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The paper consists of two parts. In the {irst one the influence of shear
forces on vibration frequencies of a short beam is investigated utilizing:
Timoshenko equations, simplified Timoshenko equations and classical
wave equation. In the second part, two discrete-continuous models are
proposed for dynamic investigations of the low structures subject to
kinematic excitation caused by transversal waves. The models consist of
rigid bodies and elastic elements which undergo only shear deformations.
In the second multi-body model an additional elastic segment is located
between the lower rigid body and remainingelements. In the discussion a
wave method is applied, which utilizes the wave solution of the equations
of motion. Numerical calculations are made for the model consisting of
three rigid bodies. They concern on determination of the amplitude-
frequency curves and investigation of the effect of diversified mechanical
and geometrical properties of the segment on resonant amplitudes.
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1. Introduction

In the technical literature, the formal description of problems of both the
analysis and synthesis starts with the modelling of various engineering struc-
tures including also low structures subject to kinematic excitations caused
by transversal waves. In the literature available one can find a lot of items
concerning dynamic analysis of low structures subject to various excitations
connected directly with tliese structures. However, there is a lack of papers,
which the kinematic excitations of scismic type or caused by highway traf-
fic, surface and subsurface railways and machinery in a nearby location are
accounted for. There are, in some exceptions, i.e., papers concerning such
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engineering structures like buildings and nuclear powers. These structures
are usually modelled by means of discrete multi-degree-of-freedom models ta-
king into account or disregarding the stillness of soil surrounding the structure
foundation.

In the paper discrete-continuous models are proposed for the dynamic in-
vestigation of low structures. Continuous elastic elements in these models are
assumed to be described by the classical wave equation representing a shear
beam.

The paper consists of two parts. In the first part it is shown when the use
of the classical wave equation is justifiable. The results obtained agree with
the suggestion put forward by Humar (1990) that many enginecring struc-
tures can be idealized by shear beams, e.g. low buildings and isotropic or
horizontally layered soil deposit undergoing horizontal deforinations. Next,
two discrete-continuous multi-body models undergoing shear deformations are
studied using the wave solution of equations of niotion.

2. Influence of shear deformations on vibration frequencies
of a short beam

Shear forces exert a significant cffect on displacements and strains in nume-
rous mechanical and engineering structures subject to various external excita-
tions caused, e.g., by seismic loadings, highway traflic, surface and subsurface
railways, and by machinery in a ncarby location. It mnainly concerns construc-
tional elements of the transverse dimension, alongside of which shear forces
act, being close to the element length. Among such structures partially low
columns, bridge piers and dilferent maclhine supports may be discussed. In
the practical analysis of vibrations many elements of these structures are mo-
delled by a short beam. The vibration of the short beam can be investigated
utilizing of the Timoshenko equations and their special cases.

Application of the Timoshenko equations to beam problems was conside-
red, e.g. by Huang (1961) and Wang (1970) while of simplified Timoshenko
equations by Abramovich and Elishakofl (1987) and (1990). These papers deal
with [requency equations of a slender beam under various simple boundary
conditions for 7 = \/T/A/L < 0.1, where [ is the beam length, A stands for
the cross-sectional area and [ is the moment of inertia of a cross-section, r
is the reciprocal of the slenderness ratio for a beam.

In the present paper the equations of frequency of free vibration for a
beam under four siinple boundary conditions are studied. In the discussion
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the Timoshenko equations, simplified Timoshenko equations and the classical
wave equation for the shear beam are utilized. The last equation takes into
account only pure shear deformations. In numerical calculations frequencies
of free vibration in function of the parameter r are compared for two beam
materials, i.e., for steel and timber.

2.1. Differential equations and boundary conditions

The coupled equations for the total deflection y and rotation 1 of the
cross-section were given by Timoshenko (1955) as

Ej¢vrr +kAG(.7/v.L' _¢) - p1¢att =0
(2.1)

pAyatt _kAG(Uvra: “1»/)71.') =0

where
E - modulus of elasticity
G - shear modulus
p — mass density of the beamn material
k - shear coefficient

and the comma denotes partial differentiation.
Eliminating ¢ or y from Lqgs (2.1) the following two differential equations
in y and 1 are obtained

o/ r m2R?
Ely,esy +my,u -'777'132(1 + kG)Jm:rtt’*‘ TAC Ystree =0 ‘
(2.2)
m2R?
EIY przg +mi —mR? (1 + )lb,ruﬁ- YAG Yo =0

where R? = I'/A is the radius of gyration and m = pA.
Free harmonic oscillations at an angular frequency w are expressed by

y(@,1) =Y (z)e™! Pla,t) = ¥(x)e! £=+ (23
where
Y(z) - transverse vibrational mode
¥(z) - rotational mode
£ - nondimensional spatial coordinate.

4 — Mechanika Teoretyczna
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Substituting solutions (2.3) into Eqs (2.2) we obtain
)IIV + 1)2(,’_2 + b?))/l! _ 1)2(1 _ p27,2b2)y =0

(2.4)
IV 4202 + 02" — p?(1 — p2r22)P = 0
where
R 2 E 4 _wl s kG
T—I b—m? p—E C—_p_ (2'5)

and the prime denotes diflerentiation with repect to £.
Below, four common types of beams will be identified by compound ad-
jectives which describe the end conditions at & = 0 and £ = 1. They are:

1) hinged-hinged: Y0)=v'(0)=Y(1)=¢'(1)=0

2) clamped-clamped: Y (0)=¥(0)=Y(1)=¥(1)=0

3) clamped-hinged: Y0)=¥(0)=Y(1)=¥'(1)=0

4) clamped-free: Y(0)=¥(0)=Y'(1)/L-¥(1)=¥'(1)=0.

(2.6)

The solutions of Iiqs (2.4) can be found as

Y (&) = By cosh(ps1€) + By sinh(ps1£) + Bs cos(ps2€) + DBy sin(psz,f)(2 "

(&) = Cq cosh(ps)€) + Casinli(ps &) + Cs cos(ps2€) + Cy sin(psq€)

where

1 . o4
81, $2 = WJ F(r24+ 02+, /(12 ~02) + = (2.8)

Relations between the constants in Eqs (2.7) can be obtained by substitu-
ting Eqs (2.3), (2.7) into Eqs (2.1). They are as follows

Ci _ plsi+0%) Ca _ p(sf+0?)
By, Ls B, L
2 51 1 51 (2.9)
Cs _ p(s3=10%) Cy _ p(s3—0?)
B4 h L32 BS B L82

Egs (2.2) with the last terms neglected, were discussed by Abramovich and
Elishakoff (1990). Solutions of such simplified equations have the form (2.3)
with (2.7), however the parameters sq, s now take the form

1 4
81, $2 = EJ FO2+02) + /(P2 +02) + 7 (2.10)
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When the cross-section rotation ¥ may be assumed to be identically equal
to zero, the classical wave equation is derived from Eq (2.1),

Yot = Yzw = 0 (2.11)

These two special cases of the Timoshenko equations (2.1) are considered in
the present paper.

2.2. Frequency equations

Compliance with the appropriate boundary conditions (2.6) yields frequ-
ency equations. They are presented below for three types of governing equa-
tions.

A. Timoshenko equations (cf lTuang (1961))
1) hinged-hinged beam sin(psg) =0

2) clamped-clamped beam 2 — 2 cosh(ps; ) cos(psy)+
+ Ay sinh(psy) sin(pse) =0

(2.12)
3) clamped-hinged beam AC tanh(psy) — tan(psy) = 0
4) clamped-free beam 2 4+ Aj cosh(psy) cos(psg)+
+ Az sinh(psq) sin(psz) = 0
where
_ P 127202 12 2.2
Al——m[pbu b%) + 3b ’I‘]
. .2 b2)
Ag = p2(r2 = b2)2 42 A= - P E) g
2 = p(n )+ 3 m ( )
2 _ 2
8 s5—10
A= — =
S2 ¢ s3 —r?

If s; becomes imaginary then Eqs (2.12) have to be suitably retransformed
(cf Huang (1961))

B. Simplified Timoshenko equations (cf Abramovich and Elishakoff (1990))

1) sin(psz2) =0
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2) 2 — 2 cosh(psy)cos(pss) +

P32 — 1% + p*bi(r? + %)
1+ p2r2b?

3) AC tanh(ps;) — tan(ps2) =0 (2.14)

+ sinh(psy)sin(psz) =0

2+ p(rt 4+ %)

2 2+ 1 4 p2r2b?

cosh(psy) cos(ps2) +
—p(r? + b%) sinh(psy) sin(psz) = 0
C. Classical wave equation

1,2,3) sin%zo g%'A:(n—l)w

(2.15)

4) coswl = ¢ “—J%L:('Zn—l)%

2.3. Numerical results

Diagrams of the first three frequencies of {ree vibration versusthe parame-
ter r for steel (E/kG = 4) and timber (EF/kG = 30) are plotted in Fig.1 and
Fig.2 for the Timoshenko beam according to Eqs (2.12), and in Fig.3 and Fig.4
for the simplified Timoshenko equations using Eqs (2.14). They are marked
by continuous lines. These results were obtained for four boundary conditions
(2.6) for 0 < r < 1. Additional broken lines in T'ig.1 and I'ig.2 represent the
frequencies of free vibration (2.15) for the classical wave equation.

From Fig.1 it follows that the [requencies wy, wa, w3 with the increase of
parameter r approach constant values corresponding to the frequencies of free
vibration for the classical wave equation; namely, the curves for the boundary
conditions 1, 2, 3 approach =, 2x, 37, and the curves for the boundary condi-
tion 4 approach /2,37 /2, 57/2. The diagrams in Fig.1 show that differences
between the frequencies of free vibration of the Timoshenko beam and suita-
ble frequencies for the classical wave equation are already insignificant when
r > 0.35, for example, in the case of clamped ends. Better conformability
between the frequencies of free vibration for the Timoshenko equations and
those for the classical wave equation has been obtained for timber. In this case
insignificant differences occur already from » = 0.15. For instance, r = 0.2,
corresponding to the slenderness ratio equal to 5, gives h/L = 0.69 where
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Fig. 1. Frequencies of free vibratious for the Timoshenko equations with E/kG=4

h is the beam height. I'or this reason, in dynamic investigations of struc-
ture elements having a transverse dimension, alongside of which shear forces
act, being close to the element length and having a low slenderness ratio the
approach using the classical wave equation is permissible.

From the diagrams plotted in Fig.1, ['ig.2 and in Fig.3, I"ig.4 it follows that
the first three frequencies of free vibration of the Timoshenko equations differ
insignificantly from the frequencies for the simplified Timoshenko equation
only for r < 0.1, i.e., for a slender beam. When » > 0.1, then qualitative
and quantitative differences occur between suitable curves. For this reason,
it is inadvisable to apply the simplified Timoshenko equations proposed by
Abramovich and Elishakoff (1987) and (1990) to investigations of short beams.

The next part of the present paper aims at the dynamic analysis of multi-
body discrete-continuous models [or a low engineering structure in which shear
forces dominate. From the considerations given above and from [ig.1 + Fig.4
it follows that the motion of clastic clements in the discussed models can be
described utilizing either the Timoshenko equations (2.1) or the classical wave
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Fig. 3. Frequencies of free vibrations for the simplified Timoshenko equations with

E/kG=4
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Fig. 4. Frequencies of free vibrations for the simplified Timoshenko equations with

E/kG=30

equation (2.11). From the available literature it follows that the methods ap-
propriate for the discussion of discrete-continuous systems consisting of several
Timoshenko beams and rigid bodies have not been invented yet. However, the
method used e.g. by Nadolski and Piclorz (1992) can be easily adopted for
the investigation of multi-body discrete-continuous systems undergoing shear
deformations described by Eq (2.11).

3. Discrete-continuous models in the analysis of low structures
subject to kinematic excitation caused by transversal waves

3.1. Assumptions

The paper is devoted to dynamniic investigations of low structures subject to
kinematic excitation caused by transversal waves. Kinematic excitations can
be of seismic type or can be caused by highway traflic, surface and subsurface
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railways, and by machinery in nearby location. In the literature, engineering
structures subject to various kinematic excitations are discussed utilizing di-
screte as well as continuous models (cf Okamoto (1973); Sackman and Kelly
(1979); Mengi and Diindar (1988)).

The elastic elements of the structures considered in the present paper have
the transverse dimension, alongside of which shear forces act, close to the
length of the element, i.e. they have a low slenderness ratio. These are,
e.g., machine supports, bridge piers and low columns in buildings. Many
structure elements subject to the transversal excitation can be modelled by
means of the Timoshenko beam. In the first part of the paper it has been
shown that in the case of short beams in which shear forces are predominant,
the Timoshenko equations can be replaced by the classical wave equation.
Some suggestion about applying classical wave equations, however with no
discussion on frequencies included (see Section 2), were given by Humar (1990).

@ s - © "y .
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Fig. 5. Discrete-continuous models

The use of classical wave equation enables discussion of the models of
engineering structures consisting of many elastic elements and rigid bodies.
The approach applying the classical wave equation and its wave solution is
employed in dynamic investigations of the discrete-continuous models shown
in Fig.5. Special cases of these models can be employed when investigating of
the structures mentioned above.

The studied models consist of n elastic elements connected by rigid hodies.
All cross-sections of the clastic eleinents under external excitations remain
flat and parallel to the cross-sections where rigid bodies are located. The
elastic elements undergo only shear deformations. They may have dilferent
mechanical properties, however for the sake of simplicity it is assumed that all
the elements are characterized by: shear modulus (, cross-sectional area A,
shear coefficient k, density p and length [, Fig.5a. Between the rigid body
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mg and the element (1) an elastic segment of an isolation type can be situated
(cf Su et al. (1989)). It is characterized by the following parameters shear
modulus G, density pg, cross-sectional arca A and length g, Fig.5D.

The rigid body myg is subject to the absolute acceleration  92[y,, (1) +
Yeal(1)]/01% where y,, is the displacement of the rigid body mg with respect
to the ground and yeu(?) is the ground displacement in the fixed spatial
system. The function y,,(1) is equal either to 3,(0,¢) when the model shown
in Fig.5a is analyzed or to y(0,1) for the model in Fig.5b.

Damping in the model is represented by equivalent external and internal
damping expressed by

Rai = diyiy Ryvi = Dy :=0,1,..,m (3.1)

where y;(1) represents the displacement of the ith elastic element, d; and
D; are the coefficients of external and internal damping, respectively, and the
comma denotes partial differentiation. The equivalent damping is taken into
account in the boundary conditions. It is assumed that the direction of z-axis
is normal to the direction of displacements y;, x-axis origin coincides with
the position of the rigid body mg in the undisturbed state and that velocities
and displacements of the cross-sections of all the elastic elements are equal to
zero at the instant ¢ = 0.

3.2. Governing cquations

The problem of finding displacements, strains and velocities in the cross-
sections of the elastic elements for the model shown in Fig.5b is reduced to
solving the classical wave equations

. 2 —
Yo,tt — CoYo,xx = 0

(3.2)
Vi — C2yi.;v;v =0 1=12,...,n
with the following initial conditions
yi(2,0) = yi(2,0) =0 t=0,1,2.,n (3.3)

and the boundary conditions

_mO(gcal(t) + yO,H) - dO.yO,t + /‘“‘G( Doyo,u + yO,z) =0 for 2=0
Yo = for z =1
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—AkGo(Doyozt + Yoz) + ARG(Dyy1 ot + 1,z) =0 for 2 =1
Yi = Yir1 for a=l+d 1=1,2,..,n=-1 (3.4)

—ARG(DiYigt + ¥iz) + ALG(Dig1Yit1 2t + Vit1,2) — MiYit1,e¢ — diYiz10 =0
for z=l+id i=1,2,...,n-1

_AkG(Dnyn,rt + yn,r) — MupYn,tt — (lnyn,t =0 for o = lO + nl

where ¢ = kGo/po and ¢% = kG/p. Eqs (3.4) represent conditions for di-
splacements and forces acting in the adjacent cross-sections of adjacent clastic
elements of the considered model, and §.4(%) is a given time function repre-
senting the external excitation, which can be irregular (c¢f Okamoto (1973);
Sackman and Kelly (1979); Mengi and Diindar (1988)) or regular. If the ela-
stic segment of the length [y is eliminated from the model presented in Fig.5b,
i.e,, lp=0and yo(z,t) =0, then the rigid body mg is subject to the acce-
leration y;,4(0,1) + ¥ear(t), Fig.5a, and the boundary conditions (3.4), 2,3 are
reduced to the equation

- mo(fjcal + yl,tt) - (luyl,z + -41~'G(D1y1,1-t + yl,r) =0 for =0 (3-5)

Although the equations of motion in which continuously distributed dam-
ping is taken into account would describe the problem more precisely, they
do not have as effective solution methods as the wave nethod in the case
of classical wave equations. Moreover, it was shown by Pielorz (1988) that
appropriate equations with continuously distributed damping and with the
equivalent damping gave practically the same results except for a short initial
time interval.

Upon introduction of the nondimensional quantitics

i:.“fdl (=4 k.= p - De
di=qie  Gi=gr Ri=pt  @=P (3.6)
=1 Bo—%

where m, and vy, represent the lixed mass and displacement, respectively,
Eqs (3.2) + (3.4) can be rewritten
2. —
Yo,tt — Colo,xx = 0

(3.7)

Yigt — Yipx = 0 for 1 = 1,2, O ]

yi(,0) = yi(2,0)=0 for 1=0,1,...,n (3.8)
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Rodicai(t) + Royo,ue + doyo,e — BoN,(Doyort + v0:) =0  for 2 =0

Yo = %1 for 2= 10
Bo(Doyo,z¢ + vo,5) — D11zt — 1,0 =0 for z=1
Yi = Vit for 2z = l()‘l‘t 1= 1,2,...,”— 1 (3.9)

K:(DiYizt + vie) = No(Dig1¥igr00 + Vigr,0) + Rivipr,u + divig1,. =0
for 2 =l+i1=1,2,...,n—1
I\)T(Dnyn,a:t + yn,J:) + Rnyn,tt + dnyn,t =0 for z = lo+n

For the sake of convenience in Iqs (3.7) < (3.9) bars denoting nondimen-
sional quantities are omitted.

The solutions of Eqs (3.7) taking into account the initial conditions (3.8)
are sought in the form

Yo(2,1) = fo <Co(t = -'L')) + 9o (CO(I + ﬂ'))

yi(z,t) = filt — local —z+ )+ g;(t — loca1 +a—1lp—2(i1— 1)) (3.10)
1=1,2,..,n

where unknown functions f; and ¢; represent waves, caused by kinematic
excitation, propagating in the ith elastic element of the discrete-continuous
model in the directions coincident and opposite to the z-axis direction, respec-
tively. In the sought solution (3.10) it is taken into account that the material
of additional elastic segment can dilfer from the material of the remaining
elements. Moreover, in the arguments of functions f; and ¢; it has been
already taken into account that the first disturbance in the elastic segment
of the length [p occurs at ¢ = 0 in a = 0 while in the ith element at
t = locg1 4+ ¢ —1in the cross-section 2 =lg+i—1for ¢ =1,2,...,n. The
functions f; and g; are continuous and for negative arguments identical to
zZero.

Upon substituting the solution (3.10) into the boundary conditions (3.9)
and denoting the largest argumnent in cach equality by zo or =z, respeclively,
the following equations are obtained for the functions f; and g,

go(z0) = fi(z = 2loeg ") + g1(z = 2lpeg') - fu( o — 2ly)

9i(2) = fiy1(z=2)+ gia(z = 2) — fi(z = 1=1,2,..,n—1
Tn41,197(2) + Tnt1,200(2) = Tny13f5 (2 — 2) + T, fn(2 = 2)

r01f0 (20) + To2fo(20) = — Rofeat(2) + 70395 (20) + 70490(20) (3.11)
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rinf7(2) + m2f1(2) = r1397)(2) + a9y (2) + 115 S5 (20) + ri6f(20)
ra JU(2) + i f{(2) = riag!(2) + Tiagl(2) + ris SI(2) + risSI_1(2)

t1=2,3,..,n
where
r01 = ¢o(Bol; Do + Roco) ro2 = Bo K, + doco
To3 = Co(Bo]\’,-Do - R()Co) 104 = Bo K, — dyeg
ri=D1+ B()Docal ri2=1+ Bocal
ri3 = D1 - B()Docal Tiq = 1-— Bocal
r1s = 2BgDoco r16 = 209 (3.12)

ra =KD+ N, D1+ Ry rip=2K,4+diy
ria=K,D; = K.D;_y — Ri_y riy=—di

ris = 2K, D;_4 ric = 2K, 1=2,3,...,n
Tn+1,1 = I\IVan + Rn Tn+1,2 = I\’,- + dn
Th+1,3 = I\I’an - Rn Tntl1a = Ix—1' - (ln

If the elastic segment of the length [y is eliminated {rom the model presented in
Fig.5b, then appropriate equations have to be derived replacing Eqs (3.4)1.2,3
by Eq (3.5).

Eqs (3.11) are differential equations with a retarded argument. They can
be solved analytically or numerically by means of the finite difference method
similarly of Nadolski and Pielorz (1980) and (1992). The solution can be
obtained in the transient as well as in steady states.

3.3. Numerical results

Numerical analysis is carried out for the models presented in I'ig.5 when
n = 2 with lp = 0 and for [y # 0. First, sample calculations are carried out
for the model with o = 0 with the following constant parameters

Ro-:] R1:R2:0.5 ([0:(11:D1:D2:0.]
(3.13)
1
by = M Az = —
Mr = Mo 20

The function representing the external excitation #.() can be taken arbi-
trary: irregular or regular, periodic or nonperiodic. In the paper it is assumed
in the form

Veat(t) = agsin(pt) ap = 1.0 (3.14)
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and the considerations focus on the determination of displacements in the
steady states. The function (3.14) can represent various direct and indirect
external excitations, where p is the nondimensional {requency of external
excitation.

Y4k
12

10

0 03 T.0 T35 %

Fig. 6. Amplitude-frequency curves of the displacements y(z,t) — y(0,1) for the
model with 15 =0

In Fig.6 are plotted spatial diagrams of amplitude-frequency curves for
K, = 0.3 and the parameters (3.13) for relative displacements. From Fig.6 it
follows that the curves for the function y(a,t) — y(0,t) are regular and the
amplitudes in the first resonance increase with the increase of 2. Diagrams
in Fig.7 concern amplitude-frequency curves for K, = 0.1, 0.3, 0.5, for the
displacements of the cross-sections ¢ = 1 and 2 = 2 with respect to the
displacements of the cross-section & = 0. These curves are regular, similarly
as corresponding curves in I'ig.6, the maximum amplitudes decrease with the
increase of the parameter A, and are higher in 2 = 2. Moreover, from Fig.6
and Fig.7 it follows that all the curves obtained are irregular in the region
of second resonance, and the amplitudes in this region are many times lower
than those in the region of first resonance.

Further numerical analysis concerns the three-body model with the addi-
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20
In\ x=1.0

\ ————x=2.0
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' =
0 0.5 1.0 1.5

Fig. 7. Amplitude-frequency curves of the displacements y(z,t) — y(0,t) in the
cross-sections x =1, 2for A, =0.1, 0.3, 0.5and [, =0

tional elastic segment characterized by g, po, Go and the coefficient of internal
damping Dy.

At first, the amplitude-frequency curves analogous to those plotted in Fig.6
were obtained using Eqs (3.11) with the nondimensional parameters (3.13) and

with
Co = 1.0 BO =1.0 10 = 0.1 Do =0.1 (315)

It has appeared that the displacements of the cross-sections 2 = 0 and
z = Iy were practically equal, and therefore the amplitude-frequency cu-
rves for the function y(z,t) — y(lo.t) were determined in the cross-sections
z = lo + 05,00 + 1,lp + 1.5,ly + 2. These cross-sections correspond
to those for which the diagrams plotted in Fig.6 and I'ig.7 were determined.
The amplitude-frequency curves obtained for the parameters (3.15) are not
far from the appropriate curves presented in Fig.6 and I'ig.7. I'or this reason
they are not presented in this paper.

The following numerical calculations are performed for By €< 0.1,10 >
and for nondimensional wave speed ¢q = 0.5, 1, 2. The parameters By and
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co are not independent. It can be noted that ¢ = Bg/vo where o = po/p,

and that a rather slow change of 7o occurs for ¢ €< 0.5,2 >.

Further numerical calculations concern the investigation of the effect of the
parameters cg and [, which characterize the additional elastic segment in the
considered model, on the amplitudes of the displacements in selected cross-
sections. From Fig.6 and Fig.7 it follows that maximum amplitudes occur in
the region of first resonance, so the eflect of these parameters is investigated
for the frequency of external excitation p equal to the first frequency of
free vibration of the system. The frequency equation is derived seeking the
solution of Eqs (3.7) using the method of separation of variables and neglecting
damping and external excitation in the boundary conditions (3.9).

8
/CO=2.0
y A
4 1.0
x=2.1
x=1.6
y=].1
3l
_\_b-_ CO:IO 32
2F —
1 05 I}x_06
0 5 10 B,

Fig. 8. Effect of the wave speed ¢g on resonant amplitudes of relative displacements
for the model with [ = 0.1

The effect of the wave speced ¢y is investigated for DBy €< 0.2,10 >,
Do = 0.1, K, = 0.1, 0.3, 0.5 in the cross-sections 2 = 0.6, 1.1, 1.6, 2.1
also for the relative displacements. It is assumed ¢o = 0.5, 1, 2. In Fig.8
the resonant amplitudes for K, = 0.3 are plotted. I'rom Fig.8 it follows that
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Fig. 9. Effect of the segment length !y on resonant amplitudes of relative
displacements

the effect of ¢ is very significant, specially for By > 1. The sensitivity
to ¢g increases with the increase of 2. When DBy < 0.8 the dependence of
the resonant amplitudes on Dy is nonlincar while for By > 0.8 it is rather
linear, and the amplitudes increase with the increase of 2. Comparing the
continuous curves obtained for ly = 0.1 with broken lines corresponding to
lo = 0, it can be seen that there exists a value of By below which the results
for Ilp = 0.1 are higher and above which are smaller than the appropriate
amplitudes for Iy = 0. Diagrams in Fig.8 give also the explanation to the fact
that amplitude-frequency curves determined for Iy = 0.1 and ¢ = By = 1
were practically identical to those presented in Fig.6 and I'ig.7 for Iy = 0.
The same conclusions of the eflect of the wave speed ¢g can be drawn from
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the diagrams of the resonant amplitudes for K, = 0.1 and K, = 0.5, they
are therefore not given in the paper. However, the amplitudes decrease with
the increase of K., what can also be observed in Fig.7.

The curves presented in I'ig.8 are determined for /g = 0.1. The diagrams
in Fig.9 concern tlie resonant amplitudes of the function y(z,t)— y(lo,t) for
lo = 0.1 and [l = 0.2 with the parameters (3.13), Kk, = 0.3, Dy = 0.1,
co = 0.5, 1, 2 in the cross-sections 2 = [p+ 1 and 2 = {y + 2. Irom Fig.9
it follows that resonant amplitudes for [y = 0.2 are lower than for [y = 0.1
except when By < 1.7 and ¢g = 1. For the fixed c¢g the dillerences between
corresponding amplitudes for /o = 0.1 and Iy = 0.2 increase with the increase
of Bp. The highest differences occur for ¢ = 0.5 and the least ones for

CO=2.

4. Final remarks

The considerations presented in this paper have a theoretical character.
The comparison between the frequencies of free vibration for the Timoshenko
equations for a beam and their specific cases indicates that in dynamic inve-
stigations of the systems subject to shear loadings, which can be modelled by
means of short beams, it is permissible to employ the classical wave equation
and its wave solution.

In the paper two discrete-continuous models, which can represent various
low engineering structures subject to transversal external excitation are inve-
stigated. In the multi-body model the segment of isolation type is neglected
or taken into account. From numerical calculations concerning the effect of
the wave speed and the segment length on vibrations it follows that taking
into account the segment in most cases results in the decrease of amplitudes.
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Modele dyskretno-ciagle w analizie niskich obiektéw poddanych
wyimuszeniom kinematycznym wywolanym talami poprzecznymi

Streszczente

Praca sklada sie z dwdch czesci. W pierwsze] zbadano wplyw sil poprzecz-
nych na czestosci drgan wlasnych krétkiej belki wykorzystujac réwnania Timoshenki,
uproszczone réwnania Timoshenki 1 klasyczne réwnanie {alowe. Nastepnie zapro-
ponowano dwa modele dyskretno-ciagle do badan dynamicznych niskich obicktow
poddanych wymuszeniu kinematycznemu wywolanemu falami poprzecznymi. Mo-
dele te skladaja sie z bryl sztywnych 1 elementéw sprezystych poddanych tylko od-
ksztalceniom scinajacym. Drugl model zawiera dodatkowy segment sprezysty usy-
tuowany pomiedzy dolng bryla a pozostalymi elementami modelu. W rozwazaniach
zastosowano metode falowa, w kidre] wykorzystuje sie rozwiazanie falowe réwnai
ruchu. Obliczenia numeryczne wykonano dla modeli z trzema brylami sztywnymi.
Koncentruja sig one na wyznaczaniu krzywych amplitudowo-czgstosciowych i bada-
niu wplywu wlasnosci mechanicznych i geometrycznych dodatkowego segmentu na
amplitudy rezonansowe.

Manuscripl received June 23, 1993; accepied for print November 15, 1995



