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In this paper stochastic contact eflects in the field of structural computa-
tional mechanics are introduced. The main ideas of this formulation are:
1. Approximation of unknown stochastic geometry of the contact surface
by a sequence of assumed figures; volume and frequency of occurring on
considered surface are Gaussian random variables with specified statistics
2. Replacing random contact region including all these figures with sto-
chastically averaged material occupying deterministic contact region

3. Numerical solution to the stochastic static problem formulated in this
way using the Stochastic Finite Element Method (SI'EM).

Proposed model is intended for analysis of interface discontinuities in
periodic fibre composites with random elastic properties, however there
are many more complicated problems in which the presented method

can be employed with a %ood result. In numerical analysis a quarter of
square periodicity cell with round, centrally placed fibre 1s analysed using

POLSAP and ABAQUS systens.

1. Introduction

Contemporary methods of solving contact ellects based on numerical ana-
lysis (cf Schrefler and Zavarise (1993); Wriggers and Zavarise (1993); Zavarise
et al. (1992a,b)) did not allow, until now, considering directly the randomness
of contact zone geometry. Statistical parameters of this zone discontinuity
were replaced with deterministic constants used for defining new, non-linear
constitutive relations within the contact region. Definitely, in spite of ran-
dom geometry of contact effect, obtained displacement and stress field was of

'The paper is awarded the first prize in the Polish Society of Theoretical and Applied
Mechanics Competition for the Theoretical Papers in the field of mechanics organized by the
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deterministic character. Such a formulation of the problem was caused ma-
inly by the lack of proper stochastic numerical tools. In the present paper a
new approach will be formulated; it consists on mathematical and numerical
considering of stochastic character of contact between two regions. It will be
based on replacing random geometry of boundary with linear constitutive re-
lation of probabilistic character (cf Kamiiski (1993)), defined in the contact
region with deterministic geometry. Obtained stochastic static formulation
equivalent to the primary contact effect will be analysed numerically using
the Stochastic Finite Element Method (SFEM) (cf Kaminski (1994); Klei-
ber and Hien (1992)). Alternative method of considering random geometry
with application to composite materials is e.g. Delaunay networks method (cf

Ostoja-Starzewski and Wang (1980)).

Such a mathematical-numerical model will be applied to static analysis
of periodic fibre composites. Until now, in mechanics of these media, two
geometric scales were distinguished: macro-scale connected with the whole
composite structure and micro-scale connected with the periodicity cell (cf
Bensoussan et al. (1978); Sanchez-Palencia (1980)). In this way, in analysis
of fibre composites, all random local physical phenomena and dislocations of
periodic geometry connected with the {ibre-matrix boundary have always been
omitted. That is why it seems useful to introduce an additional scale connec-
ted with the surface of contact between composite components (Fig.1), which
would allow to consider random discontinuities occurring on the fibre-matrix
boundary, possible on all its circumference. In this case we will obtain an equ-
ivalent stochastic constitutive relation by separating in the matrix, along all
fibre circumference, interface zone including all discontinuities which will be
then homogenized, i.e. replaced with eflfective material (cf Lené (1984); Mil-
ton and Kohn (1988); Suquet (1982)) having elastic properties weaker than
the matrix does. To compute the efllective properties we use the probabi-
lity density function, analogically as Arminjon (1991) and Sobczyk (1982).
Alternative methods of discontinuities modelling in periodic fibre composites
with deterministic elastic properties (in their homogenization problems) ba-
sed on variational inequalities may be found in the work of Gajl (1991) and
Telega (1988).

It should be underlined that the presented model has been formulated in
such a way that all data necessary for numerical analysis could be obtained
in an experimental way, i.e. by laboratory strength tests and analysis of fibre
composite sections in planes perpendicular to the fibres. In the future it would
enable practical verification of stochastic formulation of {fibre-matrix contact
effects in fibre composites.
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micro scale

micro-contacl

matrix

Fig. 1. Various scales in periodic fibre composite structures

2. Problem formulation

As it is known, the considered fibre composite consists of reinforcement
made of a stronger material and of filling (matrix) (Christensen (1979)). As
it is proved by various laboratory tests the surface of contact zone between
two phases is characterized by discontinuities; their magnitude and position in
space can be, for technological reasons, treated as random functions and they
are concentrated usually around the filling material. To make a static analysis
of such a structure it is necessary to approximate the character of curve (or
surface), where the contact between fibre and matrix occurs. Let us assume
that it is a band (Fig.1) geometrically located in matrix region, in which there
are semicircles (or hemispheres in three-dimensional problem) with their dia-
meters on the boundary line ("bubbles”). Below we will assume that sizes and
frequencies of these "bubbles” occurring on the matrix boundary are Gaus-
sian distributions, expected values and variances of which are known. This
assumption is caused by frequent usage of this distribution in physical scien-
ces and for mathematical and numerical reasons. Because of the fact that the
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assumed distribution is a limit distribution for many classes of other random
distributions this assumption does not radically restrict the presented model.
We will also assume that we know the first two moments ol Young modulus of
composite component material. Finally we will assume that random variables
characterizing the geometry of considered boundary and random distributions
of elasticity Young moduli are mutually stochastically independent. Tor so
determined stochastic problem of elasticity theory we will look for the first
two moments of a displacement function and for expected values of indivi-
dual components of the stress state in a periodicity cell quarter subjected to
uniform tension, considering the random character of the fibre-matrix con-
nection. To obtain this we will first homogenize the layer containing random
discontinuities on contact zone composite components, finding the first two
moments of its elasticity modulus in an analytical way. The sought moments
of displacements and stresses fields will be found numerically, using SFEM.

Because of the fact that the interface discontinuities averaging gives us
statistical parameters of contact zone elastic properties which are constant
along the circumference we will analyze only a quarter of the periodicity cell
for simplicity. As we can see, it does not affect the general character of our
considerations. Expanding the derived parameters on the whole cell can be
obtained by changing the parameter characterizing the frequency of discon-
tinuities occurrence for a four times bigger one. Moreover, analyzing a cell
quarter makes the pictures illustrating used model more clear.

3. Mathematical model

Fig. 2. Periodic fibre composite structure with the periodicity cell

Let Y C R? be a lincar-elastic continuum. Let then Y be a periodic
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random two-phase composite structure (c¢f Kaminski [15]; Kohn (1988)), in
which 2 is a periodicity cell, cf Fig.2. Let us assume that {2 is a coherent
bounded region uniplanar with z3 = 0 plane and that it consists of two
disjoint linear-elastic isotropic subdomains §2; and {2, called fibre and matrix,
respectively, such that

QUL+ 0

Let
TZ‘—‘ - {-Ql U.Q2}

-

Fig. 3. ”Bubbles” geometry on the fibre-matrix interface

Further let us assume that {2 consists of a finite number of disjoint sub-
sets —.(7,-
n
=%
=1

such that
m:{@mvmmenﬁ[%mV+MmmfrﬁJ

where the coordinate system Oz(ﬁi)y(ﬁi) originates from the following trans-
formation (a slip) of the coordinate system 0Oxy connected with the centre of
symmetry of considered quarter (the figure below), and geometric loci M (£2;)
of local systems centres after the transformation are described in the following
way

M(2;) = {(m,-,y,-) eERY: 22442 = jz?}
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Let us finally denote by my the number of subsets 2; per unit length of
{2; and {2, regions boundaries. Let @) and my be Gaussian random fields
describing volume and frequency of discontinuities on {2, and §2, boundaries,
with known expected values E[r(ﬁi)] and [L[mg] and variances Var[r(l—?-!_)] and
Var[my], respectively.

For a given vector @ of external load we will look for random displacement
and stresses fields u and o respectively, satislying the following system of
boundary-differential equations

o=Ce¢
! dup  Ouy
M= 5(8_1-, %)
dive = Q (3.1)
u=—1u T € 3.0,1
o=0 x € 082
where
Ciiny = [5"5 u(fE) + (5'L5' + 86 );]6(1) (3 ‘2)
ik ij kl(l—}-u(z))(l——Qu(z)) ik0j1 il0jk 2(1+u(.’c)) .
and
e(r) - Young modulus
v(z) - Poisson ratio.

We will finally assume that e(z) = e(z,w) is also a Gaussian random field
with the known function of expected values for 2, and f2; regions

E(e()) = { ey (3.3)

and covariance matrix

Var(e;)  Cov(ey,es)
o) = ’ 4
Covlei,e;) [ Cov(ez,e;)  Var(es) (3.4)
The random field e(z,w) deflined on coherent subsets of the plane with random
boundary geometry makes it impossible to carry out a stochastic numerical
analysis. Therefore to find random displacements and stresses fields in {2 we
will additionally define a subset 2, C R2. Let (2x C {2, and let it contain
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all subsets £2; € £2 with probability density tending to 1. Such conditions
are fulfilled by the subset 2 shown in I'ig.4., where thickness estimation Ay
of 24 region (cf Morrison (1976)) is assumed to be constant on the 2, N 2%

boundary length
Ak = E[7(-ﬁl)] + 3\ /Var[r(ﬁ')] (35)

A

¥

A
Y | SR

Fig. 4. Contact zone geometry

In order to define random Young modulus parameters for z € 2, we
use the homogenization method, according to which a given effective property
Yefl characterizing homogenized area f is a weighted average of Y; properties
defined on f; areas

> fiY:
Yol = +—— 3.6
7 (3.6)
According to this formulation we obtain
Sa. — S5
e = 2 " 70, (3.7)
Sa,
where 54 is the arca of the region A.
As we may easily notice from the above formula we have
_r 2 _ p2
Sp, = 4{(R+ Ay - % (3.8)

Using Eq (3.7) we will find the expected value and the variance of elfective
Young modulus eg, terms missing in the covariance matrix extended by one
rank as well as the averaged value of Poisson ratio.

We calculate the souglhit expected value

S0 =53] _ [ - f@kez] = Blea)(1- 5 FiSzl) (3.9

Eled) = E[ Sy So

13 — Mechanika teoretyczna i stosowana



422 M . KaMINSKI

Analogously we obtain the variation

Varlei] = Var[(l - :ﬁﬁ )62} (3.10)

Using the property (A.8) enclosed in Appendix A we obtain

S S5
Var[ey] = E? [1 - S;f ]Var[eg] + Va,r[l - S:: ]Var[eg] +
k k
+ Ez[eg]\/ar[l— Sﬁ]
Lo

using lemmas (A.3), (A.1) and (A.4) successively, it is

pfi- 7] = (B[ g2} = {mu- sl G2} = 1= g omisgl)’

and due to (A.7), (A.2) and (A.5) we have

S S5 S5 1
Va.r[l - Snk] Var[l] + Var[snk] = Va‘r[snk] = 5T <5 Var[55]
Finally we obtain
2 1
Var|ex] {1 — [55]} Varley] + STVa.I-[,SvE]Va.r[eg] +
& (3.11)
+ S Var[S JE?[es]

Now we have to find $5 distribution parameters. As we may notice we

have
T

5?2': 57'%7711, (312)

where my is the number of f2; arcas found in 2 and amounts to
- —ngmd (3.13)
Therefore, using properties (A.4) and (A.5), we have
E[my] = %E[md] (3.14)

and
2 p2

LRV (3.15)

Var[m,] =



STOCHASTIC CONTACT EFFECTS... 423

We derive next
T ™
ElSgl = S Elrgm] = S E[rg]E[m]

what follows assumed independence of r5 and m,. Using Eq (B.2) obtained
in Appendix B we have

E[S5] = g{EQ[rﬁ] + Vai[rg]} £[my) (3.16)

Finally we find the variance of 95 variable

2

Var[§5] = Val[ r—mb] = %Var[r%mb]

2

which, using the theorem (A.8) mentioned before, is equal to

Var[$5] = {E2[1—]Va1 [mp] + Var [1—]Va1[mb] + Ez[mb]Vm[r—]}

Using formulas (B.2) and (B.3) we finally obtain

w2 2
Var[S5] = T (Ez[rﬁ] + Va,r[rﬁ]> Var[my] +
(3.17)

+ ’-r;va.-[rﬁ] (E2[mu] + Varmy]) (2E2[r] + Varfrz])

Substituting equations describing Sz distribution parameters into equations
describing expected values and the variance of e, modulus distribution we
can derive analytically the data necessary for numerical analysis.

Note that the covariance matrix of Young modulus in (2 will finally have
the following form

o Var[eq] 0 0
Cov (e(’), e(J)) = 0 Var|es] v/ Var(e,.|Var|es (3.18)
0 / Varler|Var|es Var[e]

At the end it should be noted that by homogenization of the Poisson ratio
in §2; region we obtain
E(S' ))

3.19
5 (3.19)

uk:(l
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4. Numerical implementation and analysis

As we know (cf Kleiber and Hien (1992)) variational formulation of the
equation system (3.1) may be written as follows

/8ui,jcijkluk,1 df) = /au,’pf,' d? + /(‘)u,i, d(c‘?(){') (4.1)
” ” ”

Discretizing the set §2 into E coherent regions (2, such that

we can define, in {2 region, the vector of random variables with the Gaussian
distribution b(z) = {6"(z)},r = 1,..., R, R < F using its first two moments.
Denoting by ¢(b”) the probability density of 47(z) and analogically ¢(b7,b%)
for variables 67(2) and b*(z) we have the expected value of this variable

+oo
E(b) = / brg(b7) dbT (4.2)

and the covariance matrix

+ oot oo
Cov(b",b%) = / / (b7 = B (12 = B@) g0, b)) dirdy (4.3)

—00—00

It can be shown that the variational principle after minimalization of potential
energy functional and after expansion of all random functions into Taylor series
consisting of zero-th, first and second order terms, respectively, is equivalent
to the following system of equations

KOqO — QO

KOq,r — Q,r _ K,rqO (4.4)
0 (2) — l s TS 78,0 T 18

K¢ _2Q 2K "¢ K™¢" ) Cov(b,b%)

where

q(2) —= %q.rscov(br’ b.s)
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while K, g and @ are stiffness matrix, displacement and external load vectors,
respectively, and terms (-)7, (-)™* denote the first and the second partial
derivatives with respect to random variable. The stiffness matrix and its
corresponding derivatives may be defined as

E

Kos = Z/C?jleijaBklﬁ ay (4.5)
e:]ne

Ac{ﬂ - Z/CkaIBuaBklﬁ df? (4.6)
e= lne

K= Z/C,’ELOBUQBW df (4.7)
e= lne

In the system of equations (4.4), alter considering formulas (4.5) + (4.7), we
have
— the first partial derivatives of elasticity tensor

s 0Cim _ i v(2)
kT e T MG (1 - 2(a))
(4.8)
1
+  (Oibj + 5i15jk)m
— the second partial derivatives of clasticity tensor
VT,SZI E CU“-—O@I\ 6_0 (49)

— the first and the second partial derivatives of the external load vector
Vr,s=1,.,.8 (@Q"=0 A Q7 =0) (4.10)

Finally the system of equations to be solved (4.4) is ol the following form

K°%° = Q° (4.11)
Ko™ = —K"g (4.12)
KOg® = K" g*Cov(l", b%) (4.13)

Obtaining from these equations successively ¢° from tle first system, ¢
from the second one and ¢"* from the last one, we derive expected values and
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the covariance matrix of displacement field as well as expected values of stress
tensor components from tle following equations

]' T8 T IS
Elgs] = 4§ + 345 Cov(b7,5°) = ¢ + ¢} (4.14)
Cov[q, q3) = a5 q; Cov (07, %) (4.15)

e O(e €
E[ij)] = C;’j(u)BL/l‘lg(c) +
(4.16)
1 7(e) s O(e) ,rs e r s
+§[20ijl(cl)qa(e) + Cij(kz)’/a(e)]Bz-lc),COV(b ,0%)

Numerical calculations have been done using a plane stochastic 4-node
element (plane stress/strain analysis) of POLSADP system code (cf Bathe et
al. (1973); Hien (1990)) written in FORTRAN 77 [26] and compiled in DOS.
Composite quarter was discretized by 60 finite elements. Comparative tests
were done thanks to the ABAQUS [1] working in UNIX system on a mesh
condensed to 224 elements. Both discretizations are shown in Fig.5.

) (b)

Fig. 5. Periodicity cell quarter mesh for: (a) - POLSAP, (b) - ABAQUS

Discretization of a periodicity cell for the POLSAP computations was done
in such a way, that to change the contact zone area it is enough to transform
the nodal points settings the boundary between this area and matrix through
homothety with respect to the centre of coordinate system connected with the
periodicity cell (Fig.3).
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In all tests the analyzed quarter is subjected to uniform tension on the
right vertical edge. On the remaining edges orthogonal displacements and
rotations are fixed (symmetry conditions).

Fig. 6. Tested "bubbles” arrangement

Data concerned with random geomelry of the houndary between compo-
site materials were assumed so that they correspond with the arrangement of
"bubbles” shown in Fig.6.

Above discontinuity distribution is equivalent to the following parameters
of distribution of their frequency in a quarter of composite E[n] = 3 with
assumed standard deviation o[n] = 0.05E[n] = 0.15. The volume of these
discontinuities is described by the following moments: E[r] = 0.02R = 8.0e~3
and ofr] = 0.10E[r] = 8.0e — 4. Assuming fibre material with the Young
modulus E[e;] = 84.0 GPa, ofe;] = 8.4 GPa and the Poisson ratio v = 0.22,
whereas matrix material with Efe;] = 4.0 GPa, ofe;] = 0.40 GPa and
vy = 0.34 a result of homogenization was the interface layer described by the
following parameters: Ax = 1.0de—2, E[e)] = 3.82 GPa, Varley] = 1.48 GPa,
v = 0.324.

5. Analysis of results

The results of tests carried out are collected in Iig.7 + Fig.16 (Fig.7 +
Fig.10 and Fig.13 + TI'ig.16 - ABAQUS system, I'ig.11 and T'ig.12 - POLSAP
system), respectively. Fig.7 + TI"ig.10 represent horizontal displacement field
obtained using a plane 4-node deterministic clement of the ABAQUS system,
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Fig. 8. Horizontal displacements in model with the Young modulus expected value
in the contact zone
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Fig. 9. Horizontal displacements in model with the Young modulus lower bound in
the contact zone
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Fig. 10. Horizontal displacements in model with the Young modulus upper bound
i the contact zone
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in which successively we consider the problem of composite tension without
introducing discontinuities (Fig.7), the composite is assumed according to pro-
posed model (Iig.8), where Young modulus is taken as the expected value
calculated from the formula (3.9). In Fig.9 and I'ig.10 the Young modulus is
calculated as lower and upper bounds of random distribution of this modulus
(cf Fisher (1971); Larson (1974)), which is taken analogically to thickness of
contact region being homogenized, cf (3.5)

er = Elex] + 3o(ex] (5.1)

0.26
0.24
0221 | ————upper edge, no coanlact

1 |eeeeens upper edge, contact F
0.20 I )
0.18L— --——&--— lower edge, no contact : «‘
0.164— -——0~-- lower edge, contact ~
0.14 S MEPPELLL .:"f

[P //‘
0.12 e //
................... /

0.100% == 8 e ) e R ——— P ——

T T T T B T
0.08 e __ 1 1 1 I -
0.06 — 7

0 11.25 22.5 33.75 45 56.25 67.5 78.75 90

Fig. 11. Displacements coeflicients of variation on interface edges

Fig.13 + Fig.16 represent the shear stress oy, in the same tests. [ig.11
and Fig.12 represent the results obtained using the POLSAP processed by
EXCEL 5.0 — Microsoft Windows spreadsheet [27]. 'ig.11 represents a as a
function of § angle determining the location of the point belonging to fibre-
matrix boundary. This angle is measured in the anticlockwise direction from
the positive part of =z-axis. Let us defline for this purpose the displacement
coefficient of variation a

2 _ Var(q]
E2[q)

(5.2)

Obtained dependencies are compared with analogous results obtained for
a composite model regardless of heterogeneity on the fibre-matrix boundary
(cf Kamiiski [18]).



STOCHASTIC CONTACT EFFECTS... 431

0100 o= —=—F =T L] | B

0.098 ==

0.096 ====

0.094

0.092

0.090

0.088

)

0.086 — — —— contact
....... no contact

0.084

0.082
0.5 0.416 0.333 0.250 0.167 0.083 0

Fig. 12. Displacements coeflicients of variation on tensioned edge

Fig.12 represents coefficients of displacements variation of points on ten-
sioned periodicity cell quarter edge (relation of « to height % of point on the
edge). Analogously to tests shown in I'ig.11 the model being analyzed was
compared with a simplified model - without heterogeneities.

The expected values of displacerent fields obtained as a result of numeri-
cal analysis with the use of ABAQUS prove that a tensioned quarter of fibre
composite shows small sensitivity to existence of statistically homogenized he-
terogeneities on the fibre-matrix interface (Iig.7 and I'ig.8). Analyzing two
next figures, cf Fig.9 and Fig.10, it can be scen that only weakening of in-
terface layer (decreasing of Young modulus) in relation to its expected value
essentially changes the form of expected values of the horizontal displacement
field. For lower bound of the Young modulus distribution of homogenized zone
the expected values of horizontal displacements in this zone increase rapidly,
the contrary to the remaining tests. This jump (from minimum to maximum
of the scale) can be interpreted as desizing of fibre from surrounding matrix.

Data presented in Fig.11 prove that displacement coellicients of variation
of nodes on the upper edge of homogenized interface zone in the stochastic
model with discontinuities are much bigger ("upper edge, contact”) than in an
analogous model without discontinuities ("upper edge, no contact”). It results
from the fact that Young modulus coelficient variation of material in this zone
is greater than in matrix, which secms to be justified [rom the physical point
of view.
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Results obtained for the lower edge, i.e. for the boundary between fibre
and interface zone are identical for models with and without discontinuities
because coefficients of variation of points on this edge depend mainly on the
random character of fibre material (¢f Kaminski [18]), which is the same in
both cases.

Displacement coefficients of variation on tensioned edge are shown in
Fig.12. Differences between models (”contact”,”no contact”) obtained in this
case are not so big as in the previous case. Inverse proportionality between a
distance of point on the boundary from the interface boundary and the diffe-
rence between displacement coeflicients of variation in both tests can be easily
observed. This dependence proves that the random character ofl interface zone
influences the random character of displacement state of tensioned edge. It
is the result of dependence of random displacements on tensioned edge of a
cell on the random character of the matrix Young modulus, observed also in
a numerical simulation (c[ Lawrence (1986)). In relation to the conventional
model without heterogeneity on the edge, in the composite with homogeni-
zed voids dependence between the point height on the tensioned edge and the
displacement coeflicient of variation does not change so rapidly for different
values of h (14% and 3.5%, respectively). It results from the fact that a nar-
row zone of material with the coefficient of variation three times higher than
for component materials was found between fibre and matrix. The interface
region makes the discussed dependence smooth thanks to a short distance be-
tween points with h close to 0 (15% increase of «) and a longer distance
from the upper end of tensioned edge (4% increase of «).

Wlile analyzing the shear stress o, compared in Iig.13 + Fig.16 it can
be easily noticed that in all cases there is an evident jump in values of these
stresses on the fibre-matrix boundary of homogenized contact zone; sometimes
it is even a difference in sign. In case of models without interface zone and
also models with the expected value and the upper limit of Young modulus
in contact region values of shear stresses and their positions are similar, cf
Fig.13 + Fig.16; differences can be observed for angles v = 0° and =y = 90°.
The stress state oo for the model with the lower bound of Young modulus in
interface zone is definitely distinguished here (I'ig.15). On the bigger part of
length of upper and lower bound of zone with heterogencities, particularly for
v < 45° there are differences in shear stresses between this zone and adjacent
regions of both fibre and matrix. It scems to prove the argument, stated on
the base of horizontal displacement field of this test, for the possibility of fibre
and matrix desizing in the region containing heterogencities being modelled.



STOCIIASTIC CONTACT EFFECTS... 433

-1.74E+02
+1.06E+02

+6.67E+02

+1.22E+03

+1.78E+03

+2.35E+03

+2.91E+03

+3.19E+03
+3.47E+03

-1.45E+02
+1.37E+02

+7.02E+02

+1.26E+03

+1.83E+03

+2.39E+03

+2.96E+03

+3.24E+03
+3.52E+03

Fig. 14. Shear stresses in the model with the Young modulus expected value in the
contact zone
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Fig. 15. Shear stresses in model with the Young modulus lower bound in the
contact zone
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Fig. 16. Shear stresses in the model with the Young modulus upper bound in the
contact zone
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6. Concluding remarks

¢ Presented idea of replacing the stochastic contact effect in fibre compo-
site with the stochastic problem of theory of clasticity with homogeni-
zed fibre-matrix interface let us observe the phenomena, which can be
interpreted as desizing of fibre from matrix (jump of horizontal displace-
ments in observed zone). It confirms the possibility of using this kind of
model in discontinuity analysis on component boundaries in composite
materials.

¢ Invented method of interface homogenization aflects big standard devia-
tion of homogenized material even for small deviations of "bubble” sizes
and low frequency of their occurrence. Because of this fact obtaining
more precise results in probabilistic sense for bigger standard deviations
of the Young modulus of homogenized material would be guaranteed by
using the Monte-Carlo method (cf Kaminski [15]); Tocher (1968)).

e Existence of random heterogeneities on the fibre-matrix boundary in
the way presented above generally caused the increase of displacement
coefficients of variation in these regions of periodicity cell, in which,
in the stochastic model without heterogeneities (cf Kaminski and Gajl
[18]), the dependence of these coeflicients on the random character of
matrix material was found. The upper edge of zone containing 'bubbles’
and the vertical edge of cell being uniformly tensioned are these regions.
Observed dependence results from the probabilistic correlation of the
Young modulus of the matrix and of the homogenized interface region.

e Because of the fact that this is one of the first papers on the use of
Stochastic Finite Element Method in modelling of contact phenomena
in numerical mechanics of composites (cf Gajl (1991)) it is necessary
to notice that simulation of a crack can be carried out directly without
introducing the interface layer. Properly defined covariance matrix can
be used to obtain this (cf Hien (1990); Lawrence (1986)).

7. Propositions

o It seems to be interesting to continue the analysis of modelling stocha-
stic contact phenomena in fibre composites using the SFEM. It would
be important to examine, on the basis of proposed model, the influence
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of particular parameters of this model (size of contact zone and ran-
dom parameters of its material) on the random displacement and stress
state, and also deriving a non-linear stochastic model of contact zone (cf
Kleiber and Hien (1991); Liu et al. (1986)).

Unquestionably, sensitivity analysis is a more precise tool for modelling
random contact phenomena, and particularly in this case of stochastic
sensitivity (c{ Hien (1990); Kleiber and Ilien (1991)). Using it for this
kind of problems would enable:

— examination ol influence of the local increase in contact zone thick-
ness (cf Dems and Haftka (1988-89); Dems and Mréz (1987) and
(1993)) on the stress state in periodicity cell, instead of global esti-
mation of static character used here,

— using, in mathematical analysis, continuous distributions of indi-
vidual random variables (cf Arminjon (1991); Sobczyk (1982)),
thanks to which continuous functions of the first two moments for
homogenized contact zone would be obtained,

— application of the invented model to some problems of shape opti-
mization in fibre composites (cf Ilaltka and Giirdal (1990)).

To make the presented mathematic-numerical model corresponding with
the results of experimental tests (cf Grayson (1983)) it scems appropriate
to implement a two-parametric stochastic problem with the random Yo-
ung modulus and Poisson ratio.

From the point of view of real discontinuitics between matrix and fibre it
would be advisable to use the basic theory of curves (or surfaces) of the
second order in the model of micro-contact geometry. It would enable
precise modelling of deep ’craters’ or large 'spots’, which very often form
on these interfaces for technological reasons (cf Grayson (1983)).

It would be interesting to expand this kind of analysis on three-
dimensional case (on the basis of cubic finite element), which would let
us analyse the influence of interface randomness and elastic properties
of composite components in direction parallel to fibres.
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Appendix A

Properties of the expected value and variance (cf Morrison (1976); Rosen-
blatt (1962))

Lemma 1.
VeeR (El]=c A Var(c)=0) (A.1,2)
Lemma 2. For any two random variables X and Y we have
E[X Y] = E[X]+ E[Y] (A.3)
Lemma 3.
Vee R (E[cX]=cE[X] A Var[eX]= c?Var[X]) (A.4,5)

Lemma 4. For two independent random variables X and Y we have

E[XY] = E[X]E[Y] (A.6)
Var[X £ Y] = Var[X] + Var[Y] (A.7)
Var[XY] = EZX[Var[Y] + Var[XVar[Y] + E}[Y]Var[X] (A.8)

Appendix B

Problem: Determine the value of Var(X?) using the parameters of X
variable distribution, i.e. E(X)and Var(X).

Solution: As it is known from the definition of random variable variance
with discrete distribution we have

Var(Y) = E(Y?) - EX(Y)
Let Y = X2, We have

Var(x?) = E((X?)?) - EA(X?) = E(X*) - E¥X?)

E(X*) is to be determined by integration of characteristic function using the
fact that it is the Gaussian distribution

(’L‘ -m)y
E(XY 0\/_ ztexp T) dax
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where m and o are the expected value and the standard deviation of examined
distribution, respectively.

Introducing a standarized variable ¢ = =%, z = to + m, dv = odt we
obtain

1 2
E(XY) / to +m)leT dt
( \/27 (

After some algebraic transformations on the integrand function we have
1 7
2
E(X4) B F ./ (0414 +40°mt® + 60°m?¢* + dom®t + m4)e_"2" dt
T
—00

and splitting it into particular component integrals

E‘(X“) = (o'l + A63mly + 66 m? I3 + dom>I, + m“[s‘)e_iz3

1
V2T

where there is

+00 400
2 )
I = / tle™7 di I = / te”™ 7 (i
—o o
+00 400
2 2
I, = /te‘T dt Is = /e‘? dl
—50 s
+00
2, -8
I3 = / “e™ 7 dl
—00

Because of integrands being odd, integrals [, and I; are equal to 0 for
integrating on the whole set of real numbers. We then determine integrals
with odd indices. We have

+00 )
Is = /e"T dt = V2rm
_+00 ) +oo ) +00 R
Iy = / e~ dt = — / t(te‘?) dl = - / [(l(e"T) =

2 oo 2
—te~ T fgg+ /e"T dlt = 27w

-0
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+o0 +o00 400
2 2 12 ~ 2
I, = / tle™7 dt = — / Bde™7 = — [Be” 7 fg‘z — / e~z d’| =
-0 —00 -0
+20 2 1o 2 2 too 2
=3 / 12e=7 dt = -3 / tde= 5 = -3 |te™7 fgg — / e~ T di| = V2o
—00 -0 —00

Finally, we obtain

E(X* =30"+60*m? + m* = E4(X) + 6Var(X)E* X) + 3Var?(X)(B.1)

E(XY =0+ m? = E¥(X)+ Var(X) (B.2)

Var(X?) = E(X*) - E*(X?) = 20%(0? + 2m?) = (B.3)
= 2Var(X) (Va,r(X) + 2E2(X))

Stochastyczne efckty kontaktowe w periodycznych kompozytach
widknistych

Streszczenie

W niniejszej pracy zostalo zaprezentowane nowe, analityczno-numeryczne pode-
Jscie do zagadnien kontaktu w mechanice.
Najwazniejszymi elementami tego sformulowania sa:

1. aproksymacja nieznanej stochastycznej pownerachm kontaktu przez ciag figur o
zalozonej geometrii; jej wielkos¢ 1 czestos¢ wystgpowania na rozwazanym brzegu
sa gaussowskimi zmiennymi losowynu o znanych parametrach statystycznych;

2. zastapienie obszaru kontaktu zawierajacego z dobrym przyblizeniem wszystkie
te figury przez stochastycznie usredniony material, zajniujacy po usrednieniu
deterministycznie okreslony obszar kontaktu;

3. numeryczne rozwiazanie stochastycznego problemu statycznego za pomoca Sto-
chastycznej Metody Elementéw Skonczonych (SFEM).

Zaproponowany model zostal sformulowany specjalnie do analizy nieciaglosci
wystepujacych na granicach skladnikéw w periodycznych kompozytach widknistych o
losowych wlasnosciach sprezystych. Analizie numerycznej poddano ¢wiartke kwa-
dratowej komdrki periodycznosci z centralnie usytuowanym wléknem o przekroju
kolowym. Analiza ta zostala wykonana za pomoca programéw POLSAP i ABAQUS.
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