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The aim of this contribution Is to present some applications of the Non-
smooth Mechanics to the formulation of dynamic unilateral contact pro-
blems without and within friction. The study is concentrated on mecha-
nical systems with finite degrees of freedom. The initial value problems
are formulated and shocks are taken into account.

1. Introduction

The literature on dynamic contact-impact problem is already quite im-
pressive (c¢f Grybos (1969); Jaeger (1992); Zhong and Mackerle (1994)). Both
rigid and deformable systems are the subject of investigations. Detailed stu-
dies, however, are rare. Moreau (1983) and (1986) initiated mathematically
elegant studies for systems of rigid bodies. In the presence of friction even
quasi-static motions may be nonsmooth in time. Nonsmooth constraints may
lead to discontinuous changes in time of the velocity of a system. It appe-
ars that nonsmooth motions are properly described by the velocity functions
which belong to a space of functions with locally bounded variations.

Our aim here is first to present some ideas due to Moreau (1983), (1986),
(1988) and next to generalize them so as to include nonsmooth constraints
and friction (Problems 1 and 2, example). Sequences of approximation of the
velocity and the corresponding sequences of motions are also proposed.

"The paper was presented during the Fixst Workshop on Regularization Methods in Me-
chanics and Thermodynamics, Warsaw, April 27-28, 1995
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2. Functions of bounded and locally bounded variations

In the case of nonsmooth motions, particularly in the presence of shocks
(collisions) the left-side «~(t) and the right-side wu*(¢) limits of the velocity
function wu(t) are in general different. Functions of bounded and, more ge-
nerally, of locally bounded variations describe quite naturally such possible
Jumps (cf Moreau (1988)).

Let [ be a real interval and (&,p) a metric space. By J we denote a
subinterval of [ and f: 7 — & is a function. The variation of f on .J is
defined by

var(£.7) = sup 3 p(f(ria), fi7) (2.1)
=1

where the supremum is taken over all finite sequences 7, < 13 < ... < 7,
of points of J (finite sequences which are only nondecreasing are likewise
acceptable). From Eq (2.1) we readily infer:

(i) var(f,.J) = 0 <= f equals a constant on .J.

(i) If @ <6< ¢, then

var( f:a,c) = var( f;a,b) 4+ var( f;b.¢) (2.2)

Definition 2.1. The function f: I — & is said to be of bounded variation
on [ iff var(f,I) < 4oc, where f € bv({,&).

It is called the function of locally bounded wvariation on I iff
var(f;a,b) < +oo for every compact subinterval [a,b] C [, where
felbv(l.E).

Definition 2.2. The function f: [ — £ is said to be absolutely continuous
on [ iff for every e > 0, there exists ¢ > 0 such that for any finite col-
lection of non-overlapping open subintervals (a;,b;) of I. the following
implication is true

(b =) < 8= 3 p(fla). fba) < ¢ (23)

12

The function is said to be locally absolutely continuous on [ if it is
absolutely continuous on every compact subinterval of [.

Remark 2.3. If the space (&, p) is complete and f € |bv([,E), then [ has
a right-limit  f+(t) for every t € I different from the possible right end
of I, the symmelric statement can be formulated for f=(t). 0
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Essential for the study of nonsmooth motions is the notion of a differential
measure. Let now (X,||-]|]) be a real Banach space and K(/) the space
of continuous functions with compact supports in I. By § we denote the
totality of the finite subsets of [; then for 5 € § we may write

S < T <. . .< Ty, Toe..-n T, €1

Suppose that OiS € [ticy,m)and let f: [ — X. Forevery S, pand 6 = (9%)
we construct an element of X

M. Zw( — [ 1)) (9.4)

Out of & one can make a directed set. (§.D): then the concept of convergence
of (&,D) to the topological space X is meaningful. Thus we may formulate:

Proposition 2.4. Let [ € Ibv(I, X): for every v € N(I) and cvery 6.
the mapping 5 — M(S.0.¢ 0_/ the directed set (net) (8.D) lo X
converges Lo a limit independent of 6. The convergence is uniform with
respect to the choice of 0. Lel us denole this limil by [ df. Then. for
every compacl subinterval [a.b] C I, supp o C la.bl. one has

I /pdfll < max |p|var( f;a,b) (2.5)

Thus the linear mapping » — [ df of K(I) lo X constitutes a vector

measure on 1.

Definition 2.5. The X-valued measure constructed aboveis called the diffe-
rential measure (or the Stieltjes measure) of f € lbv([, X'} and denoted

by df.
Basic properties.
(i) It felbv(/,X)and [a.b] C I, then

/df: FH) = (@)

[a,6]
(ii) Yae T [ df = ffla) - f~(a)
{a)

For everv t € I, different from the possible right end of this interval the
right-side limit  f*(7) is defined by

) = M f(s) s> (2.6)
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3. Generalization of Lagrange’s equations

In the sequel we shall investigate dvnamic motions of mechanical systems
with finite degrees of [reedom. To account for the presence of nonsmooth
unilateral constraints and/or friction one has to properly generalize classical
Lagrange’s equations. To this end we shall exploit the ideas primarilv due
to Moreau (1983). (1986) and next developed by Jean and Moreau (1992).
Monteiro Marques (1987).

3.1. Preliminaries and notations

A mechanical system is supposed to have a finite number m of degrees of
freedom. Let ¢=(¢',...,¢™)€ 2 CR™; ¢},...,¢g™ are local coordinates in
the manifold of the system possible positions. I is a time interval, for instance
[ =[0.T], T > 0. The function ¢ : I — IR™ is not necessarily derivable
everywhere. By u : I — IR™ we denote a velocity function. For smooth
motions (see below], we have

4
q(t):q(fo)Jr/u(r)dr (3.1)
o

Here tg stands for the initial instant. To study nonsmooth motions we make
the following

Assumption. u € lbv(/,[R™).

Consequently u¥(7) (the right-limit) and 2~ (7) (the left-limit) exist for
each 7 € intl. The initial condition is given by

u(ly) = u™ (o) = ug (3.2)

Obviously we have ¢ (1) = u=(r), ¢"(7) = wt(r). According to Moreau
(19885 one can justify Eqs (3.2) by imagining that the systems under investi-
galion is already in motion before tg.

Unilateral constraints are specified by

Jolg) <0, aef{l.2.....9} (3.3)

where [, are of class €' and Vf, = (9f./0q¢ ... .. dJa]0¢™) # 0 at least in
a neighborhood of the corresponding surface [, = 0.
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é C 12 is a feasible region defined by

5= {qlfile) <0, ae{l2...5)) (3.4)

IR™ D V(q) = {v € R"Va € J(q). v-V/[.lq) < 0} (3.6)

and V(q)=IR"™if J(q)=10.

Interpretation:  V(q) is a set of admissible velocities at a point ¢. We
have

Theorem 3.1. If a motion 1 — g(t) conforms to the set of constrainls
(g(1) € @ for each ). then

ut(t) e V(gt)) A wu (1) —V(q(1)) (3.7)
d

We observe that Eq (3.6) must be satisfied by a frictionless motion as well
as bv motions with frictions. 1(q) is a closed convex cone of IR known as
the tangent cone provided that ¢ € @ (¢l Rockafellar (1970)).

3.2. Lagrange’s equations: smooth motions

A motion of the system is said to be smooth if the velocity function u is
locally absolutely continuous, see Section 2. Then wu(f) = ¢({) exists for the
Lebesgue measure almost every 1.

Let E(q,q) stand for the kinetic energy of the system, thus

o 1 oy

Bg.4) = 5Au(0)d'd (3.8)
is a positive definite quadratic form in ¢. For the sake of simplicity only
scleronomic systems will be investigated.

Lagrange’s equations may be written as follows
d (HE) OF

dt\NOq aq o (3.9)



48 J.J.TELEGA, A.GALKA

where
F; -~ known functions of time, position and velocity (given forces)
7; ~ unknown reactions or constraint forces.

Obviously, if f,(g) < 0 then the associated reaction is r® = 0.
Eqs (3.8) and (3.9) yield

G=A"'K+Alr (3.10)
Here |
By = F = (A= 345004 (3.11)

and AL-J.;\- = ()/4[‘,’/0(//‘«.
Remark 3.2. Suppose that f.(q) = 0 and denote by R” the associated
reaction in the physical space IR>. Then we may write
¢ = Gz*’l?f" Léu = U~ (o not summuied!)
where Ga : R™ — IR3 and Ga* : IR — IR™ is the transpose of Ga
(cf Jean and Moreau (1991). (1992)).
O

We set

r= E re

agJ(g)

In the case od smooth frictionless motions, but in the presence of nousmooth
constraints, we have
—r e N(q) (3.12)

Thus Lagrange’s equations take the form of an inclusion
& |

(3.13)
(Lebesgue - AL in [) Viel: q(t)e d

I ¢ C IR™ is a closed convex subset then ¢ denotes its indicator
function (cf Ekeland and Temam (1976); Rockafellar (1970)). Moreover

0 if oz eintd
Or(z) =< N(x) if  aeC/intC (3.14)
0 if 2 £C

stands for the subdifferential of ¥ at x. We have
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Theorem 3.3. A smooth motion, with initial data q(ty) € @, is a solution
of Fq (3.13), if and only if the velocity function u associated with q
through Eq (3.1), satisfies Lebesgue — AE in I the differential inclusion

—A(q)u+ K(t,q,u) € 0Wy(q)(u) (3.15)
Remark 3.4.
(1) N(q) is the polar cone of V(q)
N(g):=[V(g]" = {y e R"|y-v <0, vveV(g)} (3.16)

(ii) 9%y (q)(u) C N(g)

(ii1) The initial data: q(to) = qo € D, u(to) = ug € V(gp)

(iv) For smooth motions we have: Vi € I w(!) € V{gli)N—V{glt)) =«
linear subspace of IR™ orthogonal to N{q(1)).

For instance, one can easily envisage cases where V(g(t)) N — V(q(t)) = {0}
or V(g(t))n—V{(g(1)) ="

3.3. Lagrange’s equations: nonsmooth motions

The velocity function u is no longer locally absolutely continuous; now
u € lbv(J,IR™), i.e., u has locally bounded variation in time, see Section 2.
With such a function an IR™ - valued measure du on the interval [ is
associated. As we already know from Section 2, du is a differential measure
of u. For every compact subinterval [o,7] C I we have

/ dv=ut(r) —u (0) (3.17)
[o.7]
and particularly
/ du = ut(t5) —u= (i) (3.18)
{ts}

Thus du depends on the function u only through u* and u~.
In order to formulate Lagrange’s equations for nonsmooth motions, let

us first suppose that w is absolutely continuous; then du = wujdt,
u, € L} (I,dt,JR™). Lagrange’s equations may be written in the form
iy ] .
Aij(@ui + [Aijk(g) — §Ajk,i(Q)]UJuk =c=F+m

4 — Mechanika Teoretyczna
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or equivalently as an equality of measures on [

. 1 .
Aj(g)dw + [Agi(q) — 5.4J-k,,;(q)]u-fuh_u, = ¢;dt (3.19)

Suppose now that u € lbv(/,IR™). We replace ¢;dt in Eq (3.19) by some
real measures dC7%; thus

dC; = Fi(t,q,u)dt + dR;

Here F; are given forces and dR,; are the components of the contact impulsion
dR, an IR™ — valued measure on [. For u € lIbv({/IR™) Eq (3.18) is genera-
lized to

A(g)du — K(t.q,u)dt = dR (3.20)
where 4i(t,q.u) = Fi(t,q,u) — [A;rlg) — %Aj/g,i(q)}uja’*. The equality of
IR™ ~ valued measures on [ defined by Eq (3.20) was proposed by Moreau (cf
Jean and Moreau (1991), (1992); Monteiro Marques (1987); Moreau (1983),
(1986)) as governing the dynamics of nonsmooth motions. We observe that
Eq (3.20) is quite general; it applies to nonsmooth motions without and with
{riction as well as to collisions.

We recall that for smooth motions

and dR=rdt,re L} (I,dt,IR™). For nonsmooth motions one introduces

Definition 3.5. The set of constraints is said to be frictionless and soft if the
total contact impulsion admits a representation dr = Rj dyu, where dy
denotes a nonnegative real measure on [ and R, € L} ([.du,R™),
such that for every 1 € [

— R, (1) € 3y (g (ut (1)) (3.21)
O

Remark 3.6.
(1) For nonsmooth motions dy is in general different from the Lebesgue
measure di.
(it) Contact law (3.21) holds for each t € I if and only of the same is
true after replacing du by another nonnegative real measure relative 1o
which dR possesses a density function.
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A straightforward generalization of Eq (3.15) to nonsmooth frictionless and
soft motions is given by

- Alg)u, + K(1.q.u)t}, € ()(llv(q“))(u*'(t)) (3.22)

By using Remark 3.6.(ii), we mayv write differential inclusion (3.22)in the form
of a measure differentiol inclusion

~ Alg)du+ K(1.q.uldl € Oy gqy,(ut (1) (3.23)
The following statement interrelates u*(¢) and u™(1).

Proposition 3.7. For t € I, different from the possible right end of this
interval, and any motion salisfying (3.23) we have

ut (1) = prox(u—(z),V(q(t)) (3.24)

Here the proximation is to be understood in the sense of the kinetic me-
tric, i.e., the Euclidean metric, defined in IR™ by the matriz A(q(1)).

a

For the definition and properties of the proximation (prox) the reader
should refer to the book by Ekeland and Temam (1976). Fig.1 provides a
simple illustration of Eq (3.24).

Remark 3.8. The frictionless nonsmooth motions without softness are cha-
racterized by
— R (t) € N(q(1)) (3.25)

This relation is more general than
- R (1) € 00y (glut (1) (3.26)

since the rght-hand side of Eq (3.26) is contained in N (q(t)).
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We are now in position to formulate the initial value problem for a system,
whose nonsmooth motions are frictionless and soft. We assume that I = [0,T].

Problem 1. Find a function u € lbv(/,IR™), such that if ¢ is defined by

t
q(t) = qo + /u*(r) dr | tel (3.27)

0

then they satisfy

q0)=qy € & u(0) = up € V(gp) (3.28)
qlt) € & u(l) € V(g(1)) tel  (329)
—A(q)du + K(1,q,u)dt € Oy (g))(ut (1)) (3.30)
O

Now we pass to motions with friction. By R we denote the reaction force
at a point of contact; C is afriction cone. Forinstance, C is usually generated
by the Coulomb condition. Anisotropic friction conditions, however, are not
precluded. Further let V denote the (physical) relative velocity between
two bodies of the system or between an element and a constraint. Following
Moreau (1986), the friction law is assumed in the form

~V € projro0¥c(R) (3.31)

Here 7 stands for the tangent space at the point of contact (in the physical
space).

Let o € {1,2} and consider motions of one point only in the space IR®.
We formulate

Problem 2. Find u € Ibv(/,IR?), such that for ¢ defined by Eq (3.27) the
following conditions are satisfied

q90)=¢g €9 u(0) = up € V(gp) (3.32)
qt)e @ u(t) € Viq(t)) tel (3.33)
g(t) € int® = R (1) =0 (3.34)
[g(t) € bdry®, u*(1) € intV(g(1))] = R, (1) = 0 (3.35)
(q(?) € bdry®, u*(t) € bdryV(q(1)), u*(?) - Vfulq(t)) = 0] = -
= —~u" (1) € projr, gy 0¥ (quy(RL(1)) (9.6
A(q(t))du — K(t,q(t),u(t))dt = RLdﬂ (3.37)
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Jean and Moreau (1992), Monteiro Marques (1987) consider only the case
a = 1. The existence result proved by Monteiro Marques (1987) for o =1
does not apply directly to Problem 2. Fig.2 provides an illustration of friction
law (3.35).

f,=0 (concides with Ty(q))

N,T - units veclors

Fig. 2.

Example. Consider plane motions of a point with mass m, see Fig.2.
For R} <0 the Coulomb condition has the form

IR, z|— VRN <0 (3.38)
where v is the coefficient of friction. Eq (3.37) reduces to
mdu = R, du (3.39)
Setting
Sy = /R;,N dp S = /R;T dy (3.40)
from Eq (3.38) we obtain
|S7|—vSn <0 (3.41)
We recall that du is a nonnegative measure. Further we have
/ mdu=m / du = mut(ts) — u™(¢5)] (3.42)
{ts} {ts}

Thus Eq (3.38) yields (cf Grybos (1969))
mut —mu” =8 =S5yN + 57 (3.43)
Simple considerations yield
ut(ts) = |u™(s)|(sin 8 — v cos )T (3.44)

provided that sinf — vcosf > 0.
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3.4. Approximations

Let I =[0,T]. We shall now propose a sequence {u,} of approximations
of the velocity and the corresponding sequence {gq,} for Problems 1 and 2.

3.4.1. For each positive integer n. let us set h = (h,) = t/n and
tn; = i/h = 4T /n (0 <1 < n). In the case of Problem 1 we introduce two
finite sequences {g, ;} and {u,;} of elements of IR™ as follows

9.0~ % (3.45)
Un g = pl'Oj (uO + /JA_I(qn,O)K(trL,Os 4r0- uO)» V(qn_o)) (346)
Qnivr = Qi + hun,i (3.47)

Un i1 = Pr0j (o + BAT (i K (Lnig1 Qg i), V(@i ) (3.48)
Next, u, is defined by
u, (1) = Uy if 1 e [Zn,iatn,i-{—l) R 0<ir<n-1 (3.49)

and u,(T) = up,. Then ¢, is readily obtained by integration

4,(t) = o + /un(r) dr (3.50)

We observe that

un(tn,z') = Uy, qn(tn,é) =G (3.51)

3.4.2. Before passing to the formulation of the time-discretization algori-
thm for Problem 2, we note that Eq (3.36) requires R:L(t) € Culg(t)). dp -
almost everywhere. If shock happens at an instant t, the measure dR has an
atom at { that equals to (ut(t) —u~(1))d;; moreover ¢ is also an atom of the
positive measure dp. The right-hand side of Eq (3.36) is a cone, hence this
relation is equivalent to

— u* (1) € projz, (1)) 9¥ca (g (ut (1) — u™ (1)) (3.52)

which in turn is equivalent to

wt(1) = proj (0, [u™(1) + Cula(0)] 1 Talg(1))) (3.53)
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To prove Eq (3.53) one may use Fig.2; the proof is then straightforward.

We will now generalize the time-discretization algorithm, for o =1 propo-
sed by Monteiro Marques (1987). Let the initial data gg and ug be such that
go € Y, up € V(qy). Ior every n > | we define a sequence of approximations

h=h, =2""T {3.54)
tni = th=1427"T (1=0,..,2") (3.55)
Uno = Up 920 = 9o (3.56)
Gni = Qo1 + htlniy (L<i<2m (3.57)
Vni = Unio1 + AT G VK (Tni @i 8ai) (1< <2%) (3.58)
Vi il v, €Vig,,)
Uni = PlVne ;) = prOj(07 [0ni + Ca9n,)] N Tol i)
i Jalgn) 20 A vag # V(g,,]
(3.59)
w={ e St 02y
(.
an(t) = g0 + / U7 dr = g+ (1t i . L€ L (3.60)
0

We observe that relation (3.53) has been used to define Eq (3.59)s.

4. Concluding remarks

In the case of nonsmooth constraints, described by functions f,, smooth
motions are rather an exception than a rule, even if friction is neglected.
Coulomb friction law (3.31) incorporates anisotropic friction. In the last case
the coefficient of friction is not the same in different directions (c¢f Zmitrowicz
(1981)). More general friction condition can be used instead of Eq (3.31).
For instance, the subdifferential on the right-hand side of Eq (3.31) may be
replaced by Clarke’s subdifferential, which occurs when (' is not a convex set.
It would also be interesting to incorporate in our schemes the case where the
friction coefficient depends on the velocity.
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Dynamiczne zagadnienia kontaktowe ukiadéw z niegladkimi wiezami

Streszczenie

Celem pracy jest przedstawienie pewnych zastosowari mechaniki ukladéw mate-
rialnych z niegladkimi wiezami jednostronnymi. Rozpatrzono zagadnienia bez tarcia
1 z tarciem dla ukladdw o skoriczonej liczbie stopni swobody. Sformutowano problemy
poczatkowe, przy czym uwzgledniono zderzenia.
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