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The possibility of improvement of a robot capabilities due to the elimination
of both dynamic interactions and joint limits in its arm has not been fully
exploited till now. Two different dynamic schemes of such an arm driven
directly have been presented. A manipulator 1:5 model revealing the com-
plete dynamic interactions elimination due to the suitable mass distribution
in terms of a proper driving motors arrangement has been shown. Basing on
the presented dynamic analysis one can state that the designs being proposed
ensure a considerable simplification of the robot control system as well as a
great shortening of time taken in some motions.

1. Introduction

Improvement of a robot performance by means of versatility, dexterity, posi-
tioning accuracy, high speed motion and tracking precision, requires a permanent
design study.

In recent years however, the possibility of introducing the direct drive systems
into industrial robots has created a new perspective and new problems in mani-
pulator design. In a direct drive manipulator arm high torque motors are directly
coupled to each joint. This results in high mechanical stiffness, no backlash and
low friction observed in the structure, but also implies significant interactions be-
tween the individual degrees of freedom (DOF'), further intensified by the very high
speed that the arm can reach, Asada et al. (1986). Synthesis of digital control
systems which would enable us to compensate the above interactions in real time,
is a very difficult and expensive problem, Vukobratovic et al. (1992).

Asada and Youcef-Tuomi (1984), have shown that dynamic interactions can be
eliminated by the mass redistribution and modification of the arm structure. The
design guidelines for this procedure, based on the concept of a decoupled and/or
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configuration-invariant inertia matrix, have been formulated by Asada (1986) and
Korendyasev et al. (1988).

For the decoupled and invariant inertia matrix, the arm with n DOFs can be
treated as a system of n independent linear subsystems with constant parameters.
As aresult, the control system of the manipulator can be simplified and the control
performance can be improved due to reduced dynamic complexity.

In this paper a new concept of the manipulator design is proposed and carefully
studied. This design, due to application of the direct drive motors and a special
transmission mechanism, ensure the elimination of the dynamic interactions as
well as joint limits in the manipulator arm.

2. Influence of singularities and joint limits on the manipulator
performance

Up till now all industrial robots have suffered from joint limits, which occur
due to some constructional reasons and the common tendency to eliminate the
singular configurations of manipulators.

The end-effector location (position and/or orientation) z € R™ of a manipula-
tor can be described by the vector of joint coordinates ¢ € R™ using the following
nonlinear equations

z = f(q) (2.1)

By differentiating Eq (2.1) we obtain the linear relation between joint velocity
g and cartesian velocity z

= Yo) (2.2)

where J(q) = éé‘qﬂ € R™*" is the jacobian matrix of a manipulator.
For the majority of manipulators m = n = 6 and J(g) is the 6 x 6 square

matrix.
At regular configurations the jacobian matrix-is invertible and we obtain

g=3Y9z (2.3)
When the manipulator appears to be in a singular configuration, the jacobian

matrix is non-invertible. Thus at a singular configuration the manipulator may
lose one or more DOFs and can not reproduce the requested trajectories.

A scalar value w given by
w=y\detlJT o (24)
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was introduced by Yoshikawa (1985) as a manipulability measure. When m = n,
the manipulabity measure is simply given by

w = |det J| (2.5)

At singular points ‘w = 0.

In many algorithms the manipulability measure creates a criterion for the sin-
gularity avoidance. Example of such an algorithm is the singularity rubust (SR)
inverse algorithm, introduced by Nakamura (1985), which facilitates the control of
the manipulator in the vicinity of the singular configurations, but the manipulator
performance at these points can not be improved by that algorithm.

The manipulator should not then come close to the singular configuration du-
ring its normal operation. In some manipulators singular configurations have been
completely eliminated due to suitable means limiting the range of a particular
DOF, the so-called joint limits. This restrictive safeguard considerably diminishes
the manipulator applicability, what can be easily seen from Fig.la, showing the
workspace of a manipulator with two joints. The workspace in the case with no
"joint limits” has a form of ring, the internal radius of which equals 7, = |1 = 15|
and the external one equals rpar = Iy + {2, where /; and [/; — lengths of the links
1 and 2, respectively. The singular configurations occur for @, = 0 (points on
the external circle) and for @2 = 7 (points on the internal circle). At each point
lying within this complete workspace two different configurations are permissible.

All the configurations for which ©; €<0, 7> make up the so-called aspect A
(Tsai et al., 1990), while the aspect B contains all the configurations for which
@, e<, 2>,

The singular configurations are elements of both the aspects A and B, so
the change of the aspect is possible only at singular configurations. When one
introduces the limit in form of the inequality 0 < @, < w, valid e.g. for some
SCARA type robots, conﬁgura.tlons being the elements of aspect A are the only
permissible ones.

The limitations of the motion range, usually introduced into the manipulator
design, define the terminal positions, marked in Fig.1a by broken lines. In this case
two regions corresponding to both aspects can be found. These regions hatched in
Fig.1 in two different ways have also been denoted by A and B. Only at points
lying on the common part of these regions (hatched in Fig.1) the proper configu-
rations are possnble. Fach of these configurations enables different capabilities of
the ma.mpulator In Fig.1b one can see for example the different ranges of speed
reached at point P in the cases corresponding to both aspects, marked like in
Fig.la. The majonty of conclusions which can be drawn from the example shown
in Fig.1 concerns any manipulator forming an open kinematie¢ chain. There is only
a different number of permissible configurations, which equals the number of po-
ssible solutions to the inverse kinematical problem, for each end-effector position
and orientation, respectively.
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Fig. 1.

In the case of manipulator design with six revolute joints (6R) the number of
permissible configurations equals 16, but when the axes of these joints intersect
at one point, this number decreases to 8 (Raghavan et al., 1990). The latter
case concerns many kinds of industrial robots supplied with a spherical wrist, in
which two different wrist configurations and four different arm configurations are
permissible. The kinematical analysis of a manipulator supplied with a spherical
wrist can be decomposed into two separate problems, one concerning the arm, i.e.
the so-called "regional structure” and the other dealing with the wrist, i.e. the
"orientation structure”.

Many different means for determination of the workspace of the robot arm de-
spite its structure, together with the methods of the so-called "boundary surfaces”
(jacobian surfaces) dividing the workspace into regions corresponding to different
aspects have been developed till now.

The influence of both the arm geometrical structure and the joint limits on
these regions shape and size has also been carefully studied.

Conclusions drawn by Kohli and Migh-Shu (1987), Parenti, Castelli and In-
nocenti (1988), concerned mainly the conditions under which the large volume
and the suitable shape of the workspace occur. In the latest works much more
attention has been paid to the problem of conditions under which the size of a
region with a high number of permissible configurations can be extended (cf Le-
narcic et al., 1992; Tsai and Chiou, 1990). Lenarcic et al. (1992) has introduced
the term "kiuematic flexibility” which denote the number of permissible mani-
pulator configurations corresponding to the end-effector position and orientation.



IMPROVEMENT OF ROBOT PERFORMANCE... 625

The kinematic flexibility has been applied as a criterion for the manipulability
assessment.

The best way to increase the kinematic flexibility is the complete elimination
of the joint limits which enables also the changes in configuration. On the other
hand this results in enlarging such jacobian areas within the workspace in which
suitable computation algorithms have to be applied in the control system, e.g. the
SR-inverse algorithm. o

Basing on the considerations given by Marroidis and Roth (1992), Raghavan
and Roth (1990), Rastegar and Deravi (1987), one can arrive at the conclusion
that the 6R manipulator arm with a simple inverse kinematic analysis, supplied
with a spherical wrist and revealing no joint limits, which ensures 8 permissible
configurations at each point lying within the workspace can be designed. Many
different manipulator designs allowing for the revolute motion in the wrist joints of
the range considerably exceeding 360° have emerged lately. To the Author’s best
knowledge in the present literature one can not find the manipulator arm design
without limits since it is very difficult to create a compact, light and stiff design
of such an arm.

It is reasonable to conclude that the remarkable advantages of such a design
would be noticeable only if both the joint limits and the dynamic interactions were
eliminated.

3. Influence of dynamic interactions on the manipulator properties

These interactions can be represented as certain components of the generalized
forces acting upon the manipulator arm, what can be written as

A(9)i+ B(9,9)+G(9)=T (3-1)
where
q - vector of joint displacements
L - vector of joint torques
G(q) - vector of gravitational forces
A(g) € R**® - inertia matrix
B(q,q) € R - vector of the Coriolis and centrifugal forces.
Each line of Eq (3.1) has the following form
n n n
Yo AuE+Y Y Bindidx+Gi=Ti (i=12,.,n)  (3:2)
i=1 y=1-k=1
where '
176Ai;  SAx  SAju 3
Bijx = —( + - ) (3:3)
2\éq  bq g
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are the Christoffel’s symbols.

The computation of the vector T, in general, tequires the use of efficient
algorithms for the inverse dynamic problem and high-efficiency microcomputer
systems. The problem is somewhat simplified in the case of geared manipulators,
since the effects of time-varying inertia are reduced by a factor r?, where r;is the
gear ratio, while the interaction torques and the nonlinear torques are similarly
reduced by a factor ;. Thus, the simplified Eq (3.2) has actually of the form
(Asada and Slotine, 1986)

(Ami + Aa;rl-‘z)('j.- + (Tct' + Tni)ri_l =T (3'4)
where
Ami ~ the invariant inertia of the motor including the gear
Aq;  ~ the arm inertia reflected to the joint axis
T - theinteractiveinertia torque (i.e. the termsin A;;§; for i # j)
Tni — nonlinear (centrifugal, Coriolis and gravity) torque reduced to

the joint axis.

A simplified dynamic model of a manipulator in terms of Eq (3.4) is used in
typical control systems for industrial robots. In this case each joint is controlled
by its own independent position servo.

For a typical point to point (PTP) control, dynamic interactions may play an
insignificant role. For continuous paths (CP) control, however, dynamic interac-
tions have an essential influence on the tracking precision (Gosiewéki, 1992)

In the case of direct drive robots, the gear ratio r; = 1, what results in the fact
that Eq (3.2) can not be applied any more, even to a simplified dynamic analysis.

4. Design study of the elimination of dynamic interactions and joint
limits in the manipulator arm

From Eq (3.1) + (3.3) it follows that the dynamic model of manipulator arm
can be considerably simplified when designed in a form ensuring both static ba-
lance (i.e. G(g) = 0) and diagonality of the inertia matrix irrespective of the
configuration. In such a case the terms of matrix A should fulfil the following
conditions : :

A;; = const for i=j «
Aij =0 for i#j ¥ 41
Eqgs (3.2) can then be rewritten as

AiG=T; (i=1,2,...,n) (4.2)
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According to Korendyasev et al. (1988), the following two conditions should be
satisfied to make the simplified dynamic model of the manipulator arm: applicable

1. independence of the kinetic energy from the configuration;

2. the proper selection of the set of joint displacements (which are usually the
actuator coordinates), such that the formula for the kinetic energy may be
reduced to a canonical form (i.e. representation by a sum of terms depending
only on squares of joint velocities).

Basing on the sugestions given by Asada (1986) and Korendyasev et al. (1988),
the Author proposes below two different designs of a manipulator arm with three
revolute DOFs, for which it is possible to eliminate both the dynamic reactions
and the joint limits.

The first one, the scheme of which is shown in Fig.2a, is a slight modification
of the PUMA robot. The arm drive consists of three direct drive motors. It should
be mentioned that links 1 and 2 are really directly driven by motors M; and M,,
while link 3 is driven remotely by motor M3 through a gear the ratio of which
equals 1. Motors M; and M, are fixed on link 1 in a collinear way. New direct
drive motor designs enable such a collinear mounting of even several motors due
to their shape in the form of a ring.

{a) L) (b d
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Fig. 2.

~ Fig.2a shows also the local coordinate systems fixed to links 0 <+ 3 according
to the Denavit-Hartenberg convention. All the ith local systems (orthogonal and
dextral) are represented in the figure by axes z; and z;.
The manipulator design enables the revolute motions in every joint without
any limits. -
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For the kinetic energy to be independent of the configuration the arm design
should meet the following conditions

A. z; axis overlaps the principal axis of link 3, while the moments of inertia about
the remaining principal axes are equal. The tensor of inertia of link 3 has
then the following form

JID 0 o 7
=190 J9 o (4.3)
0o o JO

while J = J9.
It is assumed that the center of mass of link 3 is located at the local coordinate
system z2yp22 Origin.

B. The location of link 2 mass center relative to the z;y222 coordinate system is
defined in terms of the vector given below

T2 = [102,0) 0]T (4'4)

The inertia tensor of link 2 has the .form

J 0 o
@=| g 4@ o (4.5)
o o JO
where
Jg) ~ moment of inertia of link 2 about the principal axis parallel to
Zy

Jl(f) ~ moment of inertia about the z, axis
Jz(:) ~ moment of inertia about the third principal axis satisfying the

following condition
I = JD + (22 ~ a2)*ma + adms (4.6)

Condition B establishes that link 2 supplied with the mass of link 3 can be
treated as a rigid body, principal axis of which overlaps the z; axis, while the
moments of inertia about the remaining principal axes are equal.

If one assumes the following joint coordinates

a =6, 2 =06, g3 =02+ 0; 4.7
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the dynamic model of the arm shown in Fig.2a is then described by three inde-
pendent equations in the form of Eq (4.2) and

Au = Jg) + r?lml + d%(mz + m3) + Jl(f)

Ay = Jg) + a§m3 ' (48)
Az = Jég)

where 7. — the distance between the link 1 center of mass and the z; axis.

Fulfilling the condition B is rather difficult, especially making Eq (4.6) valid,
and results in a considerable increase in the link 2 inertia.

The arm design presented above will probably find no application despite of
the suitable workspace shape shown in Fig.2b.

The second design, scheme of which is shown in Fig.3a, seems to be a much
more promising one. The first two DOFs are the same like in the SCARA robot,
but link 2 is driven remotely by M; motor through a transmision mechanism
with the ratio equal to 1. Motors M; and M, (driving link 1) are mounted in
a collinear way on the fixed frame. The third DOF (about the horizontal axis) is
driven by M3 motor fixed on link 2.

In this case when the kinetic energy of an arm is independent of the configu-
ration, both the condition A is fulfilled and the center of mass of links 2 and 3 is
located on 2z, axis. It is worth mentioning that there is no need for introducing
the special counterbalances to ensure the proper distribution of the masses of links
2 and 3. The M; motor together with the motors driving the wrist should be
used for this.

Assuming the following joint coordinates

q =06 @=061+0; g3 = O3 (4.9)

one obtains the equation of motion in the form of Eq (4.2), while

Ay = J;S,) + r2my + a(m2 + m3)

Agz = I3 + I + rhymy + rhmy (4.10)
Asy = IS

where 74 denotes the distance between the ith link center of mass and the
corresponding axis of revolution.

A cross-section through the workspace is shown in Fig.3b, while Fig.3c presents
the four permissible arm configurations with the end-effector position remaining
unchanged. The workspace has smaller volume but its shape, in turn, ensures
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the simpler movement to another aspect than in the case of the PUMA robot.
Bidzifiski et al. (1992), presented the kinematic analysis of the robot with the
same kinematic scheme, but also with the joint limits which restricted the arm
workspace to the region where only 1 aspect is permissible (1 configuration at
every point). :

Basing on the considerations given above the primary structural assumptions
for the 6 DOFs manipulator arm of the scheme shown in Fig.3a, supplied with
a spherical wrist, have been formulated. According to these assumptions the 1:5
model of the manipulator has been built (see Fig.4).

Direct drive motors have been applied to the arm drive, while the wrist is
driven through gears.

The first DOF of the arm together with the third DOF of the wrist exhibit the
motion range without any limits. In the two other joints the ranges of motion are
limited to *47 due to the electrical wires twisting.

The crucial element of the design is the mechanism realizing the link 2 remote
drive with no motion limits and wires twisting. Design details of this mechanism
will be given after completing the experiments.

A unique shape of link 3, shown in Fig.4, enables the condition A to be satisfied
without any obstacles, by imeans of the proper arrangement of the wrist driving
motors, treated as counterbalances.
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Fig. 4.

5. Some remarks concerning the time-optimal control

Y

Fig. 5.

The advantages of the presented simplified model with respect to the control
system have been shown in the first section of this paper. It is worth mentioning
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that the arm joint limits elimination results also in considerable profits, primarily
due to the fact that the change in the coordinate ¢ can be made in two different
ways. This is of essential importance for the time-optimal control over the joint
velocity profile shown in Fig.5b, since it enables to find the shorter time trajectory
on the phase-plane (see Fig.5). Coordinates ¢, and ¢, — 27 correspond to the
same joint configuration. The time required for passing from ¢, to ¢ is much
shorter along the trajectory 2 then along the trajectory 1. The second considerable
advantage consists in the fact that there is no such region in the workspace, within
which the manipuiator reveals poorer performance capabilities due to the limited
number of aspects or the necessity of braking in front of the joint limit. The region
of the phase-plane hatched in Fig.5 a consists of all the permissible states of the
considered DOF in the case when a zero-dimensional limit occurs in the joint.
After elimination of this limit, the area of permissible states is restricted only by
the maximum speed condition
Iq.| S q'maz

It can be easily shown that under the time-optimal control in the joint space
the maximum time interval required for any state change of the decoupled dyna-
mic manipulator with zero-dimensional joint limits is twice as long as after the
elimination of these limits. The aforementioned conclusion concerns of course any
case in which the trajectory profile from the initial to the final state is of secondary
importance.

The elimination of joint limits and the easy way of the aspect changing enable
also a considerable shortening of the time taken in motion along a specified path.
This can be proved on the basis of the dynamic analysis carried out in the cartesian
space. By differentiating Eq (2.2) with respect to time one obtains the formula for
the acceleration vector z € R™

%= )i+ e d)d (5.1)

where J(q, q) € R™, '
Each entry J;; of the matrix J(g,¢) has the following form (Chevallereau and

Mohammed, 1992)

6Ji; . (i=1,2,...,m)
A 5.2
8qn L (1=1,2,.,n) (5.2)

Jij =3

k=1

The generalized acceleration vector § can be determined using Eq (3.1) since
the matrix A(gq) is invertible; we can write then

§=AJ'[T - B(g,4 - G(q)] (5.3)

In the case when all the dynamic interactions in the manipulator arm are
eliminated the formula given above is simplified considerably

i=A"IT (5.4)
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where ¢ € R3, T € R3, A € R3*3,
Substituting Eq (5.4) into Eq (5.1) and applying Eq (5.2) after some transfor-
mations one obtains

z = J(Q)A™'T + v?C(q,e,) (5.5)
where
vER ~ end-effector cartesian speed absolute value
e, € R3 - unit vector (e, lies on the tangent to the path at the

point under consideration)
C(g,e,) € B?

vector defining the component of acceleration z de-
pends on the initial conditions only, defined by vectors
.qand e, for v=1.

The formula in the form of Eq (5.5) obtained by substituting Eq (5.3) into Eq
(5.1) was used by Thomas et al. (1985), for dynamic analysis of the manipulator.
A similar formula in terms of the coordinates fixed to the specified path was applied
by Dubovski and Shiller (1984) to the time-optimal control problem solution. They
showed also that under specified limits the driving moments have the form

Tt'min < Tl S Timax (56)

the range of reachable accelerations tangential to the path contracts as the absolute
value of the velocity increases. For a high enough value of v (v = vpay) this range
reduces to a point and motion along the specified path can be performed only at
a speed lower than wvnax.- The Author proves below that this is not a general
formula, i.e. it does not concern all the possible cases.

Focusing only on Eq (5.5) we can write the formula for the vector Z in a form
of tangential %, and normal %, components, respectively

=2, + 2, (5.7)
where
z, = ve, (5.8)
%, = kv?e, (5.9)
k denotes the first slope of the path, e, stands for the unit normal vector to the
path.
For v=0

Z = ve, = J(Q)A™IT . (5.10)
When the limits of driving moments are symmetrical, i.e.

Timin = —~Timax = Tm (5.11)
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then the set of permissible vectors £ at v = 0 creates the region in a form of a
parallelepiped, center of which is located at the origin of the coordinate system.
The extreme values of the tangential acceleration are determined by the points
through which the faces of this parallelepiped are punched by the line overlapping

the e, vector.
In the case under consideration the symmetry condition results in fipin = —9max-

For v # 0, basing on Egs (5.5), (5.7) and (5.9) we can write
ve, = J(9)ATIT + v*[C(g, e,) — ke, (5.12)

In this case the area of permissible accelerations is translated with regard to the
origin by vector v2D, where

D =C(g,e,) — ke, (5.13)

The range of the permissible tangential accelerations usually decreases with
the velocity increase (see Fig.6). When D = 0, the extreme values pyin and 9max
do not depend on v and equal the ones for v = 0. If D # 0 but is collinear to
the vector e, the width of the permissible tangential accelerations range, equal to

VUmax — Umin, does not depend on v.

In such cases the value of the maximum speed is determined by other factors,
especially the driving motors characteristics, T;(g;), not considered in this paper.

The results of the above considerations should be taken into account when
programming the robot task. It is worth mentioning that the form of the vector
C(g,e,) depends on the configuration which, in turn, is determined at a specified
workspace point by the aspect. For the arm with the joint limits being eliminated
four different aspects are permissible, so one should choose the most suitable one

for the specified task.
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8. Conclusions

The manipulator arm design, described above, in which the dynamic interac-
tions together with the joint limits are eliminated may considerably improve the
properties of electrical direct drive robots.

Profits form such a design consist in substantial simplification of the control
system, extension of the workspace, kinematic flexibility increase and considerable
shortening of the task realization time. The latter concerns mainly extent (parallel)
motions performed under the PTP control.

In the case of the motion performed along a specified path the choice of the
proper configuration may also ensure reaching a higher value of speed.

Looking ‘at: the model shown in Fig.4, with the arm, the kinematic scheme of
which is presented in Fig.3, it may be proved that it is possible to describe an
efficient manipulator design exhibiting the complete dynamic interactions elimina-
tion due to the suitable mass distribution in terms of a proper arrangement driving
motors.
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Poprawa wlasnoéci robota poprzez jednoczesne wyeliminowanie interakcji

dynamicznych oraz ograniczen ruchu w przegubach jego ramienia

Streszczenie

W pracy zwrécono uwage na niewykorzystana dotychczas w pelni mozliwoéé popra-
wienia wlasnosci robota poprzez jednoczesne wyeliminowanie interakcji dynamicznych oraz
ograniczen zakresow ruchéw w przegubach jego ramienia. Zaproponowano dwa schematy
kinematyczne takich ramion z elektrycznym napedem bezposrednim. Przedstawiono mo-
del manipulatora wykonany w skali 1:5, w ktérym rozklad mas zapewniajacy eliminacje
interakcji dynamicznych ramienia uzyskuje si¢ dzieki odpowiedniemu rozmieszczeniu sil-
nikéw napedowych. Z przeprowadzonej analizy dynamicznej wynika, ze proponowane
rozwiazania moga zapewnié nie tylko istotne uproszczenie sterowania robotem, ale réw-
niez znaczne skrdcenie czasu niektérych ruchéw.
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