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Two methods for calculating both eigenfrequencies and the logarithmic
decrement for layered beams with interlayer slips and consisting of vi-
scoelastic stiffness-comparable layers have been presented in this paper.
The hybrid method described in Section 4 is a new one since formulation
of the boundary value problem considered has been derived in the new
way i.e., by linking different kinematical patterns within adjacent layers.
The second method presented in Section 2 has been derived within the
linear theory of (visco)elasticity as a result of modification of the formu-
lation (that is interlayer continuity conditions) given by Karczmarzyk
(1993). Both the methods have been applied to investigation of influ-
ence of the interlayer slips on eigenfrequencies and vibration damping of
two- and three-layer beams.

1. Introduction

A few types of composite structures with interlayer slips (delaminations)
have been investigated recently. Armanios (1991) developed a two-dimensional
theory enabling calculation of stresses distribution within a lap-strap specimen
consisting of orthotropic layers subjected to a static force tension. Between the
lap and the strap a local delamination has been assumed thus stress concen-
trations in the vincinity of the crack tip has also been studied. Frostig (1992)
presented a theory enabling the study of behaviour of a sandwich beam con-
sisting of isotropic layers subjected to a static bending force when a local de-
lamination appears between an outer layer (face) and the middle layer (core).
An influence of delamination length and location on the peeling stress at the
face-core interface has been studied. The same problem was investigated both
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numerically and experimentally by Zenkert (1991). The peeling stresses, incre-
asing in the vincinity of delamination, have also been calculated in the paper.
The reader may also find earlier papers on static behaviour of some composite
structures with interlayer slips (Goodman and Popov (1968)).

Dynamic behaviour of layered beams with both local and large delami-
nations has rather rarely been investigated. Mujumdar and Suryanarayan
(1988) developed a theory of flexural vibrations of homogeneous, isotropic
beam with longitudinal displacement discontinuities. The theory is based on
the Bernoulli-Euler equation of motion which has been employed along with
the adequate continuity conditions for each part of the beam. The researchers
have confirmed their theory experimentally all numerical and experimental
results, however, have been presented for slender beams. Since the thickness
over length ratio has not been given in the aforementioned paper the author
calculated that the parameter for beams from Table 1 on page 458 was between
0.04 and 0.026. On the other hand the researchers have stated on page 457:
"There is a slight increase in the error as the beam span reduces, as expected”.
Taking into account both the statement and well established knowledge concer-
ning inaccuracy of the Bernoulli-Euler theory (cf Huang (1961), Karczmarzyk
(1993)) one may conclude that application of the Mujumdar and Suryanra-
yan approach is limited. Wang et al. (1982) presented the approach based
on the Bernoulli-Euler theory, more general however than the one presented
by Mujumdar and Suryanrayan (1985). They assumed a number of discrete
delaminations within a homogeneous, isotropic beam and derived equations
for calculating eigenfrequencies. Unfortunately one can notice a mistake in
their paper — see Table 3 on page 498. The eigenfrequencies of beams in
the case of off-midplane delaminations are lower than in the case of midplane
delaminations!

In this paper the author has presented two methods for calculating both the
eigenfrequencies and the logarithmic decrement of layered, simply supported
beam with interlayer slips occuring along whole the beam length. Both the
methods can easily be extended for clamped-clamped beam (cf Karczmarzyk
(1992)). The method described in Section 4 is a new one, since formulation of
the boundary value problem considered has been derived by linking different
patterns of mechanical behaviour (that is two different kinematical models)
of adjacent layers. Because of this it is called here a hybrid method. The
method outlined in Section 2 is a modification of the one given by Karczmarzyk
(1993). It is more general (and a little more complicated) than the hybrid
method, since it has been completely developed within the linear theory of
(visco)elasticity. To verify the methods presented in the present paper several
numerical results have been given in Tables 2 + 5.
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The beams considered here consist of any number of the stiffness-compa-
rable, both isotropic and anisotropic (i.e., unidirectionally fibrous) layers. The
number of interfaces with slips can be less or equal to the number of all the
interfaces within the beam - see Fig.1. Both rectangular and non-rectangular
cross-sections have been taken into account.
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Interfaces with slips

(®)
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Fig. 1. Layered beam considered in the paper: (a) - deformation of the beam with
slips at two interfaces, (b) — exemplary cross-section; numbers 1,2,3,... denote layers

2. Stresses within isotropic layer — an exact solution

We present in this section the exact formulas for stresses within the jth
rectangular, isotropic, viscoelastic layer of a vibrating, simply supported beam.
Presentation is directed on the free vibration case however, after replacing the
eigenfrequency w,, with the frequency of a sinusoidal force, it is also valid
in the case of forced vibration. Within the jth layer of the beam we have a
plane stress state so on the basis of Hooke’s law we obtain

(04y); = (022); = (042); = (023); = (02y); = (012); = 0 (2.1)
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By using displacement field functions obtained by Karczmarzyk (1993) one
can derive the following formulas for the stresses o,,, 0,

(022); = 2u;Bij[sinh(B1;2) X1 + cosh(B1;2)Xo;]W (2) exp(iwmt) + (29)
+ u](aﬂ—+ﬂ“[s inh(B2;2) X3, + cosh(B2;2) X4;]W (z) exp(iwn, t)
2
(0s2); = u’(a—a+ﬂﬁ[cosh(ﬂ1]z)X1] + smh(ﬂljz)ng](fiv;/ exp(iwnt) +

(2.3)
: aw .
+ 2pj[cosh(B2;2) X3 + smh(ﬂgjz)XA,j]H exp{iwy,t)

where apy = mn/L, m =1,2,3,..., L is the beam length, X;; (i =1,2,3,4)
are ynknown constants. Function W(z), 81;, B; appearing above are defined
in Section 3.

We notice that formulas for stresses given above are of the same form when
the plane strain state within the layered structure is assumed. In such a case
the parameter A’ should be replaced with the Lame constant A (cf Karczma-
rzyk (1993)). It is noted that the approach presented by Karczmarzyk (1993)
can be applied, after some modifications, to formulate boundary problems of
the layered beams consisting of isotropic or fibrous layers, with interlayer slips.
In this case we have to equate to zero the shear stresses on surfaces of layers at
the interfaces with slips and exclude the continuity conditions of longitudinal
displacements between layers at the interfaces. The numerical results with
subscripts AS (i.e., w4s, 04s) presented in Tables 2 + 5 were calculated
according to the method.

3. New formulas for displacements and stresses within the
Bernoulli-Euler beam theory

The formulas derived in this section are new and necessary to formulate
the boundary value problem considered in Section 4. We assume that the
displacements within a layer are given by the following equations

dW (z . .
Uz, = —g;(2) d( )exp(lwmt) uy, = f;(2)W(z)exp(iwmt)
* " (3.1)

gi(z) =ajz + E;’ W(z) = W, sin (mw%) m=1,2,3,..
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where f;(z) is an unknown function whereas &;, 5]- are unknown constants.
Assuming that the displacements satisfy the first Navier’s equation of motion
one obtains, after integrating the equation (in order to obtain f;(2)) and
applying the right-hand side formula of Eqs set (3.1), the following expression
for displacement (u.); = u.,

(w)s = [-55(8 5 + By2) + 55— 7 )]wu Jexpliwnt)  (3.2)

where
- _ (/\9 + Q#j)ﬂ%j

2
pjw
= = B2, = o — Pi%m 3.3
J /\9+#] 23 ( )

m /\9- + 245

and A} defined by Karczmarzyk (1993). The symbol 7; denotes unknown
constant appearing after integrating first Navier’s equation of motion. By
using Eqs (3.1) <+ (3.3) and the constitutive Hooke’s law one obtains

(022); = [=(% + 205) = + A0l )(@52 + B;)W () exp(iwmt) (3.4)

=2
[, (=% ~ = 3 Bi 14w
(022); = [ u]( 5 + 1)01] 1 =20 + ——/\; T 'y]] T exp(iwnt) (3.5)

A reader can notice that we have derived functions of displacements and stres-
ses without taking into account the third Navier’s equation of the transverse
motion. The foregoing functions depend on unknown constants &;, g;, 7; i.e.
(ul')j = ul‘(a]’ﬁ]) (UZ)j = uz(a]’ﬁﬁ;])
(Uzz)j = Uzz(ajvﬂj) (Uzz)j = Uzz(ajaﬂjaqj)

In further considerations we assume that the equation of transverse motion of
the beam is of the following form

71' zz 7 82 Uz )
/[ 7 (o ] dz = /pj f()t2)] dz (3.6)

Z1

Basing on Eqs (3.4) and (3.6) one can write

02 U )g 0 Ozr)j
(Uzz z Zg,t)) (Uzz(z th) /[p] ((_)[2.()] - (81) ] dz (37)

21

In order to include the equation of motion (3.6) into formulation of any bo-
undary problem we have to calculate o,,(z,z,t) (or 0,,(z,2;,1)) according
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to Eq (3.4) and o0,,(z,2,t) (or 0,.(z,z,t)) according to Eq (3.7). The
approach is simplified however quite exact for the purpose of the present pa-
per. Eq (3.7) is structurally equivalent to the Bernoulli-Euler equation of
motion of the classical beam theory based on the Kirchhoff’s assumption of
plane cross-sections. Let us note that within the theory we have the following
relationships

[0(0:); | _ dQ(z); _ d*(My(2)); _ o' (u,);
,/ oz dz = dz dz? —E;l; ozt (3:8)

21

where E;, I; are the Young modulus and the moment of inertia of a cross-
section of the jth layer, respectively. Since the deflection in the classical beam
theory is independent of the space variable z then one can write Eq (3.7) in
the well known form

0%(u,); 1(u,

where ¢; = (0;.(z, 22,1)); — (0.2(, 21,1)); and Fj cross-sectional area of the
jth layer. By using Eqs (3.2), (3.3) and (3.5) one can write the difference of
normal stresses ¢; (thus Eq (3.7)) in the form

3
23—z - .
q; = —l [_JﬂQ 2 5 L+ a? (2 — zl)]ajVV(a:)exp(xwmt) +
(3.10)
2 22 uilt; - .
—15Z501; ﬂ]W(z) exp(iwmt) + 3T '(.'.2 — 21)7;W(z) exp(iwnt)
7 +H‘J
where )
2 _ 2 P
,Blj =0y — ]T]m_

A reader can notice that the factor =; occurs in Egs (3.2), (3.4), (3.5) and
(3.10). Taking into account the assumptions introduced at the begining of this
section we simplify the aforementioned formulas by omitting the factor Z=j.
In further considerations we utilize the following formulas

1
(uz); = Jj—5—— /\, oy W(z)e)\p(lwm ) (3.11)

(022); = Ajam(ajz + B;)W (2) exp(iwm?) (3.12)

~ ﬂj ~ dW .
Ouz)i = |—p;0; + ———;| — exp(iwnt 3.13
( )] [ Hi O /\;'+Hj7]] dz p( ) ( )
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.32

6 = [~njedd; + A’;JT%%](ZQ ) W(e)exp(ivnt)  (3.14)

Let us notice that after the simplification made in Egs (3.2) + (3.10) the

normal stress azz(aj,ﬁ]-,z) is a linear function of the space variable z, the

shear stress 0,.(a@;,¥;) does not depend on the space variable zand ¢;(&;,5;)

is linearly dependent on the layer thickness. Shear stress ¢, will be equivalent

to zero within the layer when homogeneous boundary conditions on free surface

of the layer are fulfiled. Thus the formula (3.13) corresponds very well to
equation of motion (3.9).

4. A new hybrid formulation of the eigenvalue problem of a split
two-layer beam

In this section it will be shown how to connect the simplified solution from
Section 3, satisfying the Euler-Bernoulli equation of motion, with the exact
solution outlined in Section 2 in order to formulate the eigenvalue problem
of a split two-layer beam. It is assumed that one layer of the beam is thin
in comparison with the other. Besides we assume that mechanical behaviour
of material within the thiner layer is governed by formulas given in Section 3
while behaviour of the thicker layer is determined by formulas mentioned in
Section 2. Thus within the thin layer we have plane cross-sections while within
the thick layer we have wrapped cross-sections — see Karczmarzyk (1993).
Due to the feature the formulation derived in this section is a new one. Let
us note that similar approach has been successfully employed by the author
to formulate the eigenvalue problem of unsplit two-layer beam composed of
stiffness-comparable layers (cf Karczmarzyk (1989)).

Let us introduce a set of boundary and continuity conditions for the two-
layer beam with delaminations between layers. The homogeneous stress bo-
undary conditions on the free surface of the thin layer (z = z;) are as follows

(02:)1 = Ma2 (@121 + )W (z) exp(iwmt) = 0 (41)
- pr . 1dW .
= |- — | — mt) =0
(G221 [ 16 + /\’1+,u171] I exp(iwnt)

The continuity equations (for stresses and deflection) between layers (z = 23)
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are as follows

@1 = 2u2bi2[sinh(B1222) X1, + cosh(f1222) X 22)W(2) exp(iwmt) +

(4.2)
+ %[smh (B2222) X393 + cosh(B2222) X42]W (z) exp(iwmt)
n = wa_'*-ﬂ;ﬂ[cosh (Br222) X12 + 51nh(ﬂ12z2)X22] exp(iwmt) n
’” (4.3)
. aw
+  2pa[cosh(B2222) X35 + 51nh(ﬂ22z2)){42]d_z exp(iwmt) = 0
u;p = [Xyzcosh(22812) + Xoz sinh(22812)]W (2) exp(iwmt) + w

+ [Xa2 COSh(Zgﬂgg) 4+ X 42 sinh(22022)]W(z) exp(iwn 1)

Due to first equation of set (4.1) we have the following relationship
@1 = (0..(z,22,1))1 where the quantity ¢y is given in Eq (3.14). The
symbols 71, u; denote shear stress and deflection of the thin layer (i.e. la-
yer 1) for z = z,, = €< 0,L >, respectively. The functions are given in
Eqs (3.13) and (3.11), respectively. Right-hand sides of Eqs (4.2) + (4.4) refer
to the thick layer (i.e. layer 2) and their form results from the solution ou-
tlined in Section 2 and derived by Karczmarzyk (1993). Since we consider in
this paper layered beams with delaminations appearing between layers thus we
omit the continuity equation of longitudinal displacements i.e., the equation
(uz)1 = (ug)2 is not taken into account. It is noted that the shear stresses at
the interface with slips have been neglected. Such an assumption is consistent
with the considerations on formula (3.13) in Section 3.

The homogeneous stress boundary conditions on the free surface of the
thick layer (z = z3) are as follows

(022)2 = 2u2B12[sinh(B1223) X192 + cosh(B1223) X 2o |W (z) exp(iwmt) + (45)

2 2
+M:L2)[sinh(ﬂnz3)X32 + cosh(By223) Xa2] W (2) exp(iwmt) = 0
2

a2, + p? , daw
M—W[COS}I(IH1223)AX12 + Slllh(ﬂng)‘X-ZQ]E exp(lwmt) +
" (4.6)

(Uza:)2 =

) dW .
+2uz[cosh(B2223) X320 + smh(ﬂggzg)X”]E exp(iw,t) =0

In the case of non-rectangular cross-section one has to replace the con-
tinuity conditions for stresses with the continuity conditions for forces (cf
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Karczmarzyk (1993)). Eigenfrequencies wgs presented in Tables 2 + 4 have
been calculated according to the method described in this section. The formu-
lation developed can be extended to calculate dynamic parameters of a beam
composed of any number of layers provided that each pair of adjacent layers
satisfies the fundamental assumption introduced i.e., one of the layers is much
more thick than the other one and the formulation outlined in Section 2 is
obligatory within the thick layer.

5. Final forms of boundary value problems

The equations (4.1) + (4.6) can be presented in a short form of algebraic,
homogeneous, matrix equation

AY =0 (5.1)

The column vector Y contains seven unknown constantsi.e., a;, ﬁj, ¥; as well
as the vector X ;4 refering to the solution from Section 2 which is presented
in details by Karczmarzyk (1993). In the case considered in Section 3 we have
J =1, however the approach presented there can easily be extended for more
layers within the beam with interlayer delaminations. If a beam is composed
of p; thick layers and p, thin layers and between thick and thin layers appear
slips, the dimension of the square matrix A will be (4p; + 3p2) X (dp; + 3p2).

Final form of the eigenvalue problem formulated according to the method
outlined in Section 2 is also described by Eq (5.1), however in this case the
vector Y is composed of vectors X; for [ =1,2,...,p whereas the dimension
of the matrix A is 4p X 4p where p denotes number of layers.

In the case of forced sinusoidal vibrations we have to expand into the Fou-
rier series an external load of the beam and then to impose nonhomogeneous
boundary conditions. Instead of Eq (5.1) one obtains

AY = B (5.2)

where B is a given vector of external forces acting on the surface of vibrating
beam.

6. A method of verifying the solutions presented in the paper

The formulations and solutions of the eigenvalue problem given in pre-



574 S.KARCZMARZYK

vious sections of the present paper can be verified by using a simple formula
defining eigenfrequency and resulting from the Rayleigh’s approach. When
the interlayer delaminations are assumed in each interface of the beam the
eigenfrequency of the structure will be defined as follows

o

(Vi)maz

<
[}
—_

(6.1)

£
I
I

(Tj)mmr

M~

.
N
-

where Vj, T; denote the potential energy and kinetic, calculated for frequency
equal 1, energy of jthlayerrespectively and pis a number of layers. Assuming
that displacements of layers are defined by the Kirchhoff formulas one obtains
in the case of a two-layer simply supported beam of non-rectangular cross-
section the following formula

2
32
1§=: ibihyem

2

w

2
5 il

where Ej, p;, Zj, h; are Young modulus, mass density, width and thickness
of the jth layer, respectively.

Validity of the formulas (6.1) and (6.2) is restricted to the first mode of
vibration of slender beams, however due to their simplicity they are useful
for the purpose of assessing of the theory presented in the previous sections.
Results with subscripts BS (i.e., wps and drps) given in Tables 2 =+ 5 have
been calculated according to the formula (6.2).

7. Numerical results and discussion

The numerical results have been shown in Tables 2 — 5. The second sub-
script S denotes parameters calculated for the beams with interlayer slips. In
the case of two-layer beams the slips appear between adjacent layers, while in
the case of three-layer beam the slips have been assumed between the middle
layer and one of the outer (steel) layers. The numerical results with subscripts
AS (i.e., was, 6T74s) have been calculated according to the method outlined in
Section 2. Results with subscripts BYS (i.e., wps and érps) in Tables 2 + 4
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have been calculated according to formula (6.2). Eigenfrequencies wgs pre-
sented in Tables 2 + 4 have been obtained following the simplified method
described in Section 4. Results with the subscript A only are predicted by
the method developed in Section 2, Karczmarzyk (1993) for the case without
interlayer slips. Values with the subscript B have been calculated for unsplit
beams by using the simplified method given in Section 4, Karczmarzyk (1993).
Subscript 2 displays the fact that the second layer (according to the sequence
given in Table 1) is assumed to be viscoelastic.

Table 1. Material and geometrical (cross-sectional) parameters of beams
investigated in the paper. Symbols 20b;, h; denote width and thickness of
layers however symbols F;,, v;, p; denote the Young modulus, the Poisson
ratio and the mass density, respectively, for j = 1,2. The beams 1,2 are of
non-rectangular (T-) cross-section

2by [2bg | b1 | By Eyn | En m v | ;| pe
[mm] [Pa] [kg/m”]

beam 1|105| 35 [35|1050.3-10'! | 0.3-10'! | 0.05|0.05 | 600 | 600

beam 2| 105| 35 |10 [ 140 | 207-10° | 1.6-10'° | 0.25 [ 0.30 | 7860 | 1750

beam 3| 80 | 80 [ 10| 10 | 200-10° [1.6-10'0]0.25|0.30 | 7860 | 1750

The beam 3 is three-layer. Geometrical and material parameters

of layer 3 of the beam are the same as for the layer 1

Table 2. Eigenfrequencies and logarithmic decrements for the 1st mode
of vibration of the beam 1. Values with subscript 2 are obtained for ng, = 0,
ne2 = 0.1, ng; is the loss factor of jth layer

L [mm] 1000 1500 2000 2500 3000 3650
Ty |wa [rad/s] |2806.86|1271.57| 720.23 | 462.45 | 321.72 | 217.62
z9 |wp [rad/s] [2907.28 (1292.12| 726.82 | 465.16 | 323.03 | 218.22
z3 |was [rad/s] | 1557.11 | 696.84 | 392.93 | 251.76 | 174.94 | 118.24
z4 |wps [rad/s] | 1576.69 | 700.75 | 394.17 | 252.27 | 175.19 | 118.35
z5 |wss [rad/s] | 1476.17 | 660.88 | 372.70 | 238.81 | 165.95 | 112.16

&13(z1, 23) 80.26 | 82.48 | 83.30 | 83.69 | 83.90 | 84.05
&35(23, 25) 5.483 | 5.441 5.428 | 5.423 | 5417 | 5.421
€13(24, 23) 1.257 | 0.561 0.316 | 0.203 | 0.143 | 0.093
zg [ (6T4)2 0.19775|0.19535 | 0.19445 | 0.19402 | 0.19378 | 0.19361
z7 | (0TB)2 0.19404 | 0.19404 | 0.19404 | 0.19404 | 0.19404 | 0.19404

zg | (0145)2 0.28162|0.28193 | 0.28204 | 0.28209 | 0.28211 | 0.28213
zg | (0TBS)2 0.28274 | 0.28274 | 0.28274 | 0.28274 | 0.28274 | 0.28274
Ese(zs, 26) 42.36 | 44.32 | 45.045 | 45.39 | 45.58 | 45.72
£os(z9, 2g) 0.398 | 0.287 | 0.248 0.230 0.223 | 0.216
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Table 3. Eigenfrequencies and logarithmic decrements for the 1st mode
of vibration of the beam 2. Values with subscript 2 are obtained for ng; = 0,
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ne2 = 0.1, ng; is the loss factor of jth layer

| L [mm] 1000 | 1500 | 2000 | 2500 | 3000 | 3650
z; |wa [rad/s] | 1492.1 | 693.0 | 396.3 | 255.7 | 178.3 | 120.8
z9 |wp [rad/s] | 1621.0 | 720.5 | 405.3 | 259.4 | 180.1 | 121.7
z3 |was [rad/s]| 845.63 | 381.02 | 215.38 | 138.16 | 96.062 | 64.954
| 4 |wps [rad/s]| 867.02 | 385.34 | 216.75 | 138.72 | 96.336 | 65.079
| x5 |wss [rad/s] | 839.51 | 378.32 | 213.86 | 137.18 | 95.387 | 64.499
| &13(z1, z3) 76.45 | 81.88 | 84.00 | 85.08 | 85.61 | 85.98
| E35(w3, 5) 0.729 | 0.714 | 0.711 | 0.714 | 0.708 | 0.705
| €43(x4, T3) 2.529 | 1.134 | 0.636 | 0.405 | 0.285 | 0.192
zg | (674)2 0.262120.25730 | 0.25534 | 0.25438 | 0.25384 | 0.25344
z7 | (67B)2 0.25345 [ 0.25345 | 0.25345 [ 0.25345 | 0.25345 | 0.25345
zg | (0745)2 0.30886 [ 0.30895 | 0.30899 | 0.30900 | 0.30901 | 0.30902
zg | (6rBS)2 0.30978 [ 0.30978 | 0.30978 | 0.30978 | 0.30978 { 0.30978
£s6( s, T6) 17.83 | 20.07 | 21.01 | 21.47 | 21.73 | 21.93

Table 4. Eigenfrequencies and logarithmic decrements for the 3rd mode
of vibration of the beam 2. Values with subscript 2 are obtained for ng; = 0,

nez2 = 0.1, ng; is the loss factor of the jth layer

B L [mm] 1000 | 1500 | 2000 | 2500 | 3000 | 3650

"z |wa [rad/s] | 9155.7 | 4974.2 [ 3083.2 | 2081.1 | 1492.1 [ 1033.6
2y |wp [rad/s] |14589.3 | 6484.1 | 3647.3 | 2334.3 | 1621.0 | 1095.0
23 |was [rad/s]| 6459.7 |3160.60 | 1847.46 | 1204.90 | 845.62 | 575.83
24 |wps [rad/s]| 7803.2 |3468.08 [ 1950.79 [ 1248.51 | 867.02 | 585.71
x5 |wss [rad/s] | 6397.8 [3135.21]1833.49|1196.04 [ 839.51 | 571.70 |
&13(z, x3) 41.74 | 57.38 | 66.89 | 72.72 | 76.45 | 79.50

€35(3, 75) 0.968 | 0.810 | 0.762 | 0.741 | 0.729 | 0.722

€43(24, T3) 20.80 | 9.729 | 5.593 @ 3.619 | 2.531 | 1.716

ENICH 0.28813[0.27746 [ 0.27014 | 0.26530 [ 0.26212 | 0.25943
z7 | (67B)2 0.25345 [ 0.25345 | 0.25345 | 0.25345 | 0.25345 | 0.25345
zg | (6T45)2 0.30726 | 0.308310.30864 | 0.30878 | 0.30886 | 0.30892
g | (67B5)2 0.3097810.30978 [ 0.30978(0.30978 | 0.30978 | 0.30978 |
£se(g, T6) 6.639 | 11.12 | 14.25 | 16.40 | 17.83 | 19.08 |
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Table 5. Eigenfrequencies and logarithmic decrements for the 1st mode
of vibration of the beam 3. Values with subscript 2 are obtained for ng; = 0,
ne2 = 0.1, ng; is the loss factor of the jth layer

L [mm] 800 900 1000 1100 1200 1300
Ty |wa [rad/s] | 759.35 | 601.65 | 488.24 | 404.08 | 339.91 | 289.88
T2 |was [rad/s]| 259.40 | 204.98 | 166.05 | 137.24 | 115.33 | 98.27

z3 | (0T4)2 0.00794 | 0.00651 | 0.00548 | 0.00471 | 0.00412 | 0.00366
z4 | (0T 45)2 0.09544 1 0.09545 | 0.09546 | 0.09547 | 0.09548 | 0.09549
&12(zq, 22) 192.73 | 193.52 | 194.03 | 194.43 | 194.73 | 194.98
£43(24, T3) 1102.02 | 1366.21 [ 1641.97 | 1926.96 | 2217.48 | 2509.02

In order to compare both eigenfrequencies and the logarithmic decrements
obtained by different methods and to show influence of the interlayer slips on
the values of parameters the following comparative parameter &;; has been

introduced
T —

& = f,'j(l‘i,l']') = 100 (7.1)

J
On the grounds of &;; values given in Tables 2 + 5 we can see that eigenfrequ-
encies of layered beams with the interlayer slips are lower than eigenfrequencies
of the structures without slips. In contrast the logarithmic decrement values
for split beams are higher than in the case of absence of the interlayer slips.
For instance in the case of three-layer beam the logarithmic decrement incre-
ase resulting from slips between the middle layer and one of the outer layers
varies from 11 times for L = 1000 [mm] to 25 times for L = 3650 [mm] (see
Table 5).

The method outlined in Section 2 predicts accurate and lower values of ei-
genfrequencies and slightly lower values of the periodic logarithmic decrement,
for split beams, than the simple method given in Section 6. With regard to
eigenfrequencies the latter conclusion is consistent with the results of [luang
(1961). Considering the higher modes of vibrations of thickset beams we can
see that the formula (6.2) is useless for calculating eigenfrequencies.

The hybrid method described in Section 4 predicts lower values of eigen-
frequencies than the linear elasticity method. The hybrid method enables us
to calculate quite accurately eigenfrequencies of layered beam with the inter-
layer slips provided that each pair of adjacent layers satisfies the fundamental
assumption introduced i.e., one of the layers is much more thin than the other
one and the simplified formulation from Section 3 is obligatory within the thin
layer. For instance when h,/h; ratio (i.e., thick layer thickness over thin layer
thickness ratio) is equal to 3 the values wgg are 5.4% lower than the values
was (see Table 2) however for hy/h; = 14 the inaccuracy of the eigenfrequ-
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encies calculated according to the method from Section 4 varies from 0.7% to
1% (see Tables 3 + 4).

8. Final conclusions

The new hybrid method presented in Section 4 is quite accurate provided
that each pair of adjacent layers of a layered beam with the interlayer slips
satisfies the fundamental assumption introduced i.e., one of the layers is much
more thin than the other one and the simplified formulation from Section 3 is
obligatory within the thin layer. The restriction does not concern the second
method outlined in Section 2 which is accurate despise the adjacent layers
thicknesses ratio.

The logarithmic decrement for split beams is much higher than in the case
without the interlayer slips. Increase of vibration damping is very considerable
for three-layer beam consisting of layers of comparative thickness when slips
appear between one of the outer layers and the middle layer.
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Drgania warstwowej belki lepkosprezyste] z miedzywarstwowymi
poslizganu

Streszczenie

W pracy przedstawiono dwie metody obliczania czestosci wlasnych i logarytmicz-
nego dekrementu tlumienia belek warstwowych z miedzywarstwowymi poslizgami,
skladajacych sie z lepkosprezystych warstw o poréwnywalnej sztywnosci. Metoda hy-
brydowa opisana w rozdziale 4 jest nowa poniewaz sformulowanie rozwazanego pro-
blemu brzegowego otrzymano w nowy sposéb tzn. przez polaczenie dwdch réznych
modeli kinematycznych w sasiednich warstwach. Druga metoda prezentowana w roz-
dziale 2 jest otrzymana w ramach liniowej teorii (lepko)sprezystosci w wyniku mo-
dyfikacji sformulowania (tzn. miedzywarstwowych warunkdw ciaglosci) podanych w
pracy Karczmarzyk (1993). Obie metody zastosowano do zbadania wplywu poslizgéw
mie;(li]zy warstwami na czestosci wlasne i tlumienie drgan belek dwu- i tréjwarstwo-
wych.
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