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The problem of homogenization of a nonlinear thermoelastic periodic
composite is treated by the method of the two-scale asymptotic expan-
sions. Effective material coeflicients are given in the general form, dif-
ferent from that obtained in the standard linearized theory. The local
problems are however the same as in the linearized theory. The Franc-
fort’s remark on a shift of the initial conditions remains to be valid in a
modified form.

1. Introduction

So far the most satisfying discussion of a linear thermoelastic composite has
been done by Francfort (1982) (cf also Francfort (1983) and Brahim-Otsmane
et al. (1988)) Francfort obtained the homogenized material coefficients of such
a body and indicated the necessity for modification of the initial temperature
condition for this body. By contrast to an earlier trial by Ene (1983) where a
temperature — displacement picture was used, an essential role in Irancfort’s
analysis was played by an entropy — displacement approach to the thermocla-
stic homogenization.

As in the linear thermoelasticity the entropy s is a linear function of tem-
perature T (cf Nowacki (1966)), the homogenization procedures by Ene and
Francfort are essentially the same (apart {from the effect on shift of the initial
temperature conditions). It appears, however, that the linear thermoelasticity
in which the entropy — temperature rclation is linear, and the nonlinear term
T'$ in the energy equation is replaced by the linear term 7Tgs (Tp — being the
reference temperature), is overlinearized as far as the a homogenization proce-
dure is concerned. In the present paper we are to outline the homogenization
procedure for a periodic thermoelastic composite based on the quasi-linear
thermoclasticity, in which the Duhamel-Nenmann relations and the Fourier
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law for heat conduction are linear, but the entropy is a nonlinear function
of temperature. Hence there is no nced to lincarize term 7§ in the energy
equation. Such an approach to other problems of thermomechanics has been
previously proposed by Ignaczak (1990) (cf also Landau and Lifshitz (1958),
Stecki (1971)). We are to show that the above quasi-lincar thermoelastic ho-
mogenization leads to some results obtained by Irancfort (1982) and (1983),
as well as to certain new results; e.g. two thermoelastic (stress-temperature)
coefficients lH and :/_HL are obtained after the homogenization.

In this paper the homogenization is performed by the two-scale expansion
method as described by Sanchez-Palencia (1980) (cf also Galka et al. (1992)
and (1994), Wojnar (1992) and (1993)).

2. Basic equations

We consider a thermoelastic body occupying a volume V and composed of
the identical elementary cells such that physical properties of the body change
periodically over the body and the period is equal to the length dimensions of
the elementary cell.

Let T be the absolute temperature of the body, s - its entropy and ¢;;
the strain tensor related to the displacement wu; by the relation

(2.1)

du;  Ou
fis = %(a_;,[ﬁ 52

The relation betwcen strain ¢;;, stress ¢;; and temperature T is assumed in
the linear form of the Duhamel-Neumann equations

05 = CijmnEmn — 7:J(T - TO) (22)

where ¢;jmn and v;; are the elastic moduli and the stress-temperature moduli
tensors, respectively; <;; are related to the thermal expansion moduli «;; by
the equality 7i; = ¢ijmn@mn; To is the refcrence temperature related to the
natural state, where ¢;; and o;; vanish. It is also assumed that in this natural
state treated as the reference state both the internal energy and the entropy
vanish.
The nonlinear temperature — entropy - strain relation is postulated in the
form
T = Toe("""y"i"'i)c‘_1 (2.3)



THERMOELASTICITY AND HOMOGENIZATION 325

where C. denotes the specific heat at a constant deformation. The problem
under consideration will be governed by the conservation laws of momentum
and energy, which in the local form read

pU = a—xj(fij
(2.4)
0

Té=———q;
$ 62,',"1

The heat flux is given by the Fourier law

0

¢ =—-K;—T

i ij a.’L']'

Hence p 9

Ts= —|(KN;—T 2.5

$ (’)x,-( ! ]8.1-]- ) ( )

Here p is the mass density and K;; is the hecat conductivity tensor. The
coefficients p, ¢;jmn and K; satisfy the inequalities

p>0 (2.6)
Cijmn&ij&i; > 0 for every ¢&;; € Sf (2.7)
Kinin; >0 for cvery 7; € R® (2.8)

3. Entropy — displacement field equations

Eliminating ¢;;, 0;; and ¢; from Eqs (2.1) + (2.5) and denoting

we obtain the displacement — entropy field equations

pil; = ail] [C,‘jmn((‘;uT': - 7,'jTo(eS - 1)] (3.1)
a5 49 J ( (75')

-_— l\fija—xj

These are two field equations which will be discussed below.

7 — Mechanika teoretyczna i stosowana
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4. Homogenization: an outline of the procedure

Since the composite under consideration can be treated as a periodic repeti-
tion of the elementary €Y -cells, then using the two-scale asymptotic expansion
method the following form of u; and s is postulated

uf = u¥(z,y) + eulV(z,9) + 2ulP(z,y) + ... (4.1)

s¢ = sO(z,y) + esW(z,y) + 2P (z,y) + ... (4.2)

The functions uf and s° are €Y -periodic with respect to y = z/e.

Substituting Eqs (4.1) and (4.2) into Eqs (3.1) and (3.2) and keeping in
mind that for the function f(z,y) the space differentiation 0/dz; should be
replaced by (9/0z; + ¢710/dy;) we get

e 0 0 7, 0\ . ¢
pu; = (?)r_] + %0_3/]) [cijmn (OTn + %aTJn)um - 7i;To (05 - 1)] (4.3)

. 9 1 9Ne( 9 (10
= Kl + 220) ) (o + 2oy

O 10\, /0 10y,
et ;a—yj) [I‘if(a,—r]. + ;aTJj)S]

)se+
(4.4)

where

5S¢ = [s" - '7,,1,1(% + é%)ugﬂ](]ﬂ

The material coeflicients p, €ijmn, N;j etc. in Eqs (4.3) and (4.4) are
assumed to be the ¢Y-periodic functions of y coordinate.

5. Homogenization of the energy equation

(i) Equating to zero the coefficient at ¢~* in Eq (4.4) and denoting

oul” 4 _of
= —7abT%CE f, = a—yl (51)
one obtains
Kiifif; =0

By the positive definiteness of K7;, the last equation yiclds

fi=0
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Integrating over the cell Y we find

N ,(10)
(—v,,b—a‘yT)C;‘ = w(z,t) (5.2)

where the function w(z,t) plays role of an integration constant (for variable y)
and is yet unknown.

(ii) Equating to zero the coefficient at ¢~3 and using Eq (5.1); we obtain

o (9f (0) (9u,(1 (')u(]) o1
0= Ki[(5- + {[s — G+ S oL
(5.3)
of 10f O _ oul® auf,” o-i 0 of
a (axj a l{[ ( ax )] 3 })] (I\lJaJJ)
Keeping in mind (5.2), the above equation is identically satisfied.
(iii) Denoting
0ul)  ull
(0) — (400) _ s -
e 920 T ow )]C
and equating to zero the coeflicient at =2, we have
05©@9s© 9 .  Of 9 (,. 05©
0= K:‘J B_y_,-——ayj + 5:( \U(?_T_Jj) + E‘:( Vij _ayj ) (5-4)
and after use of Eq (5.2) we arrive at
7] 7] 0 (0) (1) -1
—_ K — [3( )"’Ymn(aum /3xn+0um /By,.)]0¢ =
[k 7, (e )] =0 (5.5)
Bearing in mind Eq (2.8), the above equation implies
[3(0)_’717111(Oun‘i)/dl'n'f‘au )/Byn)]C — CT(z, t) (5.6)

where the function C7(z,t) plays a role of an integration constant (for the
variable y). Taking the logarithms of both sides of Eq (5.6) we get

oul® gy
) _ 4 p -1 _
[s ‘7pq( oz, + v, )]C’e = In Cr(z,1) (5.7)
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(iv) Equating to zero the cocfficient at ¢~!, after some transformation one
gets

_ Puw(e,t) | g, 9
0 = KoZeoer —(E[A,Ja% (in Cr(z,0)] + "
5.8
9 (K d 1) dul) au“> o
+ a_yt \”W/j{[s 7pq( 2, ] € })

Introducing the function 9,(y) which satisfies in Y the following local equa-
tion

0

T (K + K ‘(y)) =0 (5.9)

dy;

one obtains

(91\",';; _ d ,”319;;
o =0 ("3,,) @10
Hence Eq (5.8) takes the form
. w(z,0)
0 = ’um
(5.11)
d [ 0 o 0nCr(z,t) | . du) 9w |
+ ggKogy (0= == U — G + e )]

In the subsequent section it will be shown that w(z,t) = 0. The positive
definiteness of K;; implies that

du oul? dnCrpr(z,t)
) _ o P\ = . gaens.y
s — oo T Dy ) = Ce(k(a,t) + 0 9o ) (5.12)

where k is a new function independent of y.
Now, we are ready to analyse the last term of the energy equation, by
equating to zero coefficient at ¢° in Eq (4.4). The result is given by

) P 0,
ﬂ >4
5y (WEOLs+ Ligo-(9uLe) + 50

i

aei Ll + gy o]+ ()

§0 = Ky L + (=OLe)5 - ﬂL)]
J

(5.13)
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where

OlnCrp(z,1)
Jdz;
and the last term { } is irrelevant for the subsequent analysis since its con-

tribution to the cell-averaging operation vanishes.
Let us introduce the averaging operator over the elementary cell Y

1
<()>= MY/('”-”

Averaging of Eq (5.13) yields

Li =

OV
<sOs = <I\,J>LL+<I\,Ja > Ll + L; <1\Ugf~>LkJr
» (5.14)
OV 99,y 0 09y,
+ 1\;_7 D a LkL + =— e, <[\,k+]\,Ja > Ly

By integrating by parts and using periodic boundary conditions imposed on
J; we obtain

" aﬂk 019 . ()19k
<K >=<-Nyy-—> 5.15
oy ayy Mgy, (519)
Reducing remaining terms in Eq (5.14) we arrive at the result
) g 0InCp(z,t) dn Cr(z,t) 9?In Cp(z, 1)
0= gl ne Ny e 5.16
<s > bik Ul’,’ Olk + O 10.1;; ( )
where Y
T . - Vi
]\{;{ =< [\ik-{-]\,'ja—y;> (5.17)

6. Homogenization of the displacement — entropy equation and
the final results

Let us observe that the highest singularity on the right-hand side Eq (4.3)
is due to the exponent factor at the temperature term

(0)
exp(—%yabaab;b C;l) = exp(%w(m,t)) (6.1)
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In order to avoid this singularity which does not appear on the lelt-hand side
of Eq (4.3), assume
w(z,t)=0 (6.2)

Equating to zero the coefficient at ¢=2 in Eq (4.3) one obtains
] duls)
Z‘)_g/; (cijmna_—yn) =0
By the positive definiteness of ¢;;m, this equation yields
uf?) = u{))(z, 1) (6.3)

In order to find the coefficients at ¢~! and ¢€° in Eqs (4.3) let us begin
with the analysis of ¢-order of terms produced by the exponential component
on the right-hand side of Eq (4.3), which we denote by g;

g = —;To [7,1 (exp{[s(o) +esV 424y
(6.4)
0 19
7mn(aT Oy Wl + eul)) + 2P 4 )]C.) - 1)]

With the use of Eqs (6.3), (5.7) and (5.12) the exponential term is transformed
as follows

exp{[s(o) +es 4262 4 4

J 19
—Ymn (OT + - c a )(U(O) + Eu(l) + 82,“(2) 1. ]CE_]} —
aul?  oul)
dz, + Iy, ) +

exp{ [s(o) +estD 42Dy ‘/mn(

(1)
et (G )+t 657}

Ol Cr(z,t
nCr(z, ))+

- C’T(a:,t)e,\'p[ ( (2,0 + = e2(..) + ]

Hence denoting

M_‘CL’)) +e2()+

E=c¢ (( L)+ O .
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we get

i 0L .
gi = -—-T0 0 Yy (CT(:c,t)e -~ 1) + 7i;Cr(z, t)e” )J_]] (6.5)

and observe that g; produces terms of an order ¢~! (the first member) and
€9 (the second member) as ¢ — 0. Using this result we find:

(i) Equating to zero the coeflicient at ¢!

9 0uld  aul) _
aTJj[Cijmn( aln + ayn ) - 7,_76] =0 (66)
where
6 = 0(z,1) = To(Cr(z,1) - 1) (6.7)
Let
) _ (()ug,o) _
um Xqu(y)O_,_ + Fm(y)(9 (68)
Tq

and observe that Eq (6.6) is satisfied if local functions X, and I}, satisfy
the equations

0 0\'711'[)(1
o \Cij “iymn =0 .
2y, (" irg T Cij B ) (6.9)
9 Olmy
"07]( Yij + Cijmn (7 — ()l/n ) =0 (610)

Eqs (6.8) + (6.10) are identical with those appecaring during the homogeniza-
tion of equations of linear thermoelasticity (cf Irancfort (1982) and (1983)).

(ii) Equating to zero the coefficient at £° we obtain

(0) (1)
50— i Dt O o 0”
pu; = (‘).LJ [Cl]mn( 8.1-_n + —(9!/.,1 ) ‘7,16 7lq0 @]
(6.11)

9 oull)  oul?
3y i (G + )

where definition (6.7) of © was also used. Averaging (6.11) over the cell Y
yields

0(15,0) 8'(&5,1)
+

a9;
o - %50 ~ Vg0 > (6.12)
dx, OYn ) J q(?yq
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After using of Eq (6.8) we arrive at

(0) H 02“1) H 90

<P> u; = C:Jpq(),b al 71_7 ({)1] (613)
where
7]
ctlleq =<Cijpq T Cijmn g;pq > (6.14)
n

or, N
71’1:7" =<7ij —Cijmna—ym-{-‘)’,'anJJ> (615)

n q

The formula (6.14) for ct 1pq is identical with that derived in the linear theory
while the result (6.15) is characteristic for the quasi-linear theory: we observe
that y/! is composed of two terms

dv;
7u'-7ﬂL+-<7wa > (6.16)

+

with or. )
X
71‘1:1"L =<%ij — Cijmn Q7 — aj >=<7ij + Ymn ();:J > (617)

being the homogenized thermoelastic coefflicient of the linear theory.
Comparing Eq (6.13) and Eqs (2.4) and (2.2) we sce that the term

ezn@ﬂao_g

in Eq (6.13) is equivalent to the temperature difference (T — Ty) for a
homogenized body, T! being a temperature of such a body; therelore

e=T"_T1,
(6.18)

TH

g = —

Cr(z,t) o

The same result is obtained by comparison of Eq (5.16) with Eqs (3.2)
and (2.3).
Finally, substituting Fq (6.8) into Eq (5.7) we get

OXmpq ) 3u§,0) or,

S.(O) — (‘)’pq + Ymn a'!/n é)a:q — TYmn T‘/:O = Cc In CT(Z, t‘) (619)
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and by taking mean value of the result, we obtain

gugo) . ‘ Tl
<50 > —7,’,{,50—1‘;— —o(T" = Ty) =<C.> In T (6.20)
where or
o :<7mn_m> (621)

Oyn

and 7;%L is given by (6.17) and the relations (6.18) have been used. Eq (6.20)
is a transcendental equation with respect to 7T'; it can be solved formally as

0 m H
T (6.22)

(0)
< >
s “Ymn 3. () [0

with the following "homogenized” specific heat

TH - T,

2T/ Ty) (6.23)

CH=<C.> 4o

Also after use of Eq (6.18),, the averaged entropy production equation (5.16)
takes the form

AdInTH(z,t)dInTH(z,1) P?InTH(z,1)

(0) — _ o H , ) n
< = N, N, —— .24
$ > ik 01, c')-a;k + Oz ,0. Ty (6 )

or )2
. T!H(z, 1)
TH(z,1) <V >= K] 2" 6.25
(z,1) <$ 92:0en (6.25)
7. Shift of the initial condition for temperature
Let the initial conditions for our problem he

ui(z,0) = Ui(z) T(z,0) = T(x) (7.1)

Then, after making calculations analogous Lo that of Francfort (1982) and
(1983), cf also Galka et al. (1994), we arrive at the following initial condition
for the homogenized temperature field

(T)(<Cc>/C=”)CX

Hz,0) =T, (7.2)

1 oU; 1 ]
Ty

p[(<7ij 7 Do CH

It is the desired results for a shift of the initial temperature of a homogenized
body.
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8. Conclusions

The homogenized field equations (6.13) and (6.24) and the effective coef-
ficients for a homogenized quasi-linear thermoclastic body can be obtained if,
similarly to the linear case the three local problems for the functions Jx, Xmpq
and I, are solved, Eqgs (5.9), (6.9) and (6.10).

}.

The homogenized coefficients A/} and Cijpq e the same as in the linear

theory, (5.17) and (6.14) while 7/! is different, given by (6.15) or (6.16) being
the homogenized 7;; coellicient from the linear theory; the second term on
the right-hand side of T.q (6.16) represents the influence of heat conduction
on the stress-temperature coeflicient as it comprises the function 9;, being a
solution of the local problem (5.9). The "homogenized” counterpart of specific
heat for the quasi-linear theory is given by the function CH, K Tq (6.23).

For the linearized case the coefficient of ¢ in Eq (6.23) is equal to 1 and
CH is constant (cf F'francfort (1982) and (1983)).

£
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Termosprezystosé i homogenizacja

Streszczenie

Rozwazamy zadanie homogenizacji niejednorodnego osrodka termosprezystego, o
zadanej w przestrzeni polozeli komdree okresowosci wspdlezynnikéw materialowych.
Przyjmujemy liniowe prawo termosprezystosci i liniowe prawo przewodnictwa ciepla,
natomiast zwiazek termodynamiczny micdzy entropia, temperatura i odksztalceniem
nie Jest linearyzowany. Korzystajac z metody rozwinie¢ dwuskalowych wyprowa-
dzamy efektywne wspolczynniki materialowe, rézne w og,olnosu od danych przcz teorie
zlinearyzowana. Jednak tzw. zadania lokalne (na komdree) sg u nas te same co w
teoril zlinearyzowanej. Zachodzi réwniez zmiana warunku poczatkowego, podobna do
zauwazonej przez Francklorta dla osrodka zlinearyzowanego.
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