0 12 1 1 0
6En= i — 3¢ 6u+(3 W'~ )b’

1

§E1= — %1111'611+6u+ WD+ = P S

0

: 110, 121 110, 11 1
== = bi - -

6F13 499611 +2¢ u+2¢6w +4<P6w
1

L 1,0 11 1

6E13: Z 'llLI(S’U, —% (IP(SU,I — 4— 'lll.lé’w’ + 561[)’

0 1 2

0 F33= 4—(3u—w Yo —= @ b’ + bw
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(6.2)

Next, making use of Eqs (6.1) we obtain the second-order rates of the Green

strain tensor components

0
11 10 1

Eq g(")2—z(u)2—§u}'iz

Lo

Ey=w" ¢

o 11,1 o,

E1z= 5 ¢ (0 = u)

1

L 111

E13——§<pu'

7 SIS
= —(u)-=(w)-—=w'
By i 2

and their variations

0 121 1 0
6E11: ——5 (,9 611, +— 3 ’Li)’— u)éw'

5
L 11 1. 0 11
$Evi= — w60 + w80+ ¢ 6’

0

0 11 0, 1 11
8E3= =5 ¢ 6u" + 5 ; ~w)6u——(u —w)éw +5 <p6w
L 1 11 11
6E13:%zl'6u—%<péu'——§u6w

(6.3)

(6.4)
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1 4] 1
(31— )i~ & 60’

—
(%]
o)

0
0 1
0F33= 3

The way of getting the equilibrium equations (R.E.Es) for elastic-plastic
beams is similar to that applied in the elastic case (see Section 4) (we mean
here the partial integration etc.). Substituting Eqs (6.2) and (6.4) into Eq
(5.10) we obtain (R.E.Es) as the Euler equations for functional (5.1). Besides,
the natural boundary conditions result in this treatment simultaneously. We
have to mention here that in the present rate problem the quantities: rate

n

7

stress resultants £ 4, (n =0,1; 4,7 = 1,3), rate external surface loads Pus
n n

P.; rate external loads *£% (at the ends of the beam) should be understood
as the rates of the corresponding quantities which were defined in Section 4.

The system of equilibrium equations (R.E.Es) for geometrically nonlinear
elastic-plastic beams which have been undergone a quasi-static state of loading
is given below (note that its form is similar to that of Eqs (4.22))

0 0 9
o)+ (Su)+ Pu=10

§(1): ($u)+ Pu— Ru=0
(R.E.Es) (6.5)
0

0 0 .
(5(11)) H (Sw),+ Pw: 0

1 1 1. 1
S(w): (Su)+ Py —Ruw=0
where
o @ 119 10
Su=r£1 §(¢£13+ oL 13
1L 112 11 ..
Su=L11_ 5(99£13+ oL 19)

0o 1 L 0 o, 1. 2%, 20
Sw= Z[(B w'— tlt) LV L3 — u)— L3P~ 1,0533] +

L 11
(11111 £l3+ 'l'll, £l3)

o =

10 .0 1 L 1 1
F LBy 2/)513+ _2_(,&); L1114 u-)lﬁll)___

RS STUN DU ISP
Sw=L +5(90£ +@L") (6.6)
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11 O3 0Oay .1 0, 20 29
Ru= (3o — ") L34 £¥3 i - w')— oL - o] +

1 ! 1

20 20 1 L 11 1, - 1
+¢£13+¢£13_ (wlﬁll+w/[’11)+ (’U.I[,13+’1.LI[,13)

1
2

B

0 0
1 . 1 1% 1o
Ru=L¥ + (9L oL1)

7. Concluding remarks

The aim of this work was to consider the problem of the geometrical non-
linearity in beam theory in the case when the moderate rotations have been
employed in the nonlinear strain-displacement relations. Important results
of the variational analysis applied in the paper are the nonlinear equilibrium
equations derived for two cases: elastic and elastic-plastic beams, separately.

The approach developed in the present paper can also be applied to a beam
with variable cross-section.

The next stage of this work will be a numerical solution to the mathe-
matical problems which have been discussed in this paper. The variational
functionals have to be introduced into numerical procedures and used direc-
tly to calculate the increments of the field quantities. Obviously, a particular
form of the constitutive equations describing the beam material will be assu-
med then and included to the calculation process. The systems of nonlinear
differential equations (E.Es) or (R.E.Es) with appropriate boundary condi-
tions will be used for an equilibrium check. The numerical calculations should
be programmed as an iterative process.
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Geometrycznie nieliniowe modele sprezystych 1 sprezysto-plastycznych

belek

Streszczenie

Rozpatrzono zagadnienie plaskiej deformac)i sprezystych i sprezysto-plastycznych
belek przy zalozeniu malych odksztalcen lecz umiarkowanie duzych obrotow,

Przyjeto, ze belka odksztalca si¢ w plaszczyZznie pionowej pod wplywem obciazen
zewnetrznych dzialajacych na gorna i dolna plaszczyzne oraz jej przekroje koricowe.

Sformulowane zasady wariacyjne pozwohly uzyskaé geometrycznie nieliniowe
réwnania réwnowagi dla statycznego problemu belek sprezystych oraz dla quasi-
statycznego zagadnienia belek sprezysto-plastycznych.
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