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This paper considers the robustness of trajectory — control problem of
the nonlinear Wheeled Mobile Robot. The equation of motion for the
front steered wheels is used via the Lagrange’s equation. In this paper
we design a control algorithm in which we detect trajectory errors by
finding the difference between desired and actual quantitics determined
in joint space. A trajectory following control algorithm contains PD
control law and dynamic model of the WNIR. This paper demounstrates
the computed torque method proposing a new approach to the tracking
control of rigid WNR. The ellect of the nonlinear modcl-based control
is illustrated by simulation results which are presented.

1. Introduction

Wheeled Mobile Robots (WMRs) and Automated Guide Vehicles (AGVs)
have been used in automated factories for material handling and especially the
nuclear and explosive ones. These vehicles require some types of guide path
to follow, such as reflective tape or electromagnetic cables. Alternatively,
they can use a route map stored in the computer memory. A compresive
survey of the latest control results for rigid WMR is presented by llemami
et al. (1992). Authors studied a synthesis of the optimal control low for
three-wheeled vehicles. This synthesis was based on the lincarized dynamic
model of a vehicle and minimization of a quadratic criterion, assuming that
the process model is known in details. Ilowever, this is never the case in
practice. By nature, most WMR remove various parts and tools so they have
varying loads. The robust and adaptive tracking control problem for improving
dynamic performance of the WMR in the presence of parameter uncertainties
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and unknown disturbances are being intensively studied by the author (cf
Hendzel (1993a,b) and (1994)).

It is known that nonlinear, uncertain systems are dilficult to control by a
conventional regulator, which is the main reason for using relatively modern
methods in synthesis of the control algorithm. In this paper based on a dyna-
mic model of a the four-wheeled cart with front steering wheels, robustness of
the nonlinear model-based control is presented. We assume that the desired
trajectory is available in terms of the time histories of joint position, velocity
and acceleration, respectively. We design a joint-based control scheme, that
is the scheme, in which we detect the trajectory errors by finding the diffe-
rence between the desired and actual quantities, respectively determined in a
joint space. A trajectory — following control algorithm contains PD control
law. The effect of nonlinear model-based control is illustrated by the presented
simulation results.

2. Dynamic model of the system

The class of systeme presented in this paper consists of multibody mecha-
nisms. Fig.1 illustrates the scheme of WMR C80!.

Fig. 1. Scheme of the vehicle

It consists of three units: track of the veliicle (a), drive mechanism (b), and
steering unit (c¢). The motion of vehicle is fully described when we know the

1The WMR C80 was designed and built in the Rzeszéw University of Technology
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velocity of point A and rotation angle a. The motion of vehicle is described
by the system two generalized coordinates ¢ = S4 and ¢ = a. Fig.l
shows dimensions and presents definitions of some other variables. We use a
standard method for deriving the dynamic equations of mechanical system via
the Lagrange’s equations

doL 0L
Ef)_q - 0_q =Q (2.1)
where
g — set of generalized coordinates, ¢ € R?
L - Lagrangian
Q - vector of generalized forces acting upon the system, Q € R?

The potential energy P ol WMR is constant. The kinetic energy being a
quadratic function of the vector ¢ can be written by Hendzel et al. (1992) as

E = AVa+ BV? + tan*a + CVadtana + D&? (2.2)
where
A = %ml + mg+ m3 + Iyz(;lg)z + Iys(l;%s)z
l l
B = %ml(f)2+m3+ (%121 +122) (%)2%-1142 (E:_z)z-}- o
+ o, (j—:)z(% + %) + Iﬁ(%)z

C = 2123;,1:+21y3%%
D = 123+1y3(%>2

In Eq (2.3) my, mg, ma stand for substitutional masses of units a, b, ¢,
respectively. [,;, I; represent elements ol the inertia matrix. Taking partial
derivatives we can rewrite Eq (2.1) as follows

24 + 2Btan? ¢, Ctang G n
C tan ¢ 2D G2

4Bgq, tan ¢2 C(Icosl 72 g | _ ) @
—2By sin gg—L 0 Q2 || @

cos® ¢y

(2.4)
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where
Q1 =54 G1=S54="Va 2 =« 2= ¢
The generalized forces in Eq (2.4) we can write as follows
o1 =854 #0 0y = ba =0
i L -1 l
Q1654 = [er—l - ( ! - 3f2 + T—Bfg\/l + tan2a) ?]65,1
2 2 3 1 (2.5)
(5(]2:(5&#0 (55,4:0
. sly :
Qr6a = [Algzg - l—ungna]éa
1
where
M, — motor-torque of the drive unit
M; - actuator-torque
Q — gravity lorce of the WMR
1 —  Coulomb friction coeflicient
f2 - flowing friction coefficient of wheels of the drive unit
f3 — flowing friction coeflicient of the steering wheels
13,72 — gear ratio of the drive and stecring unit, respectively.

In Eq (2.5) viscous friction appearing in kinematics pairs is neglected.
Using Eqs (2.5), (2.4) and assuming the forward velocity Vi, to be constant
we obtain

2D . QBV} sin « 1314 .
iy == =M .
) “ iy cos®a * lliqusgna 2 (2.6)
From Eq (2.6) it can be seen that
D
H = 2—
12
2 .
V(a) = 2[)TVA sm3a
iy cosda
(2.7)
. I3l .
F(&) = —uQsgné
lyig
M = M,

Finally, substituting Eq (2.7) into Eq (2.6) we have the scalar equation
Héa+ F(a)+V(a)=M (2.8)
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Eq (2.8) describes the WMR motion.

161

The actuator used in this vehicle is the direct current (DC) motor with
permanent magnet. The dynamics of DC motor is expressed as Luh (1983)

and Parkin (1991)

Ug = RaIa + kbam

M =k,
where
uq,f, — armature voltage and current respectively
R, — armature resistance
ky,k; — proportionality constants
G - angular velocity of the actuator shaft.

(2.9)

The DC motor shaft is mechanically connected with the actuator-gear-load

assembly so that
Q. = i«

The assembly is described by the equations

Héa+ F(a)+ V(a)= M
M =k,
Ug = Ra]a + kbi2dm

We can rewrite Eq (2.11) as
Pa+G(a)+ K(a)=1u

where

Gla) = %F(d) + kyigd

3. Trajectory-following control

(2.10)

(2.11)

(2.12)

(2.13)

The WMR control problem is considered. To solve this problem we will
divide the controller into a model-based part and a servo part (cf Craig (1986)

Il — Mechanika teoretvczna i stosowana
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and (1988)). Such a formulation of control yields a controller that suppresses
disturbances and tracks desired trajectories. llowever, this desirable perfor-
mance is only achieved when all the velicle parameters are known. Suppose
that our model of the vehicle is imperlect. We define the following notation

P=pP-P K=K-K G=G-G (3.1)

where P, K, G stand for our model parameters. We partition the controller
into a model-based part and servo part. The model-based part of the controller
appears in a control law of the form

w=Ai+ B (3.2)

where

A=p B = K(a)+ G(&) (3.3)
and the servo part is
% = &g + I\’D(do — a) + I\’P(ao —a)

In the control law partition the system parameters appear only in the model-
based part while and the servo part is independent of these paramecters. We
assume that the trajectory is smooth and the trajectory gencrator provides
g, G, &p at all moments of time ¢. We define the servo error between the
desired and the actual trajectories as E = ag — «, E = &g — a. Combining
Eq (3.2) with Eqgs (2.12) yields

E+ KpE + KpE = P~ [Pa+ G(&) + K(a)] (3.4)

For the exact model the right-hand side of Eq (3.4) is zero. The closed loop
system Is then characterized by the error equation

E+KpE+KpE=0 (3.5)

Since this is a second-order differential equation, we can design any response
we wish. In the trajectory — following problem critical damping is often the
choice made. In order to do this, gains in Eq (3.5) of a PD control law should be

Kp = 4lwr2 Kp=2/Kp = w, (3.6)

where w, is the lowest structural resonance frequency. Fig.2 shows a block
diagram of our trajectory controller.



ROBUSTNESS PROBLEM IN CONTROL... 163

Ga)+RK(a)

Fig. 2. Trajectory following controller

4. Approach to the robustness analysis

When the parameters of dynamic functions are not known exactly, the
mismatch between actual and modeled parameters will cause servo errors. Qur
model-based controller employs estimates of the parameters V with errors
denoted as

V=v-vV (4.1)
Hence, we have a limit imposed on the magnitude of any parameter error
Vil < Vim — Vins (4.2)

Now, after Craig (1986), we will check the influence of these uncertainty on
the quality of control and stability. This method is similar to that used by
Craig (1988). Using

P-1Pé = P~'Péay— P7'PE (4.3)

we have ) i
P7'PE + KpE + KpE = P[Pé&y + G(&) + K(a)] (4.4)

Now, we multiply both sides by P~!P to obtain
E+4 P 'PKpE+ P'PKpE = P~V [Péo + G(a) + K(a)) (4.5)
Writing
G(a) = F(&) + Cva

Cva=Cyag—-CyE
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we can rewrite Eq (4.5) as
E+P 'PKpE+P 'PNpE = P [Péo+ F(a)+ K (a)+Cvéo—CyvE] (4.7)
We define N to be the right-hand side of Eq (4.7). We have
N = P [Péo + F(&) + K(a) + Cy(do — E)] (4.8)

The form of Eq (4.8) is independent of & and depends on &, a only occurs
through sgna, sin a, cosa, [af < Z.

Hence, N has a limit that is independent of the trajectory (&, @, ).
We now rewrite Eq (4.7) in such a form that the left-hand side is a linear
differential equation. Writing

P'PKp=Kp+ P 'PKkp-Kp
(4.9)

P 'PKp=Kp+ P 'PKp— Kp
we have

E+KpE+ KpE =1
(4.10)

n=N+(1-P'P)KpE+(1 - P 'P)KpE

Consider the convolution operators II; : 5 — E, II;: 5 — E. Now, we
write the transfer function from input 7 to output FE as

E(s) 1

n(s)  s2+ Kps+ Kp (4.1)
and the transfer function from input 7 to output E as
f((ss)) T2 1\";3 + Kp (4.12)
From Eqs (4.11) and (4.12) we have
t
e(t) = /h,(t —7)n(r)dr
° (4.13)

é(t) = /g(t —7)n(7)dr
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where g and h are the impulse responses of Eqs (4.11) and (4.12), respectively.
Kp, Kp are given by Eq (3.6). We can bound Lqs (4.13)

1l = [ 11(0)]
0

(4.14)
1l = [ 10} de
0
where
h(1) = te~ VR P g() = (1 = /Kpt)e VEPt  (4.15)
. 4c7!
[H1]leo = Kp" =m H2lloo = 5 =72 (4.16)
\D
Since the norms of the operators are || II||,||/I2]] < oo, we say that
Hy, Hy € Ly (cf Craig (1988)). Hence, we have
| E\l7 < MilinllTee | Ell7o < alinll7e, (4.17)

where ||n||7,, denotes the L., norm of #(?) truncated at the time 7. For
brevity, the sign T., will be dropped below.

We develop a limit on ||5]| as a function of ||E||, ||E||. The term on the
right-hand side that is independent of E, E has a limit

6y = ||P7Y[Péo + F(&) + Cvéo + K(a)]|| (4.18)
hence we can bound 7 as follows
l9ll < é1 + 62| E|| + 65| £ (4.19)
where

6, =|(1 =P 'P)Kp — Cv||
(4.20)

6 = I(1 - P P)ip]

Combining Eqs (4.17) and (4.19) results in two lincar incqualities within
which the error magnitudes must lie

7161 Y163 .
Bl < 2
1 —vyi6  1—716, (4.21)
01 1 =23 -
NE|l 2 —— + —— I £]|

0y Y20
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where we have assumed that
716, < 1 Y263 < 1 (4.22)

To determine condition on which a closed region in the magnitude plane exists
(see Fig.3) we solve the system of inequalities (4.21). This condition can be
written as

Y162 + 7263 < 1 (4.23)
Hence, when Eq (4.23) is satisfied the system represented by Eq (4.10) is Ly
stable.

y [rad“£ scale y - 1:1
2 scale x - 1:1
IEI
1E
/h
[~
-1 0 / 1 2 3 xTrad/s]
IEN
-1k

Fig. 3. Stability region for ||E]|, || E||

5. Simulation results

In this section, a second-order nonlinear system (2.12) will be used to
illustrate robustness of computed torque controller. We will regard the motion
of WMR, point C of which. Fig.4 follows the desired circle trajectory with
radius R = 1 [m]. The WMR moves at speed V4 = 0.2 [m/s]. Fig.5 and
Fig.6 show the reference generalized coordinate ag and generalized velocity
&, respectively. The input data are the range of uncertainty in parameter
values, the servo gains, and the bounds on the velocity and acceleration of the
desired trajectory. The following values were used

||léol| = 0.4 [rad/s?] K € (5.29,5.38) [V]

[léof[ = 0.23 [rad/s] P € (0.37,0.4) [Vs®/rad]

f| Sne | o = 1.24 Cyv € (4.73,4.81) [Vs/rad] (5.1)
Kp=9 F € (1.5,1.53) [Vs/rad]

Kp=6 my € (550, 750) [kg]



ROBUSTNESS PROBLEM IN CONTROL...

scale y - 4:1
scale x - 15

0 i p) 3 R

Fig. 5. Generalized coordinate ayg
y [rad/s]

2 scale y - 8:1
scalec x - 15

Fig. 6. Generalized velocity ag
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With these values the robustness condition (4.23) was met. The left-hand side
evaluated to 0.2613. Fig.7 shows the regions of interest and the trajectory
error of the control system in the error magnitude plane.

scale y - 200:1
scale x - 200:1

_3 x Trad/s]
HEN

Fig. 7. Regions for a numerical example

The numerical analysis performed shows that presented method is robust
to parameter errors. That is, for moderately mistuned parameters the designed
algorithm keeps statisfactory performance.

6. Conclusions

In this study, we present a trajectory-following control for four wheeled,
front steering vehicle. The analyzed class of system consists of multibody
mechanisms. Uncertainties result from unknown system parameters. In desi-
gning a trajectory following algorithm we divided the controller into the model
based part and the servo part. In the result the system parameters appear
only in the model — based part and the servo part is independent of these
parameters. Using this methodology we have chosen the PD servo law with
gains, so the system is critically damped. We have shown that the designed
controller is robust in the presence of unknown system paramecters. In order
to test the designed controller we made a scrics of simulation experiments. It
was observed from numerical studies that the control algorithm we presented
worked well when the bounds of parameters were small. If the bounds are
large then the system is still stable but the quality of control will degencrates.
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niedokladnosci modelu

Streszczenie

W pracy oméwiono zagadnienie §ledzenia zadanej trajektorii ruchu przez wybrany
punkt mobilnego robota. Do opisu wlasnosci ruchu precesyjnego zespolu skrecajacego
mobilnego robota wykorzystano réwnanie Lagrang’a drugiego rodzaju. Zaklada sie,
ze zadana trajektoria ruchu wybranego punktu mobilnego robota jest przeliczona z
przestrzeni kartezjatiskiej do przestrzeni katowej i jest zapisana w pamieci komputera
realizujacego sterowanie. Analizowany algorytm sterowania oparty jest na metodzie
wyliczanego momentu. Wlasnosci stabilnosci oraz jego jakosé oceniono na podstawie
teorii ukladow krzepkich.

Przedstawiona metoda stanowi szersze ujecie problemu sterowania mobilnymi ro-
botami. Rezultaty zastosowanej metody sterowania otrzymano na podstawie symu-
lacji numeryczne;j.

Manuscript received August 17, 1993; accepled for print Oclober 3, 1994



