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Non-linear vibrations of a system with two degrees of freedom with pa-
rametric and self-excited vibrations interaction were investigated in this
paper. The analysis was carried out for the main parametric resonance in
the neighbourhood of the first and second frequencies of free vibrations.
The free vibrations amplitudes and the widths of the synchronization
areas were calculated analytically. Stability of the obtained periodic so-
lutions was examined as well. The analytical results were verified and
supplemented with the analog and computer simulation.

1. Introduction

The class of system vibrations of which are described by differential equa-
tions with parametric and self-excitation terms exists in machine dynamics. A
majority of papers analysing the interaction between self-excited and parame-
tric vibrations concern systems with one degree of freedom. Minorsky (1967)
was one the first who tried to carry out the analysis of self-excited oscillator
vibrations with periodically changing parameters.

Kononenko and Kovalchuk (1971a) examined the influence of parametric
excitation and the friction model applied on the amplitude of one degree of fre-
edom system vibrations in the main parametric resonance area. Kononenko
and Kovalchuk (1971b) considered parametrically self-excited system vibra-
tions under parallel parametric external excitation. Bolotin (1984) examined
the resonance states in parametrically self-excited systems represented by equ-
ations containing Van der Pol-Duffing-Mathieu and Rayleigh-Duffing-Mathieu
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terms, respectively. Tondl (1978) analysed parametrically self-excited system
vibrations. He determined the synchronization areas and vibration ampli-
tudes in these areas. He also suggested method enabling one to investigate
vibrations outside the synchronization area. The analysis was made upon sy-
stems vibrating under ”soft” and “hard” self-excitations, respectively. The
analog simulation verified analytically obtained results with one or two de-
grees of freedom. Yano et al. (1986) examined the parametrically self-excited
system investigating the oscillator with one degree of freedom (Van der Pol-
Mathieu type). Yano (1984), (1987) and (1989) analysed interactions between
self-excited and parametric vibrations taking various types of non-linearity
into account. The amplitude curves were plotted; some system parameters
influence on the vibrations amplitude and synchronization area width was
detected. The stability solutions was examined applying the Ruth-Hurwitz
criterion. Szabelski (1984) and (1991) examined self-excited vibrating sy-
stems represented by equations with Van der Pol’s term, under parametric
Mathieu-type excitation with non-linear symmetric and non-symmetric cha-
racteristics of system elasticity. The stroboscope phase surface method and
analog simulation were applied. Alifov and Frolov (1985) examined the inte-
raction between parametrically self-excited systems with ideal energy sources.
The parametrically self-excited continuous system vibrations were shown by
Dzygadlo (1972). Transverse vibrations of rotating shaft pinned at both ends
in the main resonance area were investigated.

The review presented above proves that investigation into the self-excited-
parametric system vibrations concerned mainly one-degree-of-freedom sy-
stems. The present paper deals with two-degree-of-freedom systems. Since
the Van der Pol model (cf Kauderer (1958)) has no use in mechanics, the
Rayleigh model of self-excited vibration generating has been applied.

2. Mathematical model; differential equations of motion in
quasi-normal coordinates

Let us consider a parametrically self-excited system with two degrees of
freedom manifesting non-linear, symmetric elasticity characteristics. Let us
assume that the Mathieu-type parametric excitation appears and non-linear
damping is represented by the Rayleigh model. The differential equations of
motion in generalized coordinates are as follows
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mi1#1 + (co — €1 cos 2vt)(z1 — 22) + koz1 + k123 = 0

(2.1)

maezgy + (@ — b;':%)fzg — (g —c1cos2wt)(z — 22) =0

where
21,22 — generalized coordinates
ko,co, ko — rigidity coefficients
ky — coeflicient describing the non-linear part of elastic
force.
A sample physical model of the system with two degrees of freedom is
shown in Fig.1.
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Fig. 1. Physical model of a parametrically-self-excited system with two degrees of
freedom

A non-dimensional term 7 can be introduced to Eqgs (2.1) substituting

T =uwt

where w; = /ko/m;.

Introducing into Eqs (2.1) the following notation
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dzl‘l i d2z2
2= 35
dr? dr?

1.1,:1 =
we obtain the non-dimensional differential equations system

14+ M1 = pcos2vr)(zg — z2) + 1 + 723 =0
(2.2)
#g — (a0 — Ba3)iy — AM(1 — pcos2vT)(zy — z3) = 0
Assuming that the coefficients «a, 8, v, p in Eqs (2.2) are small and positive
and a = pa, f = pf, v = py we have

i1+ Mo - 2) + 21 = p[A (21 — 22) cos 207 — 7a] 2.3)

E2 — AM(z1 — 22) = p[(& — Bi3) — AM(z1 ~ 22) cos 2vT]

For u = 0 Eqs (2.3) represent free vibrations of a linear system with two de-
grees of freedom. We transform Egs (2.3) to quasi-normal coordinates 1y, yo,
for witch at p = 0 the system of equation is uncoupled into two independent
differential equations

ji+pin = u{—élpf cos 2vT(e1y2 = £231) — T(¥192 — Yapn)® +

+ bip(h — ?)2)[0_‘ — Be* (5 - 1)2)2]} (2.4)

B2+ pdue = n{-6:p%cos2vr(erys — e211) - Ty — o)’ +
+ Sap(h — ?)2)[07 - B*(§1 — ?)2)2]}

where free vibration frequencies of the linear system are

pho= g1+ A+ MAT T4+ 222 —ab

and
6_1+,\—p% 6_1+,\—p§
=7 M 2T WM
5 6 1
’/’“51—52 ’/’2‘51_52 L TN

e1=P +e 2=+
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Let us assume that the free vibration frequencies ratio p;/p; value is not a na-
tural number, what means that internal resonance does not appear. Relations
between generalized and quasi-normal coordinates are as follows

Y1 = 21+ 6122 Y2 = 71 + 822 (2.5)

3. Periodic vibrations in the main parametric resonance area
with respect to the first and second free vibrations frequencies

In the first approximation we assume the solution to Eqs (2.4) in the first
free vibration frequency neighbourhood in the following form

11 = Bi(1) cosvr + Ba(7)sinvr
(3.1)

y2 =10

where Bj(r) and B,(7) - slowly changing functions of time.
Substituting Eqs (3.1) into Eqs (2.4) and assuming

dBy(1 dBy(T
( dr( )~ 0 ( dr( )~ 0
dB,(7)dBy(1) ~0

dr dr

we obtain the system of approximate differential equations of the first order

dB
b [—a + mo 3B + B?)] (2 - —wcp 3B, By) +
+B [—(v2 — p) — subiples — —W%Rf] + Baovby (—a + —ﬂ<p2v2Rf) =0
2 4 4 (3.2)
dB dB
drl (2 + 51[39’3 UB1B2) + —29’351 [—a - —ﬂS’D X(BS + 3B%)] +

+Bugvty (~a+ S0 RE) + By (07— p) = Lysbunes + S9RE] = 0

where R? = B? 4+ B2.
For the steady state dBy(7)/dr = 0 and dB;(r)/dr = 0 from Eqs (3.2)
we obtain the following system of algebraic, non-linear equations
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1 3 3
B, [‘(Uz -p) - 5#511)%52 - Z’WJ%R%] + Bypvéy (—a + ZﬁcpztﬂRf) =0
(3.3)

3 1 3
Bipuby (—a + 4—ﬁ<p2v2R?) + B, [(v2 - PY) = Subipies + 4—7¢3R¥] =0
From Eqs (3.3) we can write the equation representing the resonance curve

9

3
SR+ 8005+ S R [ — 8) - Sltutap] +

(3.4)
1
+(v2 - pf)2 + 6f (a2<p2v2 -2 u%%p‘l’) =0

Then we determine vibrations amplitude for the main parametric resonance
area lying in the first free vibration frequency neighbourhood

—a[yg3(v? - p}) - 6}ptvtaB] F VA

R?=
' 3(7293 + 81¢5v582)

(3.5)

Putting R; = 0 into Eq (3.4) we find the frequencies corresponding to the
bifurcation points, at which the amplitude-frequency curves separate from the
trivial solution

1 i
vig = 5 [20} - 8’y F \/(5§a2<,o2 — 2p2)2 — api(1- Z&f;ﬂe%)] (3.6)

Upon assuming that §fa*e? 2 0 the condition of trivial solutions bifurcation
into non-trivial ones takes the form

N (3.7)
a Pi€2

For the resonance with respect to the second free vibration frequency the
solution to Eqs (2.4) takes the form

y1 =0
(3.8)

Y2 = B3(T)cosvT + By(T)sinvr

where: B3(7) and B4(7) — slowly changing functions of time.
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Similarly as in the main parametric resonance area relatively to frequency
p1, we get the system of approximate differential equations of the first order

dB3 3 0 2. 22 p2 2 4By 3 3
?9052 [a - Zﬂ('o v:(3Bf + Bs)] + ?v(2+ 552590 UBsB4) +
2 2 1 2 3 3 p2 3 2,.2p2
+B3 [—(v — p2) + 5pbapaen + 2711)1132] + Bypvb, (a = B¢’ Rz) =0

(3.9)

dB 3
3 bz | o+ ~Be™v*(B] + 3B3)] +

3 3 dB4
—2v(2- 5854 vBsBy) +

dr
3 1 3
+Bspvby(a - Zﬂvﬁzsz%) + B, [(v2 - P3) + Fubapien - ZW?R%] =0

where R3 = B2 + B2.
For the stable state we have

1 3 3
B [—-(v2 ~p2)+ 5#‘521’%51 + 271/;?}2%] + Bypvé, (a - Zg(p'lv?R%) =0
(3.10)

3 1 3
Bspvé, (a - 2599211213%) + B4 [(U2 -p3)+ 5#521’351 - Z‘W/’iq'R%] =0

The resonance curve equation has the form

9 3
3 RY*5 + 830508 + SRE [y ud(v? - ) - Shtvtap] +
(3.11)
+(0? = p3)? + 83 (a%6P? - Jutelnd) = 0
and the vibrations amplitude is a follows
I (1930 - 1) - 83p*vtap] ¥ VA -
- 3708 + 30 (312
where
2
A = [-193(? - ph) - Sletviap] +

1
= (0P + B [0 - 1) - 8 (e - el

Substituting for Ry = 0 into Eq (3.11) we find the bifurcation points at which
the trivial solutions are changed into non-trivial ones

1 1
v = 3 (263~ 83020 % | [(FFo2e? - 28)2 — apd (1 - Sopuret)]  (3.19)

10 — Mechanika Teoretyczna
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and the bifurcation existence condition takes the form

Eso ® (3.14)
a P2&1

4. Periodic vibration stability

The periodic vibration stability examination was carried out applying Eqs
(3.2) to the case of resonance with respect to the first free vibration frequency
and Eqs (3.9) to the case of resonance relative to the second free vibration
frequency. Eqs (3.2) and (3.9) can be rewritten as

dB; dB;
dr Su+ d—TJflz = fi3
(4.1)
dB; dB;
I Jut d—Tszz = fa3
where 7 =1, j =2 for Eqs (3.2) and ¢ =3, j = 4 for Egs (3.9).
Transforming Eqs (4.1) to the form
dB; _ fisfar — fi2fos
S0 o AsJn T ie)e g, B;)
dr - rY
funfaa = fizfan (4.2)
dB;  fi1f3 ~ fizfn
= = F5(B;, B;
dr Sunfa2 = fafu 2 )
and introducing disturbances into Eqs (4.2)
Bi(r) = Bi(r) + 8,
(4.3)

By(r) = Bj(r) + b,

where B;(r) and B;(r) - solutions corresponding to the disturbed initial
conditions. Substituting Eqs (4.3) into Egs (3.2) and (3.9), non-disturbed
equations from the disturbed ones and then neglecting small terms of higher
order, we find linear differential equations in variations

dég. oF JF
d—f' = (331)063‘ + (a_Bé)o&Bi

(4.4)
dég. OF: oF.
s = (00%) g+ (202) g,
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where: (g%)o’ (%)0, (g—g?;)o, (%?)0 — partial derivatives at the equili-

brium point (index 0). The characteristic equation (4.4) has the following

roots
Ga = 5 (M % /1 - ai;) (4.5)

where

0F OF:
iy = (331)0 + (a_Bj)o

oF 0 oF oF:
= (550 (55)0 ~ (550 (580)s

it = 1, j = 2 for the resonance relatively to the frequency p; and {=3,5 =14
for the resonance relatively to the frequency ps.
The stability approximate solutions depends on the roots of Eqs (4.4).

5. Analytical investigations; analog and computer simulation
results

Some sample calculations for the system with two degrees of freedom vi-
brations were made with the following data (cf Tondl (1978); Szabelski (1984);

Yano (1987))

a = 0.01 B =0.05 y=0.1
p=02 M =05 A=4

Transformation from the generalized to quasi-normal coordinates demands,
having in mind the relationships given in Section 2, evaluation of free vibra-
tions frequencies of a linear system pj, p2 and the coefficients 61, 82, ¥y, ¥2,

€1, €2, .
These values are
1= 0.546 P2 = 2.589 51 = 2.351
b, = —0.851 P =0.734 Py = —0.266
€1 = 1.047 g2 = 0.047 o = 0.312

The computer and analog simulations were performed using differential
equations of motion in generalized coordinates Eqs (2.2). Then, on the ground
of Egs (2.5), transformation into quasi-normal coordinates was caried out.
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Fig. 2. Vibration amplitudes with respect to the frequency p;, main parametric
resonance, RKG method, BH-analytical investigation
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Fig. 3. Vibration amplitudes with respect to the frequency p;, analog simulation

Eqs (2.2) was solved numerically using the Runge-Kutta-Gill method of fourth
order (RKG). The analog simulation was on the MEDA 4500 analog machine.

For the accepted data the amplitude charts were plotted. Fig.2 presents
the resonance curve for the free vibrations first frequency. Singular points
correspond to stable vibrations amplitudes calculated by means of the RKG
method, while the points linked by solid lines represent the minimal and maxi-
mal vibration amplitudes respectively in the case of almost periodic vibrations
outside the resonance area. A solid line on the chart represents the analytical
solution as well. Since the condition (3.7) is not satisfied the resonance curve
does not intersect the v axis. Fig.3 presents the analog simulation results
for the vibration amplitude registered under slow changes of parametric exci-
tation frequency wv. ¥; stands for the amplitudes envelope in quasi-normal
coordinates. Arrows point out the direction of parameter v changes. Fig.2
and Fig.3 show that vibrations with stable amplitude occur in a narrow fre-
quency range from v = 0.55 to v = 0.57 in the main parametric resonance
area lying in the p, frequency neighbourhood. In this frequency range the



THE NON-LINEAR VIBRATIONS OF... 653

Ry}
0] 2] E [4]
4.0F
i /07
3.5 4’
7/
7/
3.0} |/
2.5t
2.0 4 --4 unstable focus
I’ -o——o stable focus
1.5+ I" ’ »—» stable node
’ 4.7 +—» saddle point
ol S I
0.53 0.54 0.55 0.56 0.57 0.58 »

Fig. 4. Vibration amplitudes for the main parametric resonance with respect to the
frequency p; with the stability type marked out

amplitude is represented as one normal coordinate y; only. y; coordinate is
very small. The vibration amplitudes and synchronization area width deter-
mined analytically agree with analog and computer simulation results. The
amplitude error determined analytically in the first approximation, comparing
to numerical solutions amounts about 5%.

The resonance curve obtained analytically with the stability type marked
out is presented in Fig.4. According to the characteristic equation roots, Eq
(4.5), different properties of equilibrium states were obtained. In Fig.4, four
characteristic values of parameter v are marked: v, = 0.545, vo = 0.5485,
vz = 0.56, v4 = 0.57. For these v values, trajectories on the Hayashi’s surface
B, — B; (Fig.5), time courses in generalized coordinates z2,z; and quasi-
normal ¥;,y2 coordinates (Fig.6 and Fig.7), respectively, were plotted. For
values v; and w4 the system is outside the main parametric resonance area.
For these cases we get stable boundary cycles, which comply with dominant
self-excited vibrations, Fig.5a,d for value vz two unstable equilibrium states
appear unstable focus and saddle, which appear symmetrically in pairs in
Fig.5b and a boundary stable cycle. Value w3 represents the parametric
vibrations with two kinds of stability: stable focus and unstable saddle. This is
the area where the selfexcited vibrations are pulled in by dominant parametric
vibrations, boundary cycle disappears in the Fig.5c.

The influence of the parameter u on the vibration amplitudes and reso-
nance area width was examined in the example. The dependence u(R,,v)
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(a) L =0.545 (b) ©=0.5485

(d) v=0.57
(c) v=0.56

Fig. 5. Integral curves on Hayashi’s surface; main parametric resonance with respect
to frequency p;

with the contour lines for u = 0.1, x = 0.2, u = 0.3, x = 0.4 marked out was
presented in Fig.8. Decrease in the value of parameter u results in reduction
of vibrations amplitudes in the main parametric resonance area relative to the
frequency p; and contraction in this area.

In the case of resonance with respect to the second frequency similar cal-
culations were made. Fig.9 presents vibration amplitudes calculated using the
RKG method. Both the vibration amplitudes and the synchronization area
are significantly bigger than in the case of resonance with respect to the frequ-
ency p;. Differences between analytical calculations and numerical simulation
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Fig. 6. Vibration time courses in generalized and quasi-normal coordinates;
resonance with respect to the frequency p;
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Fig. 7. Vibration time courses in generalized and quasi-normal coordinates;
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Fig. 8. u(Ry,v) chart for the resonance with respect to the frequency py with the
contour lines for g = 0.1, 0.2, 0.3, 0.4
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Fig. 9. Vibration amplitudes with respect to the frequency p,; the main parametric
resonance; BH-analytical research
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Fig. 10. Vibration amplitudes with respect to the frequency ps; analog simulation
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Fig. 11. Vibration amplitudes for the main parametric resonance with respect to
the frequency p2 with marked stability type
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results are greater than in the case of resonance with respect to the frequency
p1 (about 15%). Both methods give similar results but only in a narrow area,
close to the frequency p, = 2.589. Results discrepancy grows as a distance
from the frequency p; increases. Analytical method decreases the synchroni-
zation area range width to v = 2.78. These differences have a quantitative,
not qualitative character.

The analog simulation results are presented in the Fig.10. Increasing v
(from v = 2) we observe almost periodical vibrations with the modulated
amplitude. The amplitude modulation grows up to v = 2.48, when the
vibrations synchronization starts; i.e., self-excited vibrations are pulled in by
the parametric vibrations. For v = 2.9 the amplitude break appears and
enters the almost periodic vibrations area. The vibration amplitude reaches
the value over 6, synchronization area is contained in v values from 2.48
to 2.9.

The analytical resonance curve with the stability kind marked out also four
characteristic values of parameter v are shown in Fig.11. For these values v
Hayashi’s surface B3 — B4 (Fig.12) and time courses (Fig.13 and Fig.14) are
presented, as well.

For the resonance relative to the frequency p,, the condition (3.14) is
fulfilled, that is why the resonance curve intersects the v axis. The bifurca-
tion points at which non-trivial solution became the trivial ones appear for
v = 2.481, vy = 2.712. For values v; and wv4 we get the stable boundary
cycles adequate to the self-excited vibrations occuring outside the synchroni-
zation area (Fig.12a,d). Values v, and w3 are inside the synchronization area.
For values v, we get one equilibrium state in the stable focus (Fig.12b). For
values w3 on the Bj; — By surface we get symmetrically paired stable knot,
unstable saddle and stable boundary cycle (Fig.12c).

The p(R,,v) surface is shown in Fig.15. The contour lines analysis pro-
ves that, similar to the p; frequency resonance, with p parameter incre-
ment the synchronization area width and vibration amplitudes grow up. For
p* = 0.00231 the resonance curve has intersects the v axis only once, while
for 4 < p* intersects point do not exist.

6. Conclusions

For the system with two degrees of freedom the main parametric reso-
nance appears in quasi-normal coordinates in similar way as for the system
with one degree of freedom. In the neighbourhood of p; frequency in the
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(a) L =245 (b) v =255

(c) v=275 (d) v =2.80

Fig. 12. Integral curves on Hayashi’s surface; the main parametric resonance with
respect to the p, frequency
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respect to the frequency po



662 J.WARMINSKI, K.SZABELSKI

81 ¥, 8r x,
4: 4 l I i
(AR LA AR AR

;!'|'v'|‘|'|‘l'; A

-a} -4

8l -8

8r y, 8:x2

4: h 4

1

° | l i

Al

-8L 8l

(b) v =2.80

o o il
oo N o'sEvAwAVAVAVAY*i‘YAV i

-1.5F
-2.5L

2.5T1 ¥,
1.5
0.5- ﬁ

-0.5 V
.15
.25

Fig. 14. Time courses in generalized and quasi-normal coordinates; resonance with
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l_or.,u....._..... )

Fig. 15. Chart of p(R;,v) for the p; resonance with marked lines for
p=0.1,02 03,04

v = 0.55 + 0.57 area the vibrations synchronization phenomenon appe-
ars. In these frequencies range occur only frequency vibrations (with the v
frequency), which are reduced to one marmal coordinate y;. The resonance
curve lies above v axis and has a closed form. Outside the synchronization
area the system motion is characterized by the almost periodic vibrations.
There are dominant self-excited vibrations in this area, represented by stable
boundary cycles in Hayashi’s surface. In the neighbourhood of free vibrations
second frequency p,, the vibrations synchronization appears in significantly
wider area. In the frequency range v = 2.47+ 2.80 the self-excited vibrations
are pulled in by the parametric vibrations. The system motion reveals in the
form of quasi-normal coordinate y,. Outside the synchronization area almost
periodical vibrations appear, represented by the boundary cycles on the phase
surface. The phase curve obtained is characterized by the vibration ampli-
tudes significantly greater than in case of the first frequency resonance. The
parameter p influence on the vibration amplitudes and synchronization area
width has been detected, as well (Fig.8 and Fig.15). In both resonance states
the parameter p growth results in the vibrations amplitude growth and the
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synchronization area extension. The analytical results are of good qualitative
agreement with analog and computer simulation results.

However, there apeared quantitative differences. In the p; frequency nei-
ghbourhood the vibrations amplitudes calculated analytically on the ground of
first approximation are about 5% smaller than those determined numerically,
in the po frequency neighbourhood this difference amounts about 15%. The
synchronization area width calculated analytically is narrowed in comparison
to analog and computer results.

7. References

. ALirov A.A., FroLov K.V, 1985, Vzaimodeisivie vneshnei garmonicheskoi

sily na aviokolebatelnuyu sisiemu s islochnikami energii, Nauka, Glavnaya Re-
dakcya Fiziko-Matiematicheskoi Literatury, Moskva

BoLoTIN V.V. 1984, Parametricheskie rezonansy v avtokolebatelnykh siste-
makh, Mekhanika Tverdogo Tela, 5, 3-10

DzYGADLO Z., 1972, Nieautonomiczne drgania gietne wirujacego waltu, Cz.II:
Parametryczne 1 parametryczno-samowzbudne drgania wymuszone, Biulelyn
WAT, 12, Warszawa

KAUDERER H., 1958, Nichtlineare Mechanik, Springer-Verlag, Berlin, Gottin-
gen, Heidelberg

KoNONENKO V.QO., KovaLcHUK P.S.| 1971a, Vozdeistvie parametricheskogo
vozbuzhdeniya na avtokolebatelnuju sistemu, Prikladnaya Mekhanika, VII, 6,
3-10

KonoNENKO V.O., KovaLcHUK P.S.) 1971b, Vozdeistvie vneshnei garmoni-
cheskoi sily na avtokolebatelnuyu sistemu s izmenyayushchimsa parametrom,

Prikladnaya Mekhanika, VII, 10, 3-12

7. MINORSKY N., 1967, Drgania nielintowe, PWN, Warszawa

8. SzABELSKI K., 1984, Drgania ukladu samowzbudnego z wymuszeniem parame-

10.

11.

12.

tryczaym i nieliniowa sprezystoscia, Mechanika Teoretyczna i Stosowana, 22,
1/2,171-183

. SzaBELSKI K., 1991, The Vibrations of Self-Excited System with Parame-

tric Excitation and Non-Symmetric Elasticity Characteristic, Mechanika Teo-
relyczna 1 Slosowana, 29, 1, 57-81

SZABELSKI K., WARMINSKI J., 1995, Parametric Self-Excited Non-Linear Sy-
stem Vibrations Analysis with Inertial Excitation, Int. J. Non-Linear Mecha-
nics, 30, 2, 179-189

TonDL A., 1978, On the Interaction between Self-Ezciled and Paramelric Vi-
brations, National Research Institute for Machine Design, Monographs and
Memoranda, 25, Prague

YaNo S., 1984, Resonances of 2 and 2/3 Order in a Parametrically Excited
System Subjected to Self-Excitation, Strojnicky Casopts, 35, 4, 419-435



THE NON-LINEAR VIBRATIONS OF... 665

13. YaNo S., 1987, Analitic Researeh on Dynamic Phenomena of Parametrically
and Self-Exited Mechanical Systems, Ingenieur-Archiv, 57, 51-60

14. YaNo S., 1989, Considerations on Self-and Parametrically Excited Vibrational
Systems, Ingenieur-Archiv, 59, 285-295

15. YANO S., KOoTERA T., HiIRaAMATSU T., 1986, Periodic Solutions and the Sta-
bility in a Non-Linear Parametric Excitation System, Bulletin of JSME, 29,
256, 3484-3490

Drgania nieliniowego ukladu parametryczno-samowzbudnego o dwéch
stopniach swobody

Streszczenie

W pracy zbadano drgania nieliniowego ukladu o dwéch stopniach swobody, w kté-
rym wystepuje oddzialywanie drgan parametrycznych i samowzbudnych. Analize
przeprowadzono dla gléwnego rezonansu parametrycznego w otoczeniu pierwszej
1 drugiej czestosci drgani wlasnych. Wyznaczono analitycznie amplitudy drgan ukladu
oraz szerokosci obszaréw synchronizacji. Zbadano statecznosé otrzymanych rozwiazan
okresowych. Badania analityczne zweryfikowano i uzupelniono wynikami symulacji
cyfrowej i modelowania analogowego.
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