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WEIGHT FUNCTIONS OF LOADING MODES I, IT AND III
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Weight functions for a round hole with two symmetric radial cracks are
derived for loading modes | and Il using the boundary element method
(BEM) together with the Bueckner type singular complex stress function
at the crack tip. For the mode I - the asymptotic interpolation method
has been employed. These three weight [unctions are then [ormulated
in terms of correction and unitary weight functions and described in the
unified form, suitable for computing stress intensity [actors K. To assess
the accuracy of present approach, the calculated values of Ky, K2 and
K3 for various loading conditions are compared to the ones known from
the literature or obtained [rom boundary element analysis.
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1. Introduction

A weight function method, proposed by Bueckner (1973) and Rice (1972),
is one of the most efective tools in determination of unknown values of the
stress intensity factors for different geometrical and loading conditions of the
cracked body. The principle of superposition, which enables one to put toge-
ther different linear elastic stress fields resulting from external loads, tempe-
rature gradients, residual stresses, etc., respectively, makes this approach very
versatile and eflective. If the resultant stresses along the crack sides are known,
the corresponding stress intensity factors Ky, Ko and K3 are obtained by
the following, simple integration

a
K; = /alj(m)m(j)(z,a) dz (1.1)
0
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where
a — crack length
mU)(z,a) - known weight functions suitable for the cracked body
o1;(z) - components of the stress tensor released on the crack

surface in the directions corresponding to the three
loading modes j =1,2,3.

Some improvements in the method can be found in Molski (1992) and
(1994), where a unitary weight function (UWF) was defined. Its unified de-
scription and simplified integrating procedure appeared to be very effective
tool for quick K determination (cf Molski and Truszkowski (1995)).

Fig. 1. Symmetric case ol a circular hole with two radial cracks

In the present study a round hole with two equal and opposite radial cracks
loaded symmetrically with respect to both axes of the hole, as shown in Fig.1,
have been analysed. The normal and tangent stress components oy;(2) are
released on the crack faces and result in the multiaxial stress state, represented
by the three basic modes I, IT and III, and described at the vicinity of the crack
tip by three different stress intensity factors K;, K, and Kj3. The aim of
the present work is to determine weight functions corresponding to particular
modes.

2. Determination of weight functions

2.1. Method for modes I and II

The particular values of the weight functions for modes I and II have
been obtained using the boundary element technique (cf Portela and Aliabadi
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(1993)) together with the complex stress function Z;(z) true in the vicinity
of the crack tip

Z]'(Z) = — (2-1)

where z = re'? is a complex number in the polar coordinate system originated
at the crack tip and B; = P;\/c/m - Bueckner’s parameter, which represents
the strength of singularity of the stress field for modes I (5 = 1) and II
(j = 2), respectively, for a pair of sell-equilibrated forces P; applied at a
small distance ¢ from the crack tip.

According to the method suggested by Bueckner (1973) and Tada et al.
(1973), if a known stress field is applied to the crack tip under consideration,
displacements of the remaining parts of the element represent the weight func-
tion components. However the method provides weight functions valid for the
whole body, only the solutions of m{)(z,a) related to the crack line are of
interest here.

In order to improve accuracy of the numerical analysis, a small semicircle
with its diameter equal to 0.5% of the total crack length has been built in
the crack tip by 8 circular boundary elements, while the remaining part of
the body, including one crack face, is mapped by 175 circular and straight
boundary elements. Due to double symmetry ol the problem, only one quarter
of the hole and one crack face have been modelled. The Bueckner-type plane
strain displacement fields wu;, v; and wy, v given by Eqs (2.2) and (2.3) and
corresponding to B; and B, respectively, (cf Tada et al. (1973)), have been
converted into boundary tractions and imposed at 17 nodes of the semicircle,
as the boundary conditions of the problem, since the remaining part of the
cracked body is traction-free

_2140)B 2 (20— 1+ sin £ sin 3799)

ul—E—\/;CO 5 (22)
1 3
v = 2(—L’-j-\;%sin?‘5(2—21/—cos§cos7so)
2(1 B : 3
Uy = %Sil]%(Q—QU-{-COS?—;COS 799) o
2(1 B : 3
vy = (—;\;%cosg(l — 2v 4+ sin gsin 780)

Thus, the calculated crack face displacements — opening for mode I and sliding
for mode II — have been analysed separately and interpreted as the displace-
ment weight functions.
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Since the weight functions in this case do not depend on the elastic material
constants F and v, their values have been conveniently chosen as £ = 1 and
v = 0 to simplify the output data analysis.

2.2. Correction and unitary weight functions

The next step consists in transforming numerically obtained weight func-
tions for two loading modes [ and II, into correction and unitary weight func-
tions (cf Molski (1992), (1994)). To facilitate the description of the weight
functions in the whole domain, a new parameter s = a/(a + R) has been
introduced, where s €< 0,1 >.
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Fig. 2. Correction {unctions of miodes I, Il and IIT vs. s parameter

Two different correction functions: [Fy(s) and I%(s) shown by the solid
and dashed lines in Fig.2, have been obtained by numerical integration of
the previously found and normalized weight displacement functions. They
depend only on the value of parameter s and express the inflluence of uniform
and symmetric normal oy, and tangential oy stresses, respectively, applied
directly to the crack surfaces, on K; and K,. Numerical values of the
correction functions Fj(s) and Fy(s) interpolated by polynomials are given
by the following equations

Fi(s) = 1.1215 — 0.827s + 1.627s% — 1.719s% 4 1.7885" — 1.90355° 4 0.913°
(2.4)

Fy(s) = 1.1215 — 0.197s — 0.112s° 4 0.1875s"
The values of I’y and &'y can be written as follows

Ky = ,/7'{'(10'”1*—’1(.5) Ky = \/7T(10'12F2(8) (25)
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According to the procedure described by Molski (1992) and (1994), any form of
classical weight function can be normalized and transformed into the unitary
weight function w(s), integral of which along any crack length always equals

one.
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Fig. 3. Fractional values of the unitary weight function integrals (weight
coefficients) for modes I and TH - £2(;(s) and £2511;(s) vs. s parameter

For numerical purposes in the case of non-uniform stress along the crack
path, it is more convenient to use the fractional values of the unitary weight
function integrals §2;(s), which are obtained by dividing the whole crack length
@ into ten equal segments ¢ and iutegrating the w(s) function numerically,
starting from the crack end opposite to the considered crack tip. The fractional
integral values $2p;(s) and $2y1;(s) of the unitary weight functions vs. the
shape parameter s are shown in I'ig.3 and T'ig.4. They are interpreted as the
weight coeflicients, indicating the influence of each tenth of the crack on the
corresponding stress intensity factor value.

8 — Mechanika Teoretyczna
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Fig. 4. Fractional values of the unitary weight function integrals (weight
coellicients) for the mode 11 — 2);(s) vs. s parameter
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Fig. 5. Correction functions Y} and Yy, for modes [ (solid line) and 1II (dashed
line), for the same normal and tangential stress distribution along the crack path
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2.3. Mode III weight functions

A method for obtaining the weight functions forthe mode III is quite dif-
ferent than this described above for modes I and II. It Las becn observed in
Fig.5, presented by Tada et al. (1973), that the stress intensity factor solution
for the mode I under equi-biaxial stress state (A = 1) coinsides in the range
0.4 < s €1 with the mode III solution for exactly the same stress distribution
along the crack line.

Thus, the weight functions for both modes in that range must be quite
similar, from which emerges the conclusion that both the correction functions
Fi(s) and F3(s) as well as all weight coefficients {21;(s) and £2j1;(s) must be
also similar. On the other hand, for s = 0 both mode I and mode III solutions
coinside with those for a single edge crack in a semi-infinite plate, which are
entirely different, but known from the literature. lence, if asymptotic values
on both ends of the domain are known, we can interpolate the remaining
range 0 < s < 0.4 by a polynomial interpolating formula. These results are
represented by dotted lines in Fig.2 and Fig.3.

3. Accuracy assessment

To assess the accuracy of present approach, the calculated stress intensity
factors K;, K3 and K3 have been compared to the corresponding solutions
taken from the literature (c[ Bowie (1956); Newman (1971); Sih (1973); Tada
et al. (1973)) and to the BEM results obtained by the author for the mode II.
Uniform loads: o, and oy, for mode I, 7 for mode II and 7, for mode III
(Fig.6), respectively, have been applied to the plate sufficiently far from the
cracked area. In the case of mode I — three different loading conditions are
analysed:

1. Equi-biaxial tension: o, = g, = 0, (A = 1), where A =0,/0,
2. Simple tension: o, =0, 0, =0, (A =0)
3. Tension-compresion: —o, =0y =0, (A= —1).

For all the cases being considered the normal and tangent stress distribu-
tions along the potential crack path of uncracked body are well known from
the theory of elasticity (cf Timoshenko and Goodier (1951)) and shown in
Fig.6.
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Fig. 6. Elastic stress distributions along the potential crack path of uncracked body,
due to various loading conditions

These stresses, together with the weight coefficients (2;(s) and the cor-
rection functions F(s) contribute to calculation of stress intensity factors for
different a/R ratios. Numerical results obtained using the present approach
based on the unitary weight function method (UWF) are compared to the
coresponding values of A. The results are shown in Tables 1, 2 and 3 for
three different modes, respectively, where three new correction functions Y7,
Y11 and Yqpp depend on the loading conditions and are defined by the following

equations

i—i\

[\']

oy/m(a+ IR)

1.5
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IR

V= (3.1)
T/m(a+ 1)

Vipr = K3

= — 7=
T V/mle+ )

For all K values shown in the tables, the agreement is very satisfactory with
the maximal differences not exceeding one percent.

Table 1. Mode I correction functions Yi(a/1R)

Yi(e/R) (A=1) | Yi(e¢/R)(A=0) | Vi(a/R) (A= -1)
a/R UWF Newman | UWF Newman | UWF Newman
0.01 | 0.2202 0.2188 | 0.3277 0.3256 | 0.4352  0.4325
0.02 | 0.3060 0.3058 | 0.4517 0.4514 | 0.5975  0.5971
0.04 | 0.4182 0.4183 | 0.6080 0.6082 | 0.7977  0.7981
0.06 | 0.4958 0.4958 0.7102 0.7104 0.9246 0.9250
0.10 | 0.6025 0.6025 | 0.8393 0.8400 | 1.0762 1.0775
0.20 | 0.7484  0.7494 | 0.9822  0.9851 1.2160  1.2208
0.306 | 0.8244 0.825¢6 1.0317 1.0358 1.2301 1.2457
0.50 | 0.9017  0.9029 | 1.0546  1.0582 | 1.2076  1.2134
1.00 | 0.9684 0.9670 1.0419 1.0409 1.1153 1.1149
1.50 | 0.9871  0.9855 | 1.0268 1.0252 | 1.0666  1.0649
2.00 | 0.9925 0.9927 | 1.0162 1.0161 | 1.0400 1.0395
3.00 | 0.9932 0.9976 1.0035 1.0077 1.0139 1.0178

Table 2. Mode II correction functions ¥7;

u(e/R)

a/R UWF( /BEM]
0.1 | 0.1310 0.130
0.2 | 0.2897 0.289
0.3 | 0.4267 0.425
0.4 | 0.5375 0.536
0.5 | 0.6255 0.623
0.7 | 0.7504 0.746
1.0 | 0.8579 0.852
1.2 | 0.8996 0.892
1.5 | 0.0382 0.929
2.0 | 0.9699 0.961
5.0 | 0.9964 0988




618 K.L.MoLsKk1

Table 3. Mode III correction functions Yy;

Yin(a/RR)

¢/R "OWF  Sili (exact)
0.01 [ 0.1975  0.19753
0.02 | 0.2758  0.27596
0.04 | 0.3806  0.38105
0.06 | 0.4552  0.45597
0.10 | 0.5619  0.56302
0.20 | 0.7184  0.71955
0.30 | 0.8057  0.80615
0.50 | 0.8968  0.89581
1.00 | 0.9695  0.96825
1.50 | 0.9863  0.98712
2.00 | 0.9910  0.99381

4. Conclusions

The boundary element method together with the complex stress function
Z(z) of the Bueckner type singularity at the crack tip have appeared to be a
very effective nuimerical tool in determination of the weight functions of mo-
des I and II for the problem of stress intensity factor calculation for a circular
hole with two symmetric radial cracks. Three different weight functions have
been found for modes I, 1I and llI, however the solutions for modes I and
III coincide in the major part of the range of the shape parameter s. This
fact, as well as the unitary weight function approach, made possible the ap-
plication of assymptotic interpolation to obtaining the solution for anti-plane
shear. These three solutions of the weight functions are valid in the whole
range of s parameter, i.e. for 0 < s < 1, with no singularity found in the
correction functions. The accuracy of the stress intensity factors for the three
loading modes appeared to be satisfactory with the maximal crror much being
lower than one percent compared to the results known {rom the litcrature and
obtained using the boundary element method.
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Funkcje wagowe typu I, IT i ITT dla dwéch symetrycznych szezelin
wychodzacycl z okraglego otworu

Streszczenie

Rozwazano zagadnienie otworu kolowcgo z dwiema symetrycznymi szczelinami
w mesl\onczonej tarczy, w materiale podlcgdjacym prawu lHooke’a. Wyznaczono
wartosci funkeji wagowych dla rozciagania oraz scinania wzdluznego i poprzecz-
nego. Pierwsze dwa przypadki rozwiazano metodg elementu brzegowego (MEB)
w polaczeniu z zespolona funkcja naprezei, oplbma,ca osobliwosé typu Buecknera
w wierzcholku szczeliny, natomiast w przypadku scinania poprzecznego wykorzystano
metodq interpolacji asymptotyczne). Otrzymane 1ozw1afzama przedstawiono w for-
mie jednostkowych funkejt wagowycli i funkeji korekcyjnych o zunifikowanym zapisie,
umozliwiajacym utworzenie i wykorzystanie bazy danych, sluzace] do automatyza-
cji obliczenn wspélezynnikéw K pray dowoluym obcigzeniu zledul\owauym do po-
wierzchni szcze]my Wartoscl obliczonych wspdlezynnikéw Ky 1 K3 poréwnano ze
znanymi rozwigzaniami z literatury, otrzymanymi za pomocg innych metod, nato-
miast wartosci K2 z wynikami MEB. We wszystkich przypadkach rdéznice te nie
przekroczyly jednego procenta.
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