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In studying elastic bifurcations the general way is to start with a variatio-
nal setting. After then, the uniqueness of linear part is to be considered
to find the bifurcation points and the curvature shows whether the equi-
librium curve is sub- or supercritical. These methods offer no possibility
to investigate even a small neighbourhood of the bifurcation point being
important for possible secondary bifurcations. If we need this informa-
tion, we should approach the problem in the other way. The equilibrium
equation should be studied in a local form and some kind of reduction
process should be realised to end up with an algebraic equation called
the bifurcation equation. This equation describes the nonlinear behavior
of the system in the vicinity of the bifurcation pomt giving information
on the secondary bifurcations. Moreover it enables us to find also the
eflects of imperfections. In the paper the connections and advantages of
both methods are discussed. As an example the buckling process in a
rod is presented.

1. Energy method

In the case of elastic body investigation of the bifurcations is based gene-
rally on the energy equation

§We + §Wi + 6W, = 0 (1.1)

where 6W,, 6W, denote the virtual works of the external and internal forces,
respectively, and 6W,; = Jffo T dt, where T is the kinetic energy. In a static
conservative system both the internal and external forces have potentials U,V

and
oU

Z 6u1 oW, = Z 011 6uz
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where © = {w;}, ¢ = l,..., naregeneralized coordinates. Thesum £ = U +V
is called potential energy of the system. In a system depending on a parameter
A, E = E(u, ). For the equilibrium

E(u,\)6u=0 (1.2)

Introducing a parameter 7 the equilibrium curve can be given in the form
w=u{r), A= A1) for uand A satisfying Eq (1.2). The tangent of this curve
can be calculated by differentiating with respect to 7 at certain wug, Ag

6u( E o, Mo)ur + E (0. do)Ar ) = 0 (13)

When both £, and £ .\ are regular at {wup,Ag). this point is called the
regular one. When FE 4, is singular, then there exists a zero eigenvalue. In
the case of a simple eigenvalue there is a single eigenvector X satisfying

buFE (o Ap) X =0 (1.4)
When duFE ,\{ug. o)X # 0 Eq (1.3) can be solved for A, = 0, that is, the

equilibrium curve "turns back™. This point is called a turning point. In the
case duF ,\(ug, Ap)X = 0 there is no unique tangent and the point is called
a bifurcation point.

The equilibrium curve can be studied at bifurcation points by defining the
trivial curve in the form «°(A). The nontrivial equilibrium curve is searched
foras w = u®(A\)+v. Then by expanding into a power series A = Ao+ A\ 7+.. .,
v = v17+...and substituting into Eq (1.3) and into its higher order derivatives
after comparing the coefficients of each term 7¢ of the power series expansions
a set of equations is obtained. Il can be solved systematically for A;.n;
t = 1,...,n. For the linear part we can write v, = X. Then the second
derivative of Eq (1.2) with respect to 7 is

bu (E‘.-LLU.(UOa /\O)UTT + E,uuu(uO- /\O)UTU”T + 2E.-uu.,\(.u0- /\O)U’T/\T +
+E ux(u0, 2o)A2 + E (o, /\0)/\TT) =0

Assuming that there is no higher order term in A, then the first
E o (uo, Ao) = 0. In terms of the power series expansions A; can be ob-
tained for éu = X at 7 =0 as
A = 1 E g, 20)[ X, X, X]
2 E yun(ug, Mo)[(u0)y, X, X+ E yun(uo, Ao)[X, X]

Quite similarly the other terms can also be calculated. In local investigatior
only the first nonzero coefficient is important, thus first few A; can be given in
a general form (cf Nguyen (1993)) and for a real mechanical system the values
of parameters should be substituted into these expressions.
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2. Static bifurcation theory
The bifurcation theory is applied, when the state of equilibrium is described
as a solution u of the equation of balance depending on a parameter A
Glu.A) =10 (2.1)

In Eq (2.1) the left-hand side can be calculated from Eq (1.1) in the usual way
(cf Gantmacher (1967)) and end up in. e.g., Lagrangian form

d T 9T

U9 ou
where (), are the generalized forces. When all the forces have potentials
as in the previous part @, = —90U/du; = —9V/0u,, and the investigation

is restricted to statics, the right-hand side of Eq (2.1) is the same as the
multiplyer of du in Eq (1.2).

Static bifurcation theory investigates maintence ol the uniqueness of the
state of equilibrium under quasistatic variation of a selected bifurcation para-
meter. When there is a critical value of the parameter, at which the uniqueness
is lost, the structure of the set of solutions changes. This case is called the
static bifurcation (cf Chow and Hale (1982)). Generally such problems occur,
when the linear part of iq (2.1) turns to be singular at the considered solution
up for some values Ag of the bifurcation parameter. Thus the derivative D,G
of G is singular at wug. thatis, D,G(ug, /\o)<z E o u(up, )\o)) has a nontrivial
kernel. Finding a basis of the nontrivial kernel the so-called critical eigenmo-
des (cf Troger and Steindl (1990)) are obtained giving some information on
the arising nontrivial solutions. When there is a unique zero eigenvalue with
multiplicity one, the basis of the nontrivial kernel can be identified with the
eigenvector X given in Section 1.

Having detected the bifurcation point the interest {ocuses on the post- or
prebifurcation behavior. The essence of the investigation of post- or prebi-
furcation is to find out, how many solutions do we have before and after the
bifurcation. When doing it instead of the point (up.Ap) a small neighbou-
rhood of it should be considered in searching for the nontrivial solutions.

Now the Liapunov-Schmidt reduction should be applied (cf Golubitsky
and Schaeffer (1985)). Firstly, the linearized part is defined by L : U — U.
L = D,G(ug. Ag). It is assumed that:

(a) Kernel L is a finite dimensional subspace of U

(b) Range L is a closed subspace of U of finite codimension
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(¢) L is self-adjoint.

For operators revealing properties (a) and (b) the U = Ranl & Kerl decom-
position is possible. Now Eq (2.1) can be splitted into the equivalent pair of
equations

PG(u.A) =0
(2.2)
([ = P)G(u,A) =0
where P : U — Ranl is a projection operator into L range. The same
splitting can also be made for the variable u
u=v+w (2.3)

where v € Kerl., w € Ranl. Substituting FEq (2.3) into Eq (2.2);. the
equation

PG(v+w,\)=0 (2.4)

can be solved in the Ranl applying the Inverse I'unction Theory and w can

be written as
w = P(v, \) (2.5)

in a neighbourhood of the origin. Then Eqs (2.3) and (2.5) should be substi-
tuted into £q (2.2)y and the bifurcation equation in the form

(1'—P)G<v+w(v,/\)./\> =0 (2.6)
is obtaincd. Let us denote
o0, \) = (I - P)G (v + b(v,\),\)

In the case of a unique zero eigenvalue with multiplicity one an algebraic
equation equivalent to [5q {2.6) can be defined. At first the function

g: R XRKR—R glg. A) = (X, P(¢ X, A)) (2.7)

should be defined, where ¢ is a scalar coordinate and (-,-) is a scalar product.

Then the equation
glqg. Ay =10 (2.8)

shows the changes in the number of equilibria and the postbuckling behavior
of the system. Generally the function (2.7) is searched for in terms of as a
Taylor expansion.
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3. Case study 1: The postbifurcation of an Euler elastica

In this part we show two methods applied to the investigation of the po-
stbuckling of an Euler elastica having length I under the thrusting force A.
Having the arc coordinate s, the stiffness &, while wu is the angle between
tangent vectors of the center line in loaded and unloaded rods, respectively.
the potential energy of the system is

L
/ “ r/<+,\/(0su (s) ds
0

0

F{u,\)

NI’—

The left-hand side of the equation of equilibrium (1.2) is
L .
E (u,\ou= /lcu_s(s)éuls(s) ds — A / dusinu(s) ds
J .

The trivial equilibrium is wu(s) 0. For the critical point from Eq (1.4)

substituting for the eigenvector X

L
Sul , (ug, Ag) X / s)éu (lq—,\o/éu\ ds =0
0 0
Having done partial integration

L L
L
[/c‘X',s(.s)éu.]U —k /A\'.Ss(s)éu ds — Ay /é uX ds =0
0

0
Thus for the boundary conditions X 4(0) = X ((L) = 0 the equation

d*X

X =0 (3.1)

is obtained. The solution is [Ag = 72k/L? and X(s) = cos(ms/L). It means
that the system has a bifurcation at the critical load 72k/L?. Now the
postbuckling can be investigated by substituting into the general expressions
mentioned in Section |
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E un X, 6u] = /(MX cosu ds

(3.2)
L
E yun(uo, Ao)[- /cos — ds
0
L
E o X. X, 0] = A/éuY2 sin u ds
’ {3.3)
E {0, Ao)[X. X, X] = 0
E e (10, 20)[X, X, X, X] = = Ao / §u cos? ZFZS_ ds
(3.4)

and Ap = 0, Ay = Ao/3 is obtained. It shows that the postbuckling is super-
critical.
To demonstrate how the bifurcation theory works, the Kirchhoff rod equ-

ation

d*u

W+A5111 uw=20 (3.5)
is used, where 1 is the same angle as before. Let the boundary conditions
be accepted in the form given above w(0) = u(L) = 0. The linearized form
of Eq (3.5)is (d?u/ds?) + Au = 0 having the same form as Eqs (3.2). The
least eigenvalue and its eigenvector is obviously the same as Eqs (3.2), thus
the decomposition (2.3) is u« = qcos 7rs/L + w. The scalar product of Eq
(2.7) can be defined by (a,b) := Ljo ab ds. From Eq (2.5) can easily be
proven that w is at least of 01del three in ¢, thus by truncating the Taylor
expansion of ¢ at third order, Eq (2.4) can be neglected and

L,
glq, \) = /L_ oqfsmwsL ds +
0
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The bifurcation equation is
3
0=Ag—=¢°+...
7= 54 +

having always the trivial solution ¢ = 0, a nontrivial solution A = %([2 exists
for A > 0 showing the supercritical nature. We notice that the right-hand
sides of Eqs (3.2) = (3.4) are obviously the same as the appropriate coefficients
in the bifurcation equation.

4. Case study 2: Secondary buckling

The second method reduces the equilibrium equation being a differential
equation to the algebraic one. The identity is local. It is valid in a small
neighbourhood of the trivial solution and of the critical parameter value. After
this reduction investigation of the postbifurcation consists in the study of
bifurcation equation.

Below, the case of a twisted elastica will be considered under terminal
thrust. This problem has two possible postbuckling behaviors (cf Béda et al.
(1992)). These are called the super- and the subcritical cases, respectively (cf
Triger and Steindl (1990)). There is a critical twist at which the behavior of
the system changes from the supercritical to subcritical type. Let us introduce
a parameter « representing the distance from this critical twist. The steps ol
reduction are the same when A is a vector, components of which are load and
imperfection parameter «. In this case the bifurcation equation is

glg- A, a)=0
Assuming gqo = Ag = 0. for derivatives of the (perfect) system

dg _d%

0%y 'y
dqlo - wlo B 5([_3‘0 - a—q‘“o

°g)
7o =870

=0

The local bifurcation equation is
M+6q° +o(lg]") =0

Nontrivial solution exists, when Aé < 0, that is, the sub- or supercritical
behavior depends on the sign of §. When there is a small imperfection, a

7 — Mechanika Teoretyczna
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nonzero third order derivative should exist g—q%(o = 6 # 0. where « <« 1 and

the local imperfect bifurcation equation is
Ag+ ag® +6¢° + of|g]") = 0 (4.1)

Consider now a two parameter bifurcation with A, and study the change
in number of solutions in a small neighbourhood of the origin by quasi-static
variation of the parameter. To simplify the problem, the following equation

A+ ag® +¢° +of]g]") =0 (4.2)

is considered, where parameters A, « are obtained from Eq (4.1) dividing if
6 # 0. For the sake of simplicity the same notation is used as in Eq (4.1).
Now, as in multiparameter bifurcation problems, we are seeking for the values
of (A, a), at which the number of the solutions changes. For this reason we
differentiate Eq (4.2) with respect to ¢

A+ 3ag® +5¢* +o(]q|®) = 0 (4.3)

When there is a change in the number of solutions of Eq (4.2), both Eqs (4.2)
and (4.3) should be satisfied.
In the case ¢ =0, Eq (4.2) is an identity and Eq (4.3) is satisfied at

Viel<1 A=0 (4.4)

When ¢ # 0, in a sufficiently small neighbourhood of the origin, from Eq (4.3)
it follows
A= =3aq” - 5¢" + o(|q|°)

and substituting into Eq (4.2) yields
a==2¢" + of|q|") (4.5)
Substituting it into the formula for A
A=q"+o(lgl%) (4.6)
in a small neighbourhood of the origin. From Eqs (4.5) and (4.6) it follows

that the number of the solutions of Eq (4.2) changes when

4

While Eq (4.4) represents the curve of the primary bifurcation (the same
condition as the perfect system), the other curve represented by Eq (4.7)
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can be interpreted as a secondary bifurcation. The curves of primary and
secondary bifurcations, represented by Eqs (4.4) and (4.7). respectively. divide
the parameter plane (A, a) into three regions. The number of solutions of Eq
(4.2) changes when crossing one of these curves. From Eq (4.2) we have

g(A+ aq?) + o(|g]*) = 0

thus when crossing Eq (4.4) for « > 0 the number of the local solutions
decreases, and for « < 0 increases by two, when A increases. Moreover, at
a = 0, when A < 0, the number of solutions is three, and when A > 0, only
one solution exists.

The number of solutions to Eq (4.7) and on the negative part of Eq (4.4)
is three and on the positive part of Eq (4.4) is two, then the possible numbers
of solutions in a small neighbourhood of the origin are 1,3,5, respectively. The
results are shown in Fig.1.

Ak

J

Fig. 1.

5. Conclusion

This paper deals with two methods of investigation of the static bifurca-
tion. We have seen that the calculation steps in both methods are practically
the same. The first one needs less abstract mathematics and gives clearer
physical interpretation. Moreover, having expressions for the general case the
solution to the problem consists in simple calculations with the current values
of parameters.

For more complicated problems a higher mathematical abstraction can be
helpful. Deriving a locally equivalent algebraic equation, as it has been done
by using the second method, gives a start for the further investigation. In
the second case study we solved a complicated problem and got results for a
secondary buckling.
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Bifurkacje i post-bifurkacje pretéw

Streszczenie

W ogélnym przypadku analize bifurkacji sprezystych nalezy rozpoczaé od opra-
cowania modelu wariacyjnego. Nastepnie, w celu znalezienia punktéw bifurkacji,
powinna byé rozpatrzona jednoznacznos¢ czesci lintowej. Krzywizna wskazuje na
rownowage pod- lub nadkrytyczna. Metoda taka nie daje jednak mozliwosci badania
nawet matego otoczenia punktu bifurkacji, co jest waine w badaniu bifurkacji wtdr-
nych. Aby uzyskac takie informacje nalezy zastosowac inng metode. Réwnania row-
nowagi rozwazane sa tylko w postaci lokalnej, 2 w wyniku redukeji otrzymujemy row-
nanie albeblalazne zwane réwnamem bifurkacji. Réwnanie to plZPdStana nieliniowe
zachowanie sie ukladu w poblizu punktu bifurkacji, dajac rownoczesnie informacje o
bifurkacjach wtornych. Umozliwia ponadto znalezienie konsekwenc)i wad. W pracy
przedstawiono powiazania 1 porownania obu metod. Jako przyklad rozpatrzono wy-
boczenie preta.
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