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OF CERTAIN COMPOSITE LATTICE-TYPE STRUCTURES
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The aim of this contribution is to propose a new continuum model of
periodic composite lattice-type elastic structures. The proposed model
describes the structural length-scale ellect on the dynamic behaviour of
a system. The general line of approach is based on that developed by
Wozniak (1993) to the refined elastodynamics of composite materials.

1. Introduction

The number of papers on continuum modelling of discrete systems is very
impressive. Here we shall restrict oursclves to the periodic lattice-type struc-
tures met in engineering, which in the first approximation can be considered
as systems of regularly distributed mass-points (nodal points) interconnected
by the lincar-elastic straight rods, translering exclusively axial forces, Fig.1.
The continuum models of such lattice-type structures were introduced and
investigated by WozZniak and his collaborators in a series of contributions;
for details cf Wozniak (1970) and the references therein. More sophisticated
approach, based on the asymptotic homogenization method was analysed by
Cioranescu and Saint J.Paulin (1991). However, in both cases the resulting
equations have the form similar to those of the elasticity theory for anizo-
tropic media and lience they are not able to describe properly the dynamic
response of the system, neglecting both higher order vibration [requencies and
dispersion phenomena. This drawback stands for a motivation of the research
presented below, where a certain refined continuum modecl of the aforementio-
ned lattice-type periodic structures will be proposed. The general idea of the
approach is based on that leading to the refined clastodynamics of periodic
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Fig. 1. Examples of plane periodic lattice-type structures

composite materials, ¢f Wozniak (1993). The considerations will be restric-
ted to the linear theory of periodic systems of mass-points (nodal points of
a lattice) interacting by means of the linear-clastic rods. Assuming that the
material and geometric characteristics of different rods are different we shall
deal with certain (discrete) composite structures. It has to be emphasized
that the continuum models of these structures, introduced in the paper can
be applied to engineering problems only on the condition that the structure is
made of a large number of periodically repeated structural elements length di-
mensions of which are small enough compared to the minimum characteristic
length dimension of the whole periodic structure.
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Denotations. Subscripts 1,7, k,! run over 1,2,3 and are related to the
cartesian orthogonal coordinates 2;,z9,23 in the reference space. Indices
a,band A,DB run over 1,..,n and 1,...,V, respectively; indices «, 3 take
the values 1,...,k. Summation convention holds for all the alorementioned
indices unless otherwise stated. Points in the reference space are denoted by
z = (z1,22,%3) and tis time coordinate.

2. Analysis

Fig. 2. Scheme of the plane lattice and its representative element

Let V = (0,1') x (0,1%) x (0,13) be a cell in the relerence space of points
z = (z1,%2,z3) in which the representative structural element of the periodic
lattice structure under consideration is situated. Hence the periods ¢ will
be treated as certain small parameters due to the assumption that the whole
structure is made of a large number of structural elements. By {2 we shall
denote the region composed of all the spatial cells (and their interfaces) with
repetitive structural elements. Schemes of the plane lattice and the represen-
tative element are shown in Fig.2; by N,, ¢ = 1,...,n, we denote nodes of the
lattice in V, by R4, A=1,...,N, the rods interconnecting nodal points. All
rods are assumed to be prismatic and homogenous. llence to every R4 there
is assigned a pair (N,, Ny) of nodal points, where a < b. Unit vectors t4, 4,

tf with components {4, lﬁ,-, tfi, are shown in I"ig.3, where also the length 14

of the rod R4 is indicated. The area of the cross section and the Young mo-
dulus of the rod R4 will be denoted by F,y and [Z4, respectively. Moreover,
it is assumed that mass of the whole system is assigned to the nodal points;
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the mass M, is concentrated at the node N,. Thus, the periodic lattice-type
structure is represented by a periodic system of interacting mass-points.

IA
N, ~V'

N, R, a<b

Fig. 3. Unit vectors assigned to the rod R4 bounded by nodal points Ng, N,

Define V(z)=z+V and 29 ={z € 2: V(a) C £2}. Let us introduce
the micro-shape matrix of numbers h? satysfying the following conditions

Mohe =0 a=1,..k he € O(l) (2.1)

where | = /(I1)2 + (1?)2 + (13)? will be called the microstructure length
parameter. Let Ui(z,t), Q%(z,t) for every ¢ be sufficiently regular V-
macro functions defined on 2. It means that 2z’ — 2”7 € V implies
[Ui(z’,t) — Us(z”,t)] < A, |Q¢(2',t) — Q¥ (z”,1)] < A, A being the nu-
merical accuracy parameter, and similar conditions are also imposed on the
derivatives of U; and @Q¢, where within a framework of admissible appro-
ximations terms ((A) can be neglegted, cf Woiniak (1993). Morcover let
A={z€ 2y: z=clle + cyl?e; + c3lPe3} where ¢; are integers and e; are
versors of z;-axes. The basic kinematic hypothesis which interrelates displa-
cements u?(z,t) of the node N, in the spatial element V(z), £ € A, with
fields U;, QF, will be assumed in the form

u®(%,1) = Ui(z,1) + h2Q%(z, 1) zeA (2.2)

where z is a position vector of the node N, in the spatial element V(Zz).
Fields U;(-,t) will be called macrodisplacements; since |U;(z,t)—Ui(Z,1)] < A
for every z € V(Z), then the macrodisplacemets of nodes situated in an ar-
bitrary fixed spatial clement V(z,t), £ € A, can be approximately treated as
equal (with the approximation Q(A)). Tields Q%(-,1) arc said to be correc-
tors and describe tlie disturbances in displacements caused by the composite
structure of the lattice under consideration; the exact meaning of this notion
will be given below.

Taking into account Eq (2.2), the strain €4(Z,t) in the rod R4 belonging
to the spatial element V(z), will be given by (no summmation over A)

ea(Z,1) = Up (3, O + (L) 1 he Q2 (3, 1) + O(N) (2.3)
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where we define 12

rod RA.

The governing equations in macrodisplacements U; and correctors Q¢
will be obtained from the principle ol stationary action on the assumption
that terms (O(A) in the action functional can be neglected. For the strain and
kinetic energy functions we obtain

= 0 if the nodal point N, is not connected with the

N
J:%Z ZAA(&‘A(.’E,Z’,))z A= FaFE4ly
TeA A=1

K= % PP INAHCRNHERD
ZeAa=I

respectively,  Taking into account Eqs (2.2) and (2.3) and conditions
M,h% = 0, after denotations

1 n
= M,
P volV ;
1 - a a p—
Mop = = 3 Mohhl™"
a=1
1 N
Aiji = o Aatittgi (2.4)
volV ey J
T
Baiji = = > Aatf M (pa) RG]
A=l
1 & ,
Copij = Agtdid(oa) The =2
afij volV AX=:1 Algj b_]((‘P/\) a'tg
l
volV = 1'% pa=2

[

and bearing in mind that U;, Q¢ are regular V-macro functions, we arrive
at the formulae

1 1
J = /(§AijklUi,jUk,l + Boij Ui ;QF + EcaﬂijQ?Q?) drydzadas + O(X)
g (2.5)

1. .
K= /(EpU,'U,- + 5121700@?@?) d dgdrs + O(N)
9]

Neglecting in the Eqs (2.5) the terms O(A) and assuming that the external
forces (loadings) are equal to zero, from the principle of stationary action we



356 1.CIELECKA

derive the following system of equations which have to be satisfied for every
z € {2 and for every ¢ in the given a priori time interval [io, /]

pUi(z,1) = AijaUipj(2,1) = Baiju QF () = 0 26)

P1apQ% (2.0) + CapiiQ3(2, ) + BokisUs j(z,1) = 0

The derived equations represent a continuum model of the discrete periodic
system of interacting mass-points under consideration. The basic unknowns
are macrodisplacements U; and correctors @Q¢, which are sufficiently regular
functions defined for every t € [fo,{s] in the region 2 of the reflcrence
space. Let us observe that for Q% we have obtained ordinary diflerential
equations (2.6)2, involving exclusively time derivatives of correctors, while
the macrodisplacements U; are governed by the partial differential equations
(2.6);. Hence on the boundary Jf2 the values of U; have to be prescribed;
the alternative formulations of boundary conditions are also possible.

The formal structure of Iqs (2.6) is similar to that obtained by Wozniak
(1993) for the linear-elastic periodic composite materials. Since A% € O({)
then the values of all coefficients in the above equations which were defined in
terms of Eqs (2.4), are independent of the microstructure length parameter /.
Hence for the correctors Q¢ we have obtained the second one from Eqs (2.6)
with the first term involving the square of the microstructure length parameter
[2. This term describes the micro-inertial propertics of the system considered.

Setting { \, 0 in Eqs (2.6) and assuming that all quantities defined by
Eqgs (2.4) are constant we arrive at what will be called asymptotic (homogeni-
zed) model of the periodic mass-point system; in this case for correctors Q¢
we obtain the system of lincar algebraic equations. It can be shown that the
linear transformation R3* — R3%, given by C,pij is invertible and hence in
the asymptotic model Q¢ can be expressed as linear lunctions of Uy ;).

Let us observe that if Byg; = 0 then from Eqs (2.6) we obtain two
independent systems of equations in U; and @Q¢. Morcover, if the initial
conditions for correctors have the form Q%(z,t) = 0, Q?(z,to) =0,z ¢ 1,
then Q¢ = 0 for every z € £2, ¢ € [lg,t]. The mass-point system in the
case Dgki; = 0 will be referred to as the micro-llomogeneous structure; in
any other case the lattice structures modelled by Egs (2.6) will be called the
composite (or micro-heterogencous) structures. Thus, for micro-homogencous
structures (within a framework of the continuumn models given by Eqs (2.6))
the micro-inertial eflects are caused exclusively by non-trivial initial conditions
for correctors.

At the end of the above conclusions it has to be emphasized that the ficlds
Ui, Q¢ satislying Eqs (2.6) have the physical sense only if they are V-macro
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functions, i.e., if their oscillations in every V(z), £ € 2y, are sufliciently small
to be neglected.

3. Example

As the example let us consider the wave propagation problem related to
the unbounded plane lattice structure shown in Fig.2. We shall deal with the
longitudinal wave propagating along zj-axis. Assuming FEq (2.1) in the form
u§ = Uy + h§Q] and setting U = Uy, Q@ = Q} and z = 24, from Eqs (2.6) we
get

pU(z,1) — AjnUqi(2,0) + Bl Qa(z,t) =0 3.1)

PI1Q(x,1) + Cuin@(2, 1) + BiinQa(z,1) = 0
The micro-shape matrix A% is reduced here to the vector h{ given by

h} = I, h? = —M/M;, h3=h*=010} =1 Denoting ¥4 = EsF4/l,
p = (M + M)/l and assuming 3 = 915, ¥4 = 1P, we obtain

A = %(81/11 + 16905 + 9V31¥3 + V31y)

3 M

Bun = [—(4% — 4P + 1/)4)(1 + —1)

M,

Cun = —(6‘1)1 + 32 + \/_1114 (l + ]”2)
_ gy M
\/5 11 = \/3 A[Q
The solution to Eqgs (3.1) will be assumed in the form

U = Cisinka cos(wt) Q = Cycoska cos(wt) (3.2)

where C',C7 are arbitrary constants. Substituting Eqs (3.2) into Eqs (3.1)
we obtain non-trivial solutions for 'y, C; only if

Ak? — pu? kB

k3 C-rwt |70 (3.3)

9 — Mechanika teoretyczna i stosowana
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where for the sake of simplicity we have denoted A = Ayqyy, B = D111,
C = Cyi, 11 = 111, After simple calculations from Iiq (3.3) we obtain the

following formulae for the frequencies w?
(w1)” = T’» [1 Rer (k1) ] + O((“) )
(3.4)
C B? I1(AC - B?)
2 _ .2 V2 L7\
(w2) —1217+pCL [1+ (7 (kl)] +O((kl))

The formulae (3.4) have the physical sense only if macrodisplacements
U(z,t) and corrector field Q(z,t) are V-macro functions, where now
V = (0,v3!) x (0,]). By means of Egs (3.2) this condition holds il kI is
small compared to 1. Since the terms O({?) are retained in Eqs (2.6) then
the above condition can be assumed in the form 1+ O((kl)") >~ 1. Thus we
arrive at the conclusion that the frequencies wq, w, can be represented in the
explicit form which under denotations 2 = wl, ¢ = &/ is given by

AC - B2 , IN1BYAC - B?)

2 _ 6
()" = e ! 2203 ¢+ O(¢°)
c B? I B*AC - B?) | ;

($2) = I7i + ;)—C(lz + (p-zc.'s )(/1 +O(4°)

It can be seen that the dispersion effect in the formula for (2; as well as
the higher frequency 2, are caused by the presence in Eqs (2.6) of terms
involving the microstructure parameter [. This situation cannot be described
within a framework of the asymptotic (homogenized) continuum model of
the mass-point systems under consideration, which does not involve the time
derivatives of correctors and can be obtained from Iqs (2.6) by rescaling the
microstructure down, using the limit passage [\, 0 and assuming that p,
Aijkls Baijkiy Cogij are constants under this rescaling.
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Ciagle modcle dynamiki pewnych kompozytowych struktur siatkowych

Streszczenie

Celem opracowania jest przedstawienie ciaglego modelu periodycznych liniowo-
sprezystych struktur siatkowych, uwzgledniajacego wplyw wielkosci elementu struktu-
ralnego na dynamike ukladu. Proponowane podejscie korzysta z zalozen dotyczgcych
rozszerzonej makro-dynamiki materialéw kompozytowych, przedstawionych w pracy
Wozniak (1993).
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