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The very detailed numerical analysis of the shell stability problem com-
prising coincident bifurcation points and branching paths is presented
in the paper. The general routine leading to detection of bifurcation
points and to the tracing of post bifurcation paths is described. The
spherical shell under uniform normal inward pressure is examined as the
example. The principal equilibrium path and all postbifurcation bran-
ching paths are determined in the whole range of the loading history.
One parameter, conservative loading is taken into account. The linearly
elastic material is considered and the whole analysis is performed for big
deflections. Finite element method in displacement formulation is used
in the program of numerical analysis. The computer program has been
run on standard PC.

1. Introduction

From the practical point of view the knowledge of limit points locations on
the nonlinear equilibrium paths is maybe more important than the knowledge
of bifurcation points, which do not appear in real structures (i.e. structures
with natural imperfections). The methods of determination of limit points
are far more simple than the techniques of determination of bifurcation points
and bifurcation paths. The knowledge of the latter is very important from the
point of view of researcher who wants to examine all phenomena associated
with a nonlinear stability analysis.
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In the literature on the subject there exist many suggestions how to de-
tect bifurcation points, how to switch into postbifurcation paths and how to
trace them, respectively. The most up-to-date review of these methods was
presented by Choong and Hagai (1993). Many approaches are of theoretical si-
gnificance only since it is nearly impossible to incorporate them into program.
Other are not general enough to apply then to any circumstances. Nearly all
of the methods discussed by Choong and Hagai (1993) fail when not a simple
but a coincident point of bifurcation is encountered.

In this paper the procedure called by Batoz et al. (1976) the "load per-
turbation method” will be successfully adopted after appropriate modification
to the problem, which exhibits a coincident point of bifurcation. It will be
shown that the procedure is general enough to handle with detecting of the
bifurcation points of any kind and tracing postbifurcation paths in the whole
range of load history.

The main aim of the paper is presentation of the algorithm which enables
detection of the bifurcation points and determination of the full postbifurca-
tion paths in the numerical analysis of discrete mechanical systems on the
example of shell structures. It is not enough to locate the bifurcation point.
One should determine what kind of bifurcation point it is (cf Husein (1975),
Thompson and Hunt (1973)). To answer this question one should examine
stability of the postbifurcation path in the vicinity of the branching point. To
do this, properties of the tangent stiffness matrix must be examined. Main
of them are: stability determinant (i.e. the determinant of tangent stiffness
matrix in the finite element approach) and the lowest eigenvalues. Calcula-
tion of the big matrix determinant or finding its eigenvalues and eigenforms is
very laborious and time consuming in the case of big systems (several hundred
DOFs or more). It will be shown that there is no need to find these quantities
at every step of numerical analysis. It is possible also to find a part of them
(e.g. stability determinant) as the by-product of other analysis.

Laterally loaded shell structures are capable of loosing its stability by bi-
furcation buckling or snapping. Very often the first one precedes the other
but the postbifurcation path has to meet the fundamental path and the non-
symmetrical form of deformation must return to the symmetric mode. It is
interesting to observe in what manner this process proceeds. Usually (cf Batoz
et al. (1976), Srinivasan and Bobby (1976), Leicester (1968)) ouly the first
part of the branching path is determined. In author’s opinion it is interesting
to trace the path till the moment it meets the fundamental path, i.e. till it
returns to the mode of deformation corresponding to the fundamental path.
Such complete branching paths will be shown in the example shown in the

paper.
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2. Fundamental equilibrium path

The equilibrium path is the set of equilibrium configurations in the load
displacement space. Those points are obtained as a result of the solution
of the nonlinear algebraic set of equations which govern the problem. The
detailed procedure and the technique of solution is presented by Marcinowski
(1989). Here the attention will be focused on the detection of bifurcation
points during the tracing procedure of the fundamental path, switching into
the postbifurcation path and tracing the branching paths.

At the first step of analysis the fundamental (or primary) equilibrium path
is determined. It is the path passing through the origin. The tracing of this
path is accomplished using any displacement as the control parameter (cf Mar-
cinowski (1989)). If the geometry of the examined structure is symmetrical
and the load is symmetrical as well, the deformation mode along the funda-
mental equilibrium path is also symmetrical. This general rule ceases to be
true for post bifurcation paths. To answer the question of stability of the
current branch of the primary path the tangent stiffness matrix determinant
must be calculated. It appears during the solution of the nonlinear algebraic
equations of equilibrium set process as the by-product of the solution proce-
dure. After factorization of the matrix into two triangle matrices (Cholesky’s
procedure of the solution for increments in the Newton’s iteration) the deter-
minant can be obtained as the result of multiplication of all diagonal terms in
an upper triangle. For big systems the obtained value would be too big. Tor
this reason only the logarithm of this number is calculated. And namely

N N
z=detK = HT,-,- and Clogz = ZlogTi,-
=1 i=1
where
T; — diagonal elements of the upper triangle
N - number of independent degrees of freedom:.

At the same time the number of negative terms among Tj; is determined.
If all Tj; are positive the matrix K is positive definite (it is only the neces-
sary condition for the positive definiteness (cf Demidovich and Maron (1970))
and one should be very cautious using this condition only) and the current
configuration is stable. When at least one Tj; is negative the configuration
ceases to be stable. The change of the sign takes place at limit points. Those
points are easy to distinguish, being local extremes on the path. The change of
the determinant sign takes place also at bifurcation points (cf Husein (1975),
Thompson and Hunt (1973)). Usually the slope of the fundamental path re-
mains finite at these points and only the change of the determinant sign proves
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that a bifurcation point has been passed. At such zones also the convergence
drops rapidly being an additional indication that the bifurcation point has
in the vicinity. After passing this very zone tracing of the fundamental path
proceeds in standard way. There is a problem yet. One should answer if the
point of bifurcation is the simple critical point or the coincident critical point
(cf Husein (1975)). Additional analysis must be performed. At the vicinity
of the bifurcation point (on the unstable part of the fundamental path, i.e. a
little bit above the bifurcation point) all eigenvalues of the tangent stiffness
matrix must be calculated. If only one is zero — the simple critical point is
dealt with and if more then one are zero - the coincident critical point is met.
This additional analysis is rather laborious but is obligatory to avoid possibi-
lity of missing of another paths intersecting the fundamental one at this very
point. Fortunately this analysis must be performed only at few points. In
the analysis described above the location of a bifurcation point is determined
only approximately. There is no need to determine it very accurately. It will
be done later when tracing the post bifurcation path. The point of intersec-
tion between the post bifurcation and fundamental paths, respectively, will
establish the exact location of the bifurcation point.

3. Branching paths

Branching paths are the paths which intersect the fundamental path at
the bifurcation point. They exhibit the qualitatively distinct mode of defor-
mation than this of the fundamental path. During the tracing of the primary
path by means of any general routine one can easy omit the bifurcation po-
int as well as branching paths. The special procedures must be adopted to
determine both of them. In the literature several approaches to the problem
of switching into branching path exist (cf Choong and angai (1993)), where
the most important role plays the eigenvector corresponding to the zero ei-
genvalue of tangent stiffness matrix which appears exactly at the bifurcation
point. But these approaches in the author’s opinion seem to be very laborious
and not general. Their most important drawback is that they do not work at
the coincident bifurcation points. In this paper the load perturbation method
similar to the one described by Batoz et al. (1976) will be adopted. A small
perturbation load in the form of concentrated force is applied along with a
given load distribution. The perturbation load should be applied in such a
way to initialize the desired form of deformation, different from the deforma-
tion mode on the primary path. The path with the perturbation load (being
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actually the imperfection path) is traced as long as the level of the bifurcation
point is reached and passed and its location was determined approximately
during the tracing of the fundamental path. The change of the sign of the
tangent stiffness matrix determinant indicated that the bifurcation point had
been passed. There was no need to determine its location very precisely. It
will be done later during the tracing of the postbifurcation path. The point
of intersection between the postbifurcation and the fundamental paths will be
the bifurcation point.

So, when the path with perturbation load reaches (or rather slightly pas-
ses) the level of bifurcation point estimated during tracing of the primary
path, the perturbation load is removed. This removing is accomplished at
one or at several steps. It depends on the value of perturbation load taken
arbitrarily (but relatively small) at the very beginning. The first equilibrium
configuration (the first point) reached at this zone allows to start the tracing
of the branching path (the postbifurcation path) in an ordinary way. The
tracing is performed in two opposite directions from this very point. Similarly
as when tracing the fundamental path the displacements were used as control
parameters. They were changed when the convergence of the method dropped.
The graph of several equilibrium paths was drawn currently. It was updated
after every portion (no more than 30 = 40 points) of calculation. With the
help of this graph it was easy to decide which displacement parameter was to
choose. The step of the control parameter was established by the trial and
error method. In the vicinity of bifurcation points the convergence drops and
one should shorten the control parameter increment. To answer the question
if the post bifurcation path is stable or not it is enough to examine the sign
of the stability determinant. In doubtful situations (the positive stability de-
terminant is only the necessary but not the sufficient condition for a stable
configuration (cf Demidovich and Maron (1970))) the eigenvalue analysis must
be performed. All positive eigenvalues prove that the configuration is stable,
otherwise it is unstable.

4. Numerical example

The spherical shell spread over the square hase and undergoing the ac-
tion of the uniform normal inward pressure was chosen as the exaniple of the
detailed analysis. This example is of interest since its behavior is highly non-
linear and two branching paths appear below the symmetrical buckling. This
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problem is suitable for testing the capability and reliability of the technique
presented in the paper.

a=b=1.115m
H=63.5mm
h=25.4mm

a=0 x E=68.95MPa
R=2.54m
r=0.3
u=v=w=0

Fig. 1. Spherical shell under uniform mward pressure

The geometry, boundary conditions and material properties are shown in
Fig.1. The symmetrical and part of the unsymmetrical paths for this shell
were obtained by Leicester (1968). It is difficult yet to compare obtained
results with those of Leicester since he had drawn his graphs versus the average
displacement. One can compare only the critical pressure values (see Leicester
(1968) — Fig.3 and Fig.7). The solution of this problem was presented also by
Srinivasan and Bobby (1976). Unfortunately it was also only the fragmentary
presentation of results. More detailed analysis of this problem was given by
Batoz et al. (1976). But this solution is confined to the part of symmetrical
path and initial segments of the postbuckling imperfect paths (see Batoz et
al. (1976) — Fig.6) only. It creates however the possibility of comparison of
the critical pressure values.

The calculations started from the division of the quarter of shell into four
elements. This division leads to 105 DOFs (degrees of freedom) and allows
to determine the whole symmetric path labeled by S in figures below. On
the first branch in the vicinity of the pressure level p = 5.52 kPa the sta-
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Fig. 2. Fundamental and branching paths (US mode) for the node B
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Fig. 3. Fundamental and branching paths (US mode) for the node C
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bility determinant changes its sign from positive to negative. The additional
eigenvalue analysis at this zone brings about two negative eigenvalues. It was
obvious that the bifurcation point was passed. Since this very point till the
beginning of the last raising branch on the primary path the stability deter-
minant remains negative. It means that all configurations within this interval
are unstable.

To find the branching paths of the US mode (unsymmetrical with respect
to one axis linking middle points of the square and symmetrical with respect
to the other) a half of the shell was divided into eight elements. This division
corresponds to 125 DOFs. The perturbation load was applied at the node
D (Fig.1) and the imperfection path was traced till the level p = 5.52 kPa
was reached. Then the perturbation load was removed and the tracing of the
branching paths started. This analysis has been performed till the symmetrical
configuration was reached again.

(@ _

(®)

Fig. 4. Deformed configuration K1; (a) - view, (b) — contour-map

Figures 2 and 3 show the paths of S (solid line) and US (dashed line)
modes for twonodes: C and B (see Fig.1) respectively. In all figures w means
the vertical displacement positive downward. The US paths of the node A
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Fig. 5. Fundamental and branching paths (UU mode) for the node B
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Fig. 6. Fundamental and branching paths (UU mode) for the node C
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Fig. 7. Fundamental and branching paths (UU mode) for the node F

coincide and it is the reason why on the plot one can see only one not two of
them. The deformed configurations labeled K1 (Fig.2) were shown in Fig.4
in the forms of the three dimensional plot and the contour-map, respectively.

To determine the branching paths of the UU mode the whole shell was
divided into 16 elements (325 DOFs). In this case the perturbation load was
applied at the node A. In the manner described earlier two branching paths
were traced. Figures 5, 6 and 7 show the symmetrical 5 (solid line) and the
branching UU (dashed line) paths for nodes B, C and F, respectively. The
deformed configuration K2 (Fig.5) was shown in Fig.8. Fig.9 presents the in-
verted symmetrical configuration /'3 on the stable final branch of the primary
path. It turned out that the branching paths of US and UU modes, respec-
tively, intersect the fundamental path exactly at the same point p = 5.592
kPa. It is seen from Fig.10 and Fig.11 on which paths of both modes (UU
and UJS modes) for nodes B and C were superimposed. It confirms that
the bifurcation point met on the fundamental path was the coincident bifur-
cation point (cf Husein (1975)). Since all the branching paths were unstable
it follows that it was the unstable symmetrical point of bifurcation (cf Husein
(1975), Thompson and Hunt (1973)). It is note worthy that the phenomenon
of buckling will proceed as follows. Immediately after the pressure attains the
critical level p = 5.592 kPa the shell adopt the nearest stable configuration
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(b)

Fig. 8. Deformed configuration K2; (a) — view, (b) — contour-map

and it will be the very distant one on the stable raising branch of the fun-
damental path. This transition will proceed suddenly and dynamically. The
inverted configuration reached in this way is stable and it is possible to raise
the pressure now till the material failure occurs.

5. Concluding remarks

One may say that the complex analysis of big deformations of the shell
was really made. The calculations were performed since the very beginning
to the very distant inverted configurations. The critical value of the pressure
obtained here p = 5.592 kPa corresponds to the value which one obtains
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Fig. 9. Deformed configuration N3; (a) - view, (b) - contour-map

extrapolating the perturbation paths shown in Fig.6 by Batoz et al. (1976).
The most important advantage of the present analysis is the tracing of the
whole loading history from the very beginning through the branching paths
till the inverted configuration. Only the analysis like this clarifies the all
phenomena associated with the big deformations of the analyzed shell. In
the author’s opinion the presented example confirms that the general strategy
adopted in cases like this is fully correct. The procedure dealing with the
bifurcation points detection and tracing of the postbilurcation paths really
works even in this rather complicated case. The fact that the coincident
bifurcation point was detected on the path was no obstacle in this approach.
Both postbifurcation paths intersecting the fundamental path at this point
were traced without any problems within their whole range. Procedure seems
to be stable and convergent at its every step.
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Fig. 10. Fundamental and branching paths (US and UU mode) for the node B
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In Fig.11 the present results were compared with the paths obtained by
Batoz et al. (1976). The primary paths nearly coincide if one takes into acco-
unt the poor precision of copying the results from the small figure and units
conversion. As far as the postbukcling paths are concerned those presented
by Batoz et al. (1976) are just imperfection paths in their initial segments.

The performed analysis was another occasion to test the program presen-
ted by Marcinowski (1989). It seems to be capable also of solving problems
which deal with bifurcation points and branching paths. Because earlier it
was exploited in many benchmarking problems dealing with paths comprising
limit points, now one can say that it is the quite versatile tool to solve the
problems dealing with all types of elastic stability of shells.
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Punkty bifurkacji i rozgalezienia $ciezek w nieliniowej analizie
statecznosc1 konstrukeji powlokowych

Streszczenie

W pracy przedstawiono szczegdlowa analize numeryczna problemu statecznosci
powlok, w ktorym wystapily wielokrotne punkty bifurkacji 1 rozgalezienia sSciezek.
Zaprezentowano ogolna procedure pozwalajaca ustali¢ polozenie punktéw bifurkacji i
§ledzié przebieg sciezek pobifurkacyjnych. Jako przyklad rozwazono powloke sferyczna,
poddana dzialaniu réwnomiernego cisnienia skierowanego do wewnatrz. Sciezka pod-
stawowa oraz wszystkie $ciezki pobifurkacyjne odgaleziajace sie od niej zostaly wy-
znaczone w pelnym zakresie obciazenia. Rozwazano obciazenie jednoparametrowe,
zachowawcze. Pzyjeto liniowo sprezysty model materialu, a cala analiza byla prowa-
dzona dla duzych przemieszczen. W programie analizy numerycznej wykorzystano
metode elementéw skoriczonych w sformulowaniu przemieszczeniowym. Program byl
uruchamiany na standardowym PC.
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