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The aim of this paper is investigation of a chaos phenomenon in complex
models of gears that describe dynamics of toothing precisely (e.g. the
Miiller model). An analysis was carried out for the case of isolated gear
system. A study of the results has shown, that chaos can be observed
in system with gears, provided that the parameters of the model differ
from those existing in real constructions. It can be seen that chaos should
not appear in practice in systems with gears — particulary in structures
designed according to the industrial standards (e.g. ISO or DIN).

1. Introduction

A great deal of research has been done recently to investigate a chaos
phenomenon. Chaos has been observed in models describing various technical
devices (cf Holmes and Moon (1983)). Chaos has also been investigated in
systems with gears. The problem is extremely difficult due to great complexity
of dynamic properties of such system (non-linear and parametrical functions,
discontinuities, backlash, kinematical excitations arising from deviations, etc.)
and important in practice because of common use of gears.

Kiigiikay and Pfeiffer (1986) present a gearbox model devoted to the ”Ge-
neralized Impulsive Motion Theory”. The solutions of equations describing
model are explored by computer calculations. The authors conclude that the
solutions of dynamic problems are of random character although the model is
purely deterministic. The origin of this phenomenon is explained by sensitive
dependence of solutions on the initial conditions. Clattering vibrations are
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~ presented in this paper and the gearbox model is used for determination of
noise sources in gear transmissions.

Pfeiffer in the paper (1988) being a continuation of Kiigiikay and Pfeif-
fer (1986), considered the problem of clattering vibrations and noise in gear
systems. This type of vibrations may be described as a sequential impact
process. The equations of motion can be integrated between impacts, thus di-
screte and invertible mapping for the motions in phase-space may be obtained.
Depending on the sets of parameters one may get either strange attractors or
periodical vibrations. This is indicated by the Lyapunov exponents which are
calculated here for one- and two-stage models of gears.

Hongler and Streit (1988) show the relationship of chaotic noise in gear
transmissions to impact oscillators. These oscillators are characterized by
the phenomenon of doubling subharmonic bifurcations and chaotic vibrations.
It is visible that clattering vibrations may lead to the so-called Fermi map
with dissipation. Originally, this map describes the motion of a model which
consists of a small ball bouncing between two walls, one of which vibrates
with time. Hongler and Streit (1988) presenting a theoretical study, provide
however neither quantitative nor detailed information concerning dynamics of
gears.

Moon and Broschart (1991) present the results of an experiment also con-
firmed by theoretical investigations of impact model which have been carried
out to explain the deterministic sources of broadband noise in gears. A thin
circular plate which modeled the gear housing has been impacted by chaoti-
cally oscillating mass excited by a harmonically moving base. Vibrations of
the impacting mass show the classical period doubling phenomenon. Simila-
rities between the Fermi oscillator and the experimental impacts of the plate
suggest that simple models may be used for explaination of the deterministic
origin of gear noise.

The mentioned above papers deal with the modelling of phenomena of the
gear noise producing in terms of the impact theory. A model described by
Sato et al. (1991) may be used for determination of vibrations and dynamic
forces (dynamic overloads) in the one-stage gear transmission.

Calculation performed by Sato et al. (1991) uses a discrete, non-linear
model of an isolated gear system. Teeth stiffness varies with time and depends
on the tooth contact ratio, the backlash function is non-linear (see Sato et al.
(1979)) and the external excitation is harmonic with its frequency equal to
the meshing frequency.

Although Satoet al. (1991) claim that the assumption of a small amplitude
sinusoidal wave form of transmission errors is not crucial in their paper, we
can see, that this assumption allows to apply the Floquet theory for efficient
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investigation of bifurcation sets. The bifurcation sets shown by Sato et al.
(1991) concern the parameters range in which nonlinearity of the system is
manifested as a jump phenomenon. A similar phenomenon was confirmed by
Sato et al. (1979) for the case of constant external load. A question arises
how similar systems behave under the conditions described Sato et al. (1991).

Dynamic models of gears adopted by Sato et al. (1985) and (1991) are
relativly simple. The aim of this paper is therefore investigation of a chaos
phenomenon in more complex models of gears that describe dynamics of to-
othing more precisely (e.g. Miiller model, cf Miiller (1986)). In this paper
the previous works (Dyk and Osinski (1991) and (1992)) have been adopted,
where the Miiller model is used in more complex systems. Model modifications
allowing consideration of teeth meshing on the other side of the tooth (on the
second line of action) was made. An analysis was carried out for the case of
isolated gear system.

Therefore, in the first part of the paper, the system described by Sato et
al. (1991) with different tooth stiffness, damping and external load will be
investigated to check if the method described by Sato et al. can be applied.
In the second part the Miiller model of isolated gear system with backlash
subject to harmonic excitation will be studied.

2. Chaos in a model with backlash

The equation of motion for a gear system, according to Sato et al. (1991)is

o . . . T} B3T3
A RO W) = T iy (@)
where
P* - dimensionless relative angular displacement
¢ - dimensionless damping ratio
k(t*) - dimensionless mesh stiffness
er - dimensionless transmission error
n - dimensionless backlash
1 ~ gear ratio, i = 2z1/2
21, 22 - teeth number
g(¢* + ex(t*),n) - nonlinear function representing a gear teeth,
backlash model
T, Ty ~ dimensionless input and output torques, respec-

tively.
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Letting z = 9™ + € and assuming that external torque and transmission
errors have the same frequency equal to the meshing frequency and introducing

vt* = 7 Eq (2.1) becomes

2
Z% + 2CZ—i + k(7)g(z,n) = Bcos(t+6) + By
where
v — dimensionless meshing frequency
B - dimensionless amplitude of sinusoidal excitation
By -~ dimensionless static component of excitation
0 — phase angle.

A nonlinear function describing gear teeth backlash is of the form

z for >0
glz,n)=<¢ 0 for —-n<z<0
z+7 for 2< -9

Mesh stiffness in terms of "real” time is assumed as

k1:461/t11+0.6 for 0501 <0.1t11

k=1 for 0.1ty <1 < 0.9
ky = —deciftip +4.6 for 0.9 <e; <ty
ky=0.6 for t;y<ep<T
where: ¢; =t —ent(t/T)T and
T - meshing period
t;; - time of double-paired meshing.

A simplified version of meshing stifiness was also used

k=1 for 0<e <ty
ky = 0.6 for tn<ea<T

and
k(t) = 0.8+ 0.2 cos(vt)

(2.2)

(2.4)

(2.5)

(2.6)

To obtain the results in a phase plane (z,v) a computer program was
written. The gear method was used to solve numerically equations of motion,
the calculations were performed with double precision and accuracy in the
range 107% +10~'2, Only analysis of numerical results will be considered in

the sequel of this paper.
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At the beginning a Poincaré map was obtained for the data shown in
Fig.6a,b,c by Sato et al. (1991) but for zero initial conditions. It can be
observed, that in the first figure there are four distinct curves corresponding
to period four solutions. In the next figure they merge to form one curve,
and in 6¢ there is a complicated trajectory as a stroboscopic portrait of the
solution. Next, the Poincaré map and a phase portrait was obtained for the
data from 6¢ by Sato et al. (1991) with dimensionless backlash 7 = 1 and
dimensionless amplitude B = 0. These values represent the case of con-
stant external load. The steady-state response is periodical. Results shown
in Fig.1a,b,c and Fig.2a,b,c were calculated for the data from 6c¢ in Sato et
al. (1991) with dimensionless damping four times greater and backlash two ti-
mes bigger then earlier, respectively. Fig.1c and Fig.2¢c show the dynamic load
P* = k(t)g(z,n). The effect of separation of tooth meshing can be observed as
well as mating of opposite sides of teeth (only in I'ig.2 c) in spite of a relatively
big value of backlash. Both phenomena have a great influence on the values
of dynamic load. In Fig.3 and Fig.4 the Poincaré maps under the conditions
used in Fig.6c (Sato et al. (1991)) and stiffnesses from Eqgs (2.5) and (2.6),
respectively, are shown. Thus it can be stated that the chaos in gears arise
from the separation of tooth meshing due to the backlash, independently of
the influence of the stiffness on the Poincaré map.
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Fig. 3. Point sequences by the Poincaré map (v =1.5,(=0.02, B =35, By =1,
n = T7), stifiness according to Eq (2.5)



556 J.DYK, A.Krupra, J.OsiNsKI1

2
v - (A}
I B LR P
L 1Y [ ]
l B o mf
L) N =
-
0.5 =
L
0 -
-0.5 = —- -
l . - - - -- - - _
L - [ - -" F" L™ n, - [ ]
-1.5 I ol - . . |
-3 -2.5 -2 1.5 -1 -0.5 0 0.5 1

Fig. 4. Point sequences by the Poincaré map (v =1.5,¢ =0.08, B=3.5, By =1,
n = T), stiflness according to Eq (2.6)

3. Chaos in the Miiller model

In the Miiller model (cf Miiller (1979) and (1986); Dyk and Osinski (1991);
Holmes and Moon (1983)) the line motion has been substituted for the revo-
lving motion of gear wheels. This model makes it possible to represent mesh
stiffness changes, technological deviations, premature or delayed coming in
mesh and changes of tooth profile (modification). The model can be described
by the equation in the general form

§+ 2Cwoy + W2 F(t,y) = Ap (3.1)
where the mesh stiffness function is of the form

F(t,y) = Ry + yps — a(t: — vC1)*] + B[y + ype — bvCi] + (3.2)

+F3[y 4+ yp1 — b(vCr1 4+ )] + Fa{y + yp1 — bvT — af(e — 1)t — 001]2}
In formulae (3.1) and (3.2) the following denotations are smployed
wn — natural frequency
€ — tooth contact ratio
- parameter of the parabola

b - coefficient describing the indication of the bottom
shape of an equivalent solid-body
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1, — base pitch
v - velocity of the spring palisade
T ~ cycle of tooth contact
Yp1,Yp2:Yp3 — errors of base pitches
Gy - time measured from the beginning of a given cycle
of tooth contact
1 — when the expression in paranthesis
is positive
F; - S :
0 — when the expression in paranthesis
is negative.

Moryz details about the way of determination of all above-mentioned pa-
rameters can be found in papers by Dyk and Osifski (1991), Miiller (1986),
Miiller (1979).

Eq (2.6) can be written using dimensionless coordinates and dimensionless
time. By adding the upper spring palisade an additional condition for backlash
may be introduced. The right-hand side of this equation can be written as it
was in Eq (2.1). Taking into account the denotations from Sato et al. (1991)
the equation (3.1) may be written in form of Eq (1.1). E.g. taking

TD:P'I'l TDmaI:PTI
(3.3)
T, = —Pry — APrycosvi
the constants in Eq (2.2) are
By =1 B:Lf— =0 (3.4)
P(75)
where
Tp — input torque
T - output torque
P — force along the line of action
AP - additional load
r1,72  — base circles of gears
kir maz — maximum variable stiffness
0y — angular displacement of the meshing gear teeth,
05 = TD mal‘/ktr maz
L, I, - moments of inertia of the gears
I, — equivalent mass moment of inertia of the two mating ge-

1 1
ars, I = (f + )
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Thus Eq (3.1) can be written in the form
V" + 209" + k() F(Y, 47 (1), m) = Bo+ Beos(vt™+6)  (3.5)

In the equation above F(¥*,y*(t*),n) is a function F(t,y) written in
terms of dimensionless time and transformed to dimensionless coordinates;
the backlash is included there. Function yX(#*) represents manufacturing
errors. Taking Bp =1, B =0 and n — oo Eq (3.5) becomes a dimensionless
equation describing the Miller model (cf Miiller (1979) and (1986)).

The research has been conducted under the condition used by Sato et al.
(1991). The dynamic load factor was also investigated. Assuming dimension-
less backlash 7 = 100 the separation of tooth meshing can be observed and
mating of opposite sides of teeth is avoided (cf Eq (3.2)). In other cases the va-
lue of 1 = 7 was used, after Sato et al. (1991). For the value of dimensionless
meshing frequency v = 1.5 (overcritical gear speed) dimansionless damping
ratio values ¢ = 0.02 and ( = 0.08 were used. The dimensionless static
component of excitation By = 1 and dimensionless amplitude of sinusoidal
excitation B = 3.5 or B = 0 were used. The values of parameter of the
parabola and coefficient describing the indication of the bottom shape of an
equivalent solid-body were a = 0 or @ = 20, and b= 0or b= 2, respectively.
The meshing stiffness was assumed under the conditions im»osed in Eq (2.5).

8
v [ -
" m=
6L . - >
4 - - ----
- " ) m ou u g
- w % ham
0 by P e
S E—
- =
-3 - .
I i =L
-2,
- - ‘
-4 = = .-
% -L = ]
- "

-8
-35 -30 -25 -20 -15 -10 S 0 5 10

Fig. 5. Point sequences by the Poincaré map 5 ¢=0.02, B=35, By =1,

(
n=100,a=0,b

v

=1.
0)

Comparing Fig.5 and Fig.6 it can be seen that introducing greater de-
grees of damping apart from obvious changes in extremal values causes big
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differences of Poincaré maps, but the charateristic features of chaos remain
unchanged.

In the picture of dynamic load it can be observed that in case of impossibi-
lity of mating on the second line of action the assumption of small values of the
damping ratio results in unreal (too big) values of dynamic load. For the same
set of data and a constant external load in Eq (3.5) a stroboscopic portrait of
the solution is characteristic for semi-periodical or periodical vibrations (the
latter in the case of greater values of damping ratio).

Introduction of additional perturbation in the form of the parameter of the
parabola that describes premature or delayed coming in mesh doesn’t cause
significant changes to the Poincaré map. In the case of 7 = 7 the dynamic load
may be of negative value as a result of meshing on the second line of action,
this phenomenon vanishes for higher values of damping ratio. Simultaneous
appearance of coefficients @ and b, that describe errors of base pitch is shown
in Fig.7 and Fig.8. A moderating influence of the positive value of teeth profile
error on the dynamic load values can be observed. Such a value of teeth profile
error makes it "easier” coming in mesh of the successive teeth. In the end all
the above mentioned kinds of errors were introduced in the calculations as well
as random distribution of error of base pitch f,; = £2. The shapes of the
graphs obtained were similar to those in [ig.5 and Fig.8. It can’t be clearly
explained whether the random nature of the graphs is the result of chaos in the
system or whether it arises from random kinematic excitation with uniform
distribution.
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4. Conclusions

In this report several cases of chaos in systems with gears taken after Sato
et al. (1991) have been investigated. A new program was applied for obtaining
solution of equations of motion presented there. A good agreement of results
was observed, which implies corectness of the used method and algorythm.
The equation presented by Sato et al. (1991) is relatively simple, and does
not fully describe the dynamic features of toothing. Therefore, in the new
version of the program, the Miiller model, which describes dynamics of too-
thing more precisely, was employed. The series of calculations was made and
a possibility of chaos existence was confirmed. The premature and delayed
coming in mesh was considered. A deep study of the results has shown, that
chaos can be observed in systems with gears, provided that the parameters
of the model differ from those existing in real constructions. Particularly, it
concerns values of damping ratio, manufacturing errors, backlashes, rotatio-
nal speeds, respectively, not relevant for such gears and harmonical external
excitations with frequencies equal to the frequency of meshing, great ampli-
tudes and negative coefficients of cycle assymetry. It can be seen that chaos
shouldn’t appear in practice in systems with gears — particularly in structures
designed according to the industrial standards (e.g. ISO or DIN). It concerns
'systems with spur gears and relatively small tangential velocities.
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Analiza ruchu chaotycznego w ukladach z przekladnia zebata

Streszczenie

W pracy zbadano ruch chaotyczny wystepujacy w przekladniack zebatych z
uwzglednieniem dokladnego opisu dynamiki uzebieri (model Miuilera). Analize wyko-

nano dla przykladu przekladni izolowanej. Stwierdzono, ze ruch chaotyczny wystqpme

w ukladzie z przekladnia quata, w przypadku lacznego przyjecia parametréw modelu
odblegaja,cych od rzeczywiscie wystepujacych. Zjawisko ruchu chaotycznego nie po-
winno miec praktycznego znaczenia w przekladniach, w konstrukcji ktorych prazestrze-
gane sa dotychczas obowiazujace zalecenia (normy ISO, DIN).

Manuscripl received July 9, 1993; accepled for prinl January 4, 199/





