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In this paper the Euler equations applied to the motion of bodies pla-
ced in the frames of reference subjected to acceleration are presented.
Positions of bodies are defined with respect to these frames by n gene-
ralized coordinates. Therefore, it is possible to establish an equivalence
between the generalized Euler equations, the generalized Kane’s equ-
ations and the generalized Lagrange’s equations valid for accelerated
frame of reference. General formulae for the generalized inertial forces
together with the way of their application to general cases are given.
Application to a special case of a rigid body is added. This problem
was considered by Lure [2] in a completely different way; however the
physical interpretation given in this work allows us to formulate gene-
ral and complete expressions for inertial and gyroscopic for ces and to
establish the differences between them.

1. Introduction

The generalized Euler equations, representing the motion of a body or a
system of bodies, relative the frame of reference S7, which it is also subjec-
ted to an arbitrary movement defined by the velocity of it origin and by the
rotation vector wjo with respect to the inertial frame of reference, have alre-
ady been presented in the previous paper (cf Passos Morgado (1993)). These
equations are

(d(zr)51 = F- MR- [M“’lo X (%)Sl o X Pr] ' (1.1)

dwio
- (7)51 X Mr, —wyg X (wlo X MTC)
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)51 = My— Mr.x Ry — [(%)Slwm—}-bmwmxﬂr]—}-

dH,
( @

K3 (1.2)

dwm
= o dt
Let us assume the motion of a rigid body in Sj. In the most general case,
its motion depends on n generalized coordinates and time. Therefore, the
linear momentum will be defined by P, = P.(t,q1,...,4n, 1, ..., ¢n), the kinetic
moment by H, = H,(t,q1,...,qn,q1,---,¢x ), the vector of mass center positions
in S$1 by r.=r.(t,q1,...,¢x), and the inertial tensor with respect to the origin
of the system Sy by Io = Io(t,q1,-.., ¢n) origin.
The rotation vector w,g is independent of the generalized coordinates and
so the velocity of the 57 system origin.
The meaning of each term in the above expressions has already been care-
fully explained by Passos Morgado (1993b).

) — wio X lowio
5

2. Equivalence of generalized Euler, Kane’s and Lagrange’s
equations

However, what we believe deserves further explanation is that it is po-
ssible to pass from Egs (1.1) and (1.2) to the generalized Kane’s equations
for accelerated systems (cf Passos Morgado (1993a)) and to the generalized
Lagrange’s equations directly, enabling the Author to show their equivalency.
Let us suppose a body being a member of the holonomic system §; with n
degrees of freedom. It is possible to define an instantaneous rotation vector
representing the body motion as a function of the = generalized coordinates
and the n generalized velocities (cf Kane (1968))

Wwo1 = wa(jl + ... + quq.n + Wi (21)

where the vectors w,, and w,; are functions of generalized coordinates and
time.

Let r be the position vector of a point P of the body in the coordinate
system 57 and let rqo be the position vector of the reference frame 57 origin
attached to the body.

The velocity of point P, as seen by an observer belonging to S is

wp= (), = (%)52 Fwp Xt (2.2)
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where, by differentiation by parts with respect ¢, we obtain

ad sdr _ d rdr 8w21
5i@)s = @s * a0 T (2:3)
or, having in mind that r = ry + ¢
dT drol
(@)s = Ca)s, (2:4)
we have 9 4 3 d 5
r _ 9 rary w21
a_q(ﬁ)s, - aq( di )52 + dq xr (2.5)

To pass directly from Eqs (1.1) and (1.2) to the generalized Kane’s equations
let us multiply Eq (1.1) by 36q (d—(’;ﬂi)s and multiply Eq (1.2) by 3—‘5’—“ given
2

by Eq (2.5).
Therefore we obtain

(200, Dt = p Dty _wh (%)

$10q oq\ dt aq\ dt
—[Mw1o x (‘fu) +wio X P ](;9 (d;;”) + (2.6)
_(d‘;tlo)sl X Mfca—a(i(%) —wig X (w10 X M‘rc)a (dTO')52
for the first one, and
dH,.\ 0w ow ow
(45) i R .
- [(%) wio+wio X H ] 8w21 — Io(d(:;—:o) s, 8:;);1 —wjgo X Ioahoa::;q21

for the second equation.
We define, the generalized force corresponding to the coordinates ¢, by

0 rdry Owqy
F—{— = .
aq‘( dt )52 Mo=5q =€ 28)
the generalized inertial force of translation by
. 0 dro, 8w21 _ . 8rc
Mhog (= )52 + Mr, x Ry =2 = Mhopt (2.9)
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the generalized Coriolis inertial force by

[Mwlox(%)sl-i- 10XP]3 (20—1)52-{-

(2.10)
dl (9w21 B d /0H, OH,
+[(—E) w10+w10XH] —UIO[E( 34) - 94
the generalized inertial force of rotation by
dwlo 3 d’l‘ol . (9(4)21 . (9H.,.
[( o7 )Sl M CJ 5‘;(7) Iowlo F) = Wi aq (2.11)
the generalized centrifugal inertial force by
drg 34.: 1 (91
wio X (w10 X MTc) ( df )S + wio X Towo a(:l = '2_“)108_(10“)10 (2.12)

Adding Eqgs (2.6) and (2.7) and substituting for the values of the generalized
inertial forces the formulae given above we finally obtained

(&) i(d;—;')s2+(dﬂr) Oy :Q—M[(dﬂ)sﬁwwxvo]""w

5 0 dt /s 0 dt 0
a 1 (9.13)
1 8l 3H, OH, OH,
+§‘~'103—qw10 —wio—F— 94 10[ ( 94 ) - 3_q]

The equations given above are fully compatible with the generalized Euler
equations for accelerated systems. It is worthy to note that Eq (2.13) is written
in generalized coordinates and so it must be equivalent to both, the generalized
Kane’s equations and to the generalized Lagrange’s equations.

To prove the aforementioned thesis, let uss note that P, and H, are
defined by

_ dTOI ’
P, = M(W)Sl +wy X M7, (2.14)
dry
H, =ry x P, + Mr' x (%’—)S + Tywy (2.15)
1
and, since
d’l‘ol . dTOI
we obtain the relationship
0 dTOI 0 d’l‘o/ 34.)21
——= = —|— X Tor 2.17
aq(dt )sl 3q(dt) g XM (2.17)
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Eq (2.17) can be substituted into Eq (2.13) giving
dP, d (dry 0 dH,\ 0O
Ca)s 5 Ca)s 2 <ol + (@) s =

9q dq dt /s. 94

Q- M[(dvo) l+“,10><vo] ‘?9:;+ (2.18)
a1 OH , 0H, OH,
+§w105qgw1 — Wi a4 lo[dt( )Sl 9q ]

By simplifying this mathematical expression and making the substitution
av,, a ar.; B
- = 5= =), we finally obtain

q 8q( t )s, y

d Ovg: d / Owz

[Ef(wﬂ X Mr! ) + Maol] a—q + [E(Iolwgl)sl + MTC X 001] aq =
(2.19)

oH, 1 dl d 0H, OH,

=Q - MRO - W05 GF + 5‘0108—(1“10 - 10[5( GF ) - 9 ]

Eq (2.19) are prec1se1y the Kane’s equations for accelerated systems, which
proves the equivalency between Euler equations for mechanical systems and
the generalized Kane’s equations. The equivalency between the generalized
Euler equations and the generalized Lagrange’s equations is now straightfor-
ward (cf Passos Morgado (1993a)). To complete the discussion we present the
general formulae for the forces of inertia and the moments of the refered forces
in the Euler equations and the formulae for the generalized forces employed
in the Lagrange’s and Kane’s equations.
To this end we must determined, in a general case, the values of

oH, oH, al
dq 94 dq
Noting that
dry
H, = MT’C X (T;)—>Sl + ror X ((4)21 X MT’C) + Igwoy (220)

we have immediately

e e (), o (i) s 252 aan

0q g\ dt 04 0q
and
(?H,. _ 8r’c dTol ’ 0 d’l‘ol d’l‘ol ’
aq —MaqX(—(F) +Mcxa_'(dt )51 WX(“JNXMTC)_*'
(2.22)
3w21 ’ Br’c 8101 8w21
+ry X ( aq Tc) + 1o X ((4)21 X Ma—q) + — aq wo1 + Ig—— aq
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The partial derivative of the moment of inertia about the point 0, can be
related to the moment of inertia about point 0’, attached to the body and
origin of the frame of reference S2, by the following equation

Towyo = Mrolx(wloxr0,)+r0,x(wloxMr'c)—}-Mr’cx(wloer:)—}-Iowlo (2.23)

for the generalized centrifugal inertial forces, we have

1 a] Ory dry
Ewloa_qowlo = M(wm X —a—;)—) (wm X rol) + M(wm X a—;-) (wm X r'c) +
(2.24)
or’, 1 8ly
+M(w10 X a—q)(wlo X ror) + Ewloa_;)wlo

of the vectors wq, = wy, (1, ..., gat) With respect to time have to be calculated.
If ¢is any vector fixed to the body, then

(%)Sl = (%)Sz tw Xe=wz X¢ (2.25)

On the other hand, when ¢ = ¢(q1,...,¢nt) is the vector attached to the body
dependent on the generalized coordinates and on time, we have

Jde

5 (2.26)

(E) ——_ai'_}__ai'_}_ +ﬁ'+
dt S‘ - aql ql aq2 Q2 eee aqn q'n.

Upon substitution of Eq (2.1) into (2.25) we have

de . . .
(E)S, = (Wq, X €)1 + (wg, X €)G2+ ... + (Wq, X €)gn + Wy X € (2.27)
Now by comparing Eqgs (2.26) and (2.27) we can conclude that

Je Jdc
a—qr—wq,xc E—ngc (228)

The vectors w,, can be treated as operators which produce the partial deri-
vatives when multiplied vectorially by a vector fixed to the body.

Noting 5 4 i 8
[ C
a—q,(gz)s, = [a(a—q,)]sl (2.29)

we can conclude, basing on the Egs (2.25) and (2.28), that

8‘2 (wa1 X €) = [%(wq, x el (2.30)
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and

Owo oec (dwqr

dc
94, X €+ wyy X Er 7 )51 X €+ wy, X (E)Sl (2.31)

Having in mind Eqs (2.25) and (2.28) we can rewrite Eq (2.31) as follows

wy dw,,
9, X €+ woy X (wy, X €) = ( dtq )51 X €+ wy, X (wg1 X €) (2.32)
and introducing
Wy, X (W21 X €) —wyy X (wy, X €) = ¢ X (W21 X wy,) (2.33)

we conclude that

(d(a)qr)s1 _ Oway

) = aq.,. 4+ wy X w,, (234)

which allows us to determine the derivative of vectors w, with respect to
time. Also it is worthy to note the relation

8w21 _ awa .
g, ~ 0g 1Y

Ow,, . Ow,,, Ow,

94, @2+ ...+ 5 ¢+ a—qr

Be (2.35)

Let us now suppose that the origin of the system S, coincides with the origin
of system S;. In this case ro = 0, (since 0’ and 0 coincide), and the Eqs
(2.21) and (2.22) are reduced to the forms

3H, _ 8w21

94 = Iy 94 (2.36)
3H, _ (9101 8w21

30 = B¢ T, (2.37)

Let us now to find simpler formulae for the generalized inertial forces. For the
generalized rotational inertial force we have

3H,_‘b I 8w21
aq — Wiodo aq

(;110 = u:}lolorwq = quOI‘I..’IO (238)

For the generalized centrifugal inertial force we get

(9(021

X Igr — Iy X
0 0 aq

1 (910 1 (910/ 1 (9(021
FWi0— W10 = sWio— W10 = —wlo( aq

2 0q 2 0q 2 )wlo (2.39)
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and as the dyad is a symmetrical one, we can write
1 3l 1 (aw21

5&’105‘1—&’10 = 5‘010 Bq

- o ) -t (32 )] -

X Io')wlo ;WIO(IO' X 74 )wlo =

%[(‘010 X a(;’—q.m)fwwm + (wlo X a—g’;—l)fo'wm] =

Ow, Oow
(wlo X -a—ql-)fo' 10 = a—;l(wlo X Tgiwio)

For the Coriolis inertial force of we have

d /0H, oH, ) ol a
0[5 (525, = o) = wnol 5 (52, = (G5wm + 1o 2] =
Oz 6@;1 + wa X 6:;;1) +

= Wwyo [(w21 X Iy — Iy X w21) + IO’(

Oy 0 0
—( (9((1) wa + Iy :;qﬂ)] = wlo[(“’zl X Io — Io X woy) w(jl + (2.41)
Oway 0wy Ow2y _
+1y (&)21 X aq ) (a—q, X Iy — Iy X aq )(021] =
0wy Owyy 0wy,
= Wwjo [((021 X IOI) aq - (Iol X w21) aq - ( aq X Iol)wgl]

since
Oway 0wy _ 0wy
(IOI aq )w21 = IOI( aq X (A)21) = =1y (wgl X aq )
To simplify Eqgs (2.41) let us introduce the relation
Bw 6(.:21
(w21 X IOI) aq —(021) X (IO’ aq )

and the left-side product by wjg yields

(9(.:21 (’)wgl
- I 7 = I 12 =
“’10(“’21 x Io) 34 Wiy X ( 0 3§ )

(2.42)

ow ow
(ww X w21).[0’) 21 = a;l IO,(wlo X wgl)

Introducing now the relation

(9w21 _

(IOI X W21)
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and the left-side product by w;o yields

ow ow
—wio(fy X we1) it = —wioly (0221 X 2]) =
9q 9q
(2.43)
_ 0(4)21 _ 6(4)21 (9(4)21
= —(4.)10[0/( aq X w21) = ( aq X w21>10, X w1 = aq Wy X 10:(4.)10
Another relation to be considered is the following one
0wy Owa
_( 8(1 X Iol)w2] = - 6(1 (Iolwgl)
in wich, again, multiplying it by w;o, we have
Owqyy Owa1
—wlo( aq X IOI)‘.A)21 = —Wyo 0(1 X (IOIw21) =
(2.44)
ow w
= —wi0—t X Tywa = —— w10 X Tgway
9¢ 0q

Substitution Eqgs (2.42) + (2.44) into Eq (2.41), we have for the generalized
Coriolis inertial forces

OH, OH,
oul (37~ 30 ) =

0wy
94
which give us the Coriolis generalized force of inertia for the proposed case.
We must note that the quantity which appears in the first term of the
second member of Eq (2.45), being related with the Resal acceleration, is not
a gyroscopic force (cf Skalmierski (1979)) but in the reality is a term of the
Coriolis generalized force.

(2.45)

Ow
Io'(wlo X wzl) + 0q21 (w21 X Iorwio + wio X Iwwzl)

3. Conclusions

In this paper we have generalized the Euler equations and demonstrated
their equivalence to the generalized Kane’s and Lagrange’s equations for ac-
celerated systems. Also we presented the general formulae for the generalized
inertial forces and the way of deriving them in the general case. In another
paper it will be presented the distinction between inertia forces and gyroscopic
ones, and it will be shown that, in the most general case, there are four, and
only four, different types of gyroscopic forces.
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Uogdlnione réwnania Eulera

Streszczenie

W pracy podano réwnania Eulera opisujace ruch ciala rozpatrywany wzgledem ru-
chomego ukladu odniesienia. Polozenie cial okresla sig przy pomocy n wspélrzednych
uogdlnionych i dlatego mozliwe jest stwierdzenie réwnowaznosci uogdlnionych réwnar
odpowiednio Eulera, Kane’a 1 Lagrange’a, ktére réwniez okreslone sa wzgledem ru-
chomego ukladu odniesienia. Podano ogélne wzory na uogdlnione sily bezwladnosci
oraz sposéb ich stosowania. Jako przyklad podano szczegdlny przypadek ciala sztyw-
nego. Lure [2] rozpatrywal ten problem w zupelnie inny sposob, Jjednak mterpretaqa
fizyczna podana w pracy pozwala na sformulowanie ogolnych i zupelnych wzoréw na
sily bezwladnosct 1 sily giroskopowe oraz na okreslenie réznic miedzy nimi.
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