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It is shown that the procedure of homogenization can be applied to deter-
mination of macroscopic constitutive relations of a magnetoelastic and
a ferromagnetoelastic periodically heterogencous media. The effective
material coefficients of a layered ferromagnetic structure are calculated.

1. Introduction

During the last two decades an increasing amount of research has been
conducted to develop methods and procedures for improving description of
macroproperties for given microinhomogeneous structure of solid media. In
the case of different physical fields interaction in solids thie problem of macro-
description is especially interesting from theorctical and experimental points
of view. The spectrum of physical phenomena in coupled ficlds is discussed e.g.
by Maugin (1988), Nowacki (1983), Parkus (1972). The method used in this
paper, called homogenization, Bensoussan et al. (1978), consists in replacing
the model of heterogeneous medium with a periodic structure by an equiva-
lent model which is homogeneous. Equivalence is understood in the sense
that the solution to the initial-boundary value problem under consideration
for a periodically hetcrogeneous body is ”close” to the solution to the related
initial-boundary value problem for the equivalent homogeneous body, effective
coefficients of which are constant. Homogenization was applied previously by
many authors to calculation of macro-behaviour of thermoelastic field, piezo-
electricity in solids, Galka et al. (1992), a perfect conducting solid, Bytner
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and Gambin (1992), and many others. The example of a practical meaning
of the method was shown in Mirgaux and Saint Jean Paulin (1982), where
superconducting multifilamentary composites in presence of a weak electro-
magnetic field is studied. The macroscopic transverse conductivity describing
a loss of energy dissipated in a matrix (with fibres as superconductors) is
in agreement with experimental data. Eddy-current non-destructive tests for
electromagnetoelastic materials are of more practical interest in the homoge-
nization technique. Zhou and Hsieh (1988) based the theoretical modelling of
a composite structure on the model similar to that of the self-consistent model
of matrix-inclusion composites and even in sucl a case interesting results were
obtained. The method of homogenization is more promising than the self-
consistent scheme if 2-dimensional examples are calculated. Among various
approaches of homogenization theory the variational I'-convergence method
e.g. Telega (1991), the Bloch expansion method Maugin and Turbé (1991)
and the asymptotic technique e.g. Galka et. al. (1992) can be mentioned, the
latter being applied in this paper.

Our goal is to compare the macroscopic behaviour of a micro-heterogeneous
magnetoelastic and a ferromagnetoelastic solid. By applying the theory of ho-
mogenization the method of the two-scale asymptotic expansion is exploited.
As a result the homogenized system of field equations and constitutive rela-
tions are obtained. All formulae include the solutions to so called "problems
on the cell”. The semigroup theory is used to derive the effective electric con-
ductivity and effective dielectric constants for the case of magnctoelasticity.
The integro-differential operator appears (similarly as in the homogenization
procedure applied to the viscoclasticity, cf Sanchez-Palencia (1980)) in con-
trast to the differential homogenized laws for the case ol [erromagnetoelasti-
city. The global constitutive laws are analytically calculated in the case of a
ferromagnetoelastic layered composite.

Denotation

— magnetic induction

- initial magnetic induction
— light velocity

elastic Hooke tensor

— electric induction

— electric field
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initial magnetic field
—- magnetic field

- electric current

- magnetization vector
body forces

— elastic displacement

- magnetic susceptibility
— electric permeability
- magnetic permeability
- electric conductivity
— mass density

po — density of charges
the dot over denotes time derivative, x denotes cross product.
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2. Basic equations of magnetoelasticity

The periodically heterogeneous, linear clastic solid with a finite electric
conductivity is considered. Within the [ramework of the fenomenological the-
ory for "slowly” moving elastic bodies, i.e., with the relativistic effects ne-
glected, such a physical problem is governed by Maxwell equations, equations
of motion and constitutive relations with the appropriate couplings between
fields.

On the assumption of a strong initial magnetic induction By and small
deformations only a slight change in the magnetic field vector H with respect
to the primary field Hgy occurs. In this connection it can be written

H=Hy+h B=Bg+b

where h and b are sufficiently small increments of pertinent ficlds.
Using the above relation and disregarding all products of small magnitudes,
i.e. of an order higher than linear, the following set of equations is obtained
by Nowacki (1983)
— Maxwell equations
roth =3+ D divb=0
(2.1)

rotE = —b divD = p,
— equations of motion

pt = divegradu + j x Bg+ P (2.2)
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— constitutive relations

i =nE + (i x Bo) b= ph
(2.3)

D= E+ (i x Bo)] - c%(izx Ho)

The above equations are valid in the domain B in the space E2 occupied
by the body in its natural state. The traces of liclds u, h, E are assumed to
be known on the boundary of the domain . Besides the homogeneous initial
conditions are assumed. It is the case when the motion of the body is caused
by forces P acting inside.

The heterogeneous structure of the medium is given by the Y-periodic
tensor functions of variable y = z/¢ (¢ is a small parameter representing the
size of inhomogeneity) satisfying the known conditions (cf Nowacki (1983))

Wij = Mji pii&i&5 > 1€

Nij = Nji ni;€i&; > 61€|2

€ij = € cii&i&; > ol€)? (2.4)
Cijkr = Cjikr = Ckrij cijkrCijChr > ¥IC|?

for all £ € R® and all ¢ € (R® X R*)sym, where v, 6, ¢, ¥ are positive
constants, and Y denotes the unit cell.

3. Effective constitutive relations

It is assumed that the solutions to (2.2) and (2.3) have the form of a two
scale asymptotic expansion

he(z,1) = A%(z,y,1) + eh}(z,y,t) + ...
us(z,1) = u¥(z,y,1) + cul(z,9,1) + ... (3.1)
Ef(z,1) = E°(z,y,1) + eEYz,y,0) + ...

where y = z/c and A*, w', E' arc Y-periodic Tunctions. In the sequel a

coordinate t will be postponed.
Substituting Eqs (3.1) into (2.1), (2.2), (2.3) and bearing in mind

0J(z) _ 9f(zy) 10/(z.y)
0:1:,' B 8:::,- & (9'!/,'

x
£



ASYMPTOTIC HOMOGENIZATION METHOD... 313

for fe¢ (z) = f(=, %) the hierarchy of equations can be obtained by equating
coefficients of the same power of ¢,

0

o Equating terms ol ¢~2 we obtain that u° is independent of g, i.e.,

u(z,y) = v'(z)

o Equating terms of ¢! we obtain that u'(z,y) = ~x(y)grad, u(z),
where x(y) is a solution to the unit cell problem
divy[c(y)grad, x(y)] = div,c(y) (3.2)

We defined the operator mean value < .> on any Y-periodic function
f(-,y) where

Besides E°(z,y) and h°(z,y) are gradients in y (z is a parameter).
It means that

E°(z,y)— < E°(z,y)>= grad,#(z,y)
(3.3)

ho(z,y)— <h%z,y)>= grad, ¥(z,y)
Functions & and ¥ are Y-periodic in y.

e Equating terms of €2 and taking the mecan value < - > in derived
equations we obtain

rot, <h0(:r,y)>=<c(y)E0(a:,y)> + <e(y)> (ﬁo(a:) % Bo) n
—Ciz(ii"(z)x <Ho(y)>)+ <n(y)E°(z,y)> +

+ <nly)> (izo(a:) X B0> 5.4
3.4

rot, < E%(z,y)>= — <p(y)ﬁo(z,y)>
<p> ' (z) = divl.chgmdruo(x) +
+[<n(¥)E°(2,9)> + <n(y)> (&(2) x Bo)| x Bo + P
where the constant homogenized tensor of elasticity is defined by

* =<c(y) - c(y)grad, x(y) > (3.5)
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In what follows the abbreviate notation will be used omitting arguments
where possible.

Now the homogenized constitutive laws have to be obtained. First we
look for the homogenized relation for magnetic induction and magnetic field.
Taking the divergence of Eq (2.1), using Eqs (3.1) and (3.3) and averaging
over the cell Y we obtain

div, [u(grad, ¥+ <h®>)| = 0 (3.6)

Eq (3.6) implies
v(z,y) = _Xl(y) <h0(.’t, y)> (3.7)

where x!(y) is a solution of equation on the cell
divy [p(y)grad, x'(y)] = div,p(y) (3.8)
Then the mean values of hA° and b° are related by
<b’>=ph <h®> (3.9)
where the homogenized constant tensor p”

p* =< p(y) - p(y)grad, x'(y) > (3.10)

We conclude that the homogenized magnetic permecability has the similar form
as the elastic homogenized tensor.
Now we look for homogenized relations for electric induction and electric

current.
Taking the divergence of Eq (2.1), using the asymptotic expansion (3.1)
and (3.3) and averaging over the cell Y we obtain

: 0 : .
div, [(652 + 17) (< E°> +gra,dy<b>] + div, [C(uo X BU)] +
(3.11)
1. . . .
——5div, (ii® X Ho) + div, [n(i® x By)| =0
Eq (3.11) contains the time derivative of E° and it is solved by Bytner and

Gambin (1993) using the semigroup theory.
To show the final formulae for homogenized relations let us introduce

V={0: 0€clL (R, ¥-per, <O>=0} (3.12)
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equipped with the scalar product

a% 90
$,0)s = [ €;(y)——— d; .
(2,0)y ./(ﬂwamaw(y (3.13)
Y
the operator A (whlch is bounded and symmetric [rom V into itsclf) and the
elements of V: I 12 4.7 =1,2,3 deflined by
(745 00 . 00
Aé@ /771_10 aJJd (ij)V_i,/fxlayj(l
00
~ = L 1 0)~ = 12
7,0)y Y/n”f)yi dy (f;,9)y y/uu 5 dy (3.14)

3 _ 4l 2
fi=Al; -
Finally the macroscopic constitutive relations have the form
<DP> = by <E9>+ [ <E9> ds Uy (o° x Bo)s +
0

1
1
+ /(lfj(vo X Bo); ds — =z <;L:n'1 > E,'krvngm +
0

t
1
+ Pc EJn-r'U BOT - ‘5‘/%] Einr Uy BOr dS-|-
0
(3.15)

<j9>

t
0 0 . 0 ,
b?j<Ej>+/(l}’j <E7> ds+b}i(v" x Bo); +
0

t t
1
+ /d?j(vo X BO)j ds quhjnr'v BOr - E/q,’-’jsjmvgBOr ds
0 0

where the homogenized coefficients have the following representations

bfj =<é€5 — f—ik(?kfjl > b?] =<1 — mka;\-fjl >
df; =<0 fle™ 4 > dl, =< nikc')kffe_'45 >

(3.16)
P =<eundpf] > Pl =< ik O fi >

g; =<exOpAfie > q; =<nipdp Affe N
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The homogenized set of Eqs (3.5) and (3.15) interrelates macrofields u©,
<E°>, <h®> with <j%>, <D°%>, <b%>. It has to be emphasized that the
expressions (3.15) contain the integro-differential terms. The formulae (3.16)
can be calculated for spacial cases only, becouse of complicated form (e=4¢ is
a infinite sum of opcrators). The one dimeusional example is calculated by
Bytner and Gambin (1993). The initial static field Hg is generated in such
a way, that the constant static magnetic induction Bg inside the body is
produced, being responsible for the restrictions on the type of heterogeneities
which can be treated by the method applied. Namely, taking into account
that rotHg = 0and Ho = p~!(z)Bo the following conditions imposed on the
tensor field p~'(z) must be fulfilled

ek (2)Bor = 0

One should takeinto account the above conditions when numerical calculations
have to be done.

4. Homogenization of a ferromagnetoelastic solid

Let us assume about a magnetic material that:
e The magnetostrictive and piezostrictive effects are neglected
o The elastic material is linear

e The electromagnetoelastic material is a perfect conductor (clectric free
charges and electric displacement current may be neglected)

e The velocity ficld of a material is small as compared to the light velocity
so that relativistic effects are negligible

e The magnetic material is itsell linear (so called "soft” ferromagnetic
material), i.e.

M =xH B = py(1+ x)H
Under the above conditions the governing ficld equations are given by a

set of nonlinear coupled partial differential equations of Moon (1984). On the
extra assumption

H(z,1) = H® + h(z,1) |H% < |h|
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these equations can be linearized cf Zhou and lsich (1988). They include
— Maxwell equations

roth=j divb =0
(4.1)
rotE = —b
— equations of motion
pic = div(cgradu) + div [ux(H% + hH®)| + (5 x B°) +
(4.2)
+ ,ux[(HO D)k + (k) - D)HO]
— relations for j and b
j=n(E+ux B° b= ph (4.3)

and the appropriate boundary conditions.

The heterogeneous structure of the medium is caused by 5 and ¢ being the
Y -periodic tensor functions of variable y = z/¢ and satisfying the conditions
(2.4).

The magnetic permeability and magnetic susceptibility are assumed to be

constant. This assumption simplifies the considerations.
Applying the method of two-scale asymptotic expansions it is assumed that

the solutions to Eqs (4.1) and (4.2) have the form of Lq (3.1).

Like in the magnetoelastic case, ug does not depend on g, i.e.
uo = wug(z,?). Similary, hg is independent of y.

Finally, after making necessary calculations, the homogenized set of equa-
tions for the ferromagnetoelastic medium takes the form

rothg =< jo>

rot < Eg>= —p.fzo

divpho = 0 (4.4)

< p> g = div,cgrad, uo + div, 4o x(H%ho + ho HO)| +
+(<do> XB°) + poX[(H - V., ko + (ho - V. ) H]

<jo>= r,"[< Eo> +(ito X BO)]
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where c” is given by Eq (3.5), #" has the form
7" =<n> — <ngrad, I (y) > (4.5)

where I7(y) is a solution to equation on a unit cell

divy [n(y)grad, 11 (y)] = div,n(y) (4.6)

The set of Eqs (4.4) with the formulae (3.5), (4.5) and (4.6) describe the ma-
croscopic behaviour of the special case of inhomogeneous ferromagnetoelastic
body defined in this section.

The effective elastic tensor c* and the eflective tensor of electric conducti-
vity 5" have to be calculated after a particular geometry of periodic structure
is assumed. The example of layered structure is given in the next section.

5. One-dimensional example of a layered ferromagnetic medium

We assume that the medium has a layered structure and a unit cell consists
of two different homogeneous but arbitrary anisotropic layers.
Define

v = (y1,92.¥3) 2=y

[1= ()" =)

K(y) = { 1 !f ¥ belongs Lo a ma.teria.l w?th propert,!os (1)
0 if y belongs to a material with propertics (2)

<k(y)>= € volume fraction of material (1)

(1 - €) volume fraction of material (2)
and assume that the material coefficients have the form
c(y) = x(y)[c] + <@ p=p) = p

n(y) = &(y)[n] + n'? x = x = x®

In order to obtain ¢ Fq (3.5) has to be used and on the assumptions made
above we get

arH

|
Ciljkl =<5 — Cij2n—.()7
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where components of I'*' fulfil the cquations

6cmn (71“,§’ _ aci2kl
dy Oy Oy

Integrating both sides of the above equations we have

Kl
Ci22n0—; = Ciokl + Siki

S =constants, being determined by the unigueness condition of solutions
T'¥ in the class of periodic functions

- IR e
Sikl = = <Ciggn > <CjpanCikl >

Thus

A !
ik = <Cijkl> — <Cij2ncp22”0p2kl> +

+ < CijanCpan > < Cazg > < €y Crakl >
Finally, after calculations we get
h -1
ciin =< ikt > —(L7 )pillenizil [eij2p) (1 = €)

where
2
Ly = Cg,)ﬂ( -6+ 52;))25

Analogically we calculate 5 from Eq (4.5)

b =<y > et = 8 gLl

7722 (1-6+
The expansions for Cz;kl and 17 demonstrate the effect of macroscopic trans-
versal anisotropy caused by the geometry ol layered structure even il tensors
¢, ¢, n(1) and 5D are assumed to be isotropic. In general case the ef-
fective tensors are anisotropic. The graphical illustrations of the qualitative
dependence on volume fraction £ of the particular components of tensors ¢t
and n" are given by Galka et al. (1991).
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6. Conclusions

It has to be emphasized that the zero-order terms in g-expansion series of
the electric and magnetic ficlds E° and A° are rapidly fluctuating i.e. they
depend on the microvariable y on the contrary to the pure dependence of
the displacement wu on the macrovariable z. In the effective relations for
the mean values of the current < j° > and the electric induction < D®>
we obtain the integro-dillerential terms (corresponding to the memory eflects)
which describe noulocality in time of the eflective laws. In the case of a perfect
conductor when D = 0 the integro-difTerential terms disappear in Eqs (3.15).
It is proved that the kernels in integral terms decay exponentially as times goes
to infinity and consequently the "memory” vanishes exponentially. In the case
of the ferromagnetoeclastic material considered in Section 4, Eq (4.4), have the
same form as Iqs (4.1) + (4.4) the only difference is that rapidly fluctuating
coefficients ¢(y) and 7(y) are replaced by constant tensors ¢* and 7.
There are no new elfects in macrobehaviour as compare to microbehaviour in
contrast to the case ol magnetoelastic case.
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Metoda asymptotyczna homogenizacji dla pél sprzezonych w
periodycznie niejednoroduych odksztalcalnych cialach stalych

Streszczenie

Pokazano, ze procedure homogenizacji mozna zastosowaé do wyznaczenia makro-
skopowych zwiazkéw konstylutywnych pewnych magnetosprezystych i ferromagne-
tosprezystych periodycznie nicjednorodnych osrodkdéw. Obliczono efektywne wspdl-
czynniki materialowe dla warstwowej struktury ferromagnetycznej.
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