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In the paper the method of determining of strain and stress distribution in
plastified zones of the construction by using isochromatics pattern obtained
in testing by the method of photoelastic coating is presented. Calculation of
the strain components (strain separation) requires introduction of both the
schematization of the material characteristics and the physical relations valid
in regions, where the yield point was exceeded. The introduced relations were
applied to the strain separation along the axis of symmetry. The process of
calculations was illustrated by an example.

1. Introduction

The method of photoelastic coating may be applied to the analysis of the strain
fields, in which the material of the tested area of the construction remaines partly
in the elastic state and partly it is plastified. Such a possibility may occur due to
the assumption of the linear relation between the photoelastic eflect and strain in
a wide range.

In the range of strain, where the material of the tested construction is in
the state of plastic flow, the material of photoelastic coating still keeps linear
characteristics. Therefore it may be concluded, that the constant of photoelastic
coating f., determined for the elastic strain, may be applied to the analysis of
results for the plastified zones.

In testing of the construction, in which some areas are plastified and the rest
of it remains in the elastic range, strain separation proceeds differently in both zo-
nes. It is because of different physical connections between stress and strain. The
methods of strain separation using isochromatics distribution in the elastic range
were described in many publications (cf Kapkowski, 1977 and 1988; Kapkowski
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and Stupnicki, 1971). Below, the method of determining of the stré;in compo-
nents in plastified regions using also isochromatics pattern is presented. It is the
development of the procedure introduced in the monograph by KapkoWskJ et al.

(1987).
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boundary loading

index denoting every intermediate overelastic range (mul-
tisectional model)

index denoting the overelastic range at the calculation
point (multisectional model)
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index denoting the point of conversion from the i overela-
stic state to the state i+1 for plane stress (multisectional
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(K ':‘— index denoting the point of conversion from the i overe-
lastic state to the state i+ 1 for simple tension (multi-
sectional model)

3 z | Sc’het’x.:.a:t'i'zgtion of th_e, ..ﬁi’a_tgria.lz characteristics

The stra.m separatlon w1thm the elastlc range of matenal does not cause dif-
ficulties, beca,use the relations between stress and strain have simple structure.
However in’ reglons, where not only elastlc deformatlons appear, these relations,
correspondmg with the a.ccepted theory of plaStrcaty, are much less universal. The-
refore the results of ana.lysxs of the strain and stress field in plastified zones may be
different depending on the accepted hypothes:s and theories of nonelastic strain.

One of the methods of description of the matena.l behaviour in the nonelastic
range is the schematization of the material charactenstlcs (a relationship between
stress and strain). This term defines the curve s1mphﬁca.tlon and the description
of such constructed scherie by analytical functlons

The first, practicaly useful trial of the schematization of the material cha-
racteristics, was the introduction of the bilinear model (Kapkowski et al., 1987),
which approximately corresponds with the behaviour of many real materials, e.g.
aluminum alloys.

The charakteristics of bilinear material consists of two line segments intersected
at the point of the achievement of plastic strain K, which is defined by coordinates
(00, €0) (Fig.1).

Parameter ¢ determines the yield point of the material under simple tension,
while ¢g is the strain, which then occurs at the point of achievement of the first
plastic strain.

In the first range (0 < € < ¢gp) the material satisfies the Hooke’s law, the
modulus of elasticity is E and the Poisson ratiois v. In the second range (¢ > &)
the modulus of elasticity changes for E, (the modulus of strain hardening) and
also the Poisson ratio assumes the value of v, = 0.5. The acceptance of such
a kind of the material characteristics permits making the assumption that the
principal directions of strain components are invariable beyond the yield point.
Experiments made on n duralumin samples (Aleksandrov and Akhmetzyanov,
1973) show that the changes of the principal directions of strain components are
negligible.

In the case of two-dimensional state of stress, the relationship o(¢) for both
principal components of thestress tensor (o7, 02) may proceed in different manner.
That is because the enter into the plastic state may occur under different value
of the o;/0; ratio. For later considerations it was assumed that the entering of
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the material into the plastic state cccurs at the moment, when the principal stress
components have the following values

o = ko
(o2)k = aco (2.1)

(UE)K = ko0og

After crossing the yield point in the considered (infinitesimal) element, the
characteristics for particular stress components will proceed linearly, while the
slope of these straight lines will correspond with the modulus of strain hardening
(Fig.1) and also the Poisson ratio will change its value to v, = 0.5.

The coeflicients ky, k2 satisfy the Huber-Mises yield criterion

k2 —kyko 4+ k3 =1 (2.2)
Introducing the coefficient
kot = M
2
and taking under consideration Eq (2.2), the coefficients k;, k2 may be described

as
k1=\/1—3k31+kp[

(2.3)

(2.4)
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The coefficient k; is connected by a simple relationship with the value of
isochromatic order Ny, which occurs at the considered point at the moment of
the entering into the plastic state.

When the Huber-Mises yield criterion is satisfied at the considered point, the
difference of the principal stress components may be expressed by the basic rela-
tionship of photoelasticity

E
1+v

kioo — k300 = Ny fe (2.5)

In the above formula, by F and v the modulus of elasticity and the Poisson
ratio of the material of the tested construction are destignated, respectively, while
fe is the strain constant of the photoelastic coating. Transforming the relationship
(2.5) and including Eq (2.3), the following formula for the coefficient kj can be
obtained

=Ny (2.6)

This coefficient is the function of coordinates z,y in the area under conside-
ration and its value is proportional to the isochromatics order N,,.

Thus recapitulating the foregoing considerations it may be proved, that for
the accepted material model, the determination of the stress components in the
plastified zone requires the knowledge of the coefficient k,; distribution in the
investigated area. This coefficient is connected by the simple relationship (2.6)
with the value of isochromatics order, which occurs at the considered point at the
moment of meeting the yield criterion. The coefficient k, should be determined
by the experimental testing of the plastifying process on the certain intermediate
loading levels.

The relationship between stress and strain components for the bilinear material
was presented in the monograph by Kapkowski et al. (1987).

The bilinear model of the material, though it approximately corresponds with
the behaviour of many real construction materials, however is it not the universal
model. The divergences occur especially at the point K (Fig.1), corresponding
with the moment of the entering into the plastic state — the moment important
from the point of view of the construction work-condition. The assumption of the
multisectional model leads to the reduction of the above divergences and gives
the possibility of better fitting the mathematical model with the real material
characteristics.

In this model the o(g) curve is replaced by = line segments (Fig.2).

Each of these segments describes the different state of the material and is
characterized by the different modulus of elasticity E; and the Poisson ratio v;.
The points K; (i = 1 + (n — 1)) are every time fitted for each material on the
grounds of the real stress-strain curve.
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The multisectional schematization of the material characteristics requires ma-
king the assumptions refering to the course of the deformation process after cros-
sing the yield point. They are as follows

e The o(¢) relationship has the same character for the both principal direc-
tions. At the succesive stages of the nonelas tic state of the miaterial, the
modulus of elasticity and the Poisson ratio for both stress components have
the same value as under the uniaxial tension. It means, that the succesive
seg ments of the characteristics o(¢), 01(¢1), o2(€2) are pa rallel (Fig.3).

¢ The strain hardening of the material has the isotropic cha racter and the
change of the material state takes place at the constant ratio o5/0;. It cor-
responds with the rectilinear way of turning into the plastic state illustrated

on the (oy,032) plane (Fig.4).

It appears, that the consequence of these assumptions is the characteristics of
the plastifying process shown in Fig.3. It is provable, that three points describing
the succeeding changes of the material state (e.g. (K)2, (K)a2, (K2)2) lie on half
lines starting from the coordinate system origin. )

Similarly as for the bilinear model, the coefficients (k;);, (k2); characterizing
the values of the principal stress components at the moment of change of the
material state are introduced. Taking into consideration these designations, the
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principal stress components at the moment of the conversion from the state 1 to
the state ¢+ 1 (the points (K,); and (K3);) may be written as

(1) (k) = (k1)ioxy,

(2.7)
(02) (k) = (k2)io(k;
Then, the assumption II may be presented in the following form
k k k1) k1)n-
(k1)1 _ (k1)2 _ =(1)= _ (k1)na (2.8)

(ka)r — (k2)2 — 777 (k2)i T 7T (k2)n—

Making the appropriate transformations, it may be proved, that (when the
principal stress components at the points (K); are defined by the relationship
(2.7)), the coefficients (k,);, (k2)i satisfy the relationships

(kl)l = (kl)g = .. = (kl)i = e — (kl)n—l = k1
(2.9)

(k2)1 = (kz)z e — (kz); = ... = (kZ)n—l = kz

That is a very important conclusion for the further application of the formulas
(2.7). It means, that for determining parameters at the particular stages of the
change of material state, the knowledge of only one pair of the coefficients k;
and k,, is required. These coefficients determine the stress state at the moment of
apperance of the first overelastic strains. Because these coeflicients are determined
experimentally, it considerably simplifies the experimental procedure.

The possibility of replacing the real material characteristics by the multisec-
tional mathematical model, gives it the universal character.

As it appears from the relationship (2.9), increasing of the real curve o(¢)
approximation accuracy in terms of the greater number of segments does not cause
the necessity for determination of the additional coefficients k; and k; values.

3. Physical relations

In the chapter below, the relationships between stress and strain components
called the physical relations are discussed. They are necessary to analyse the
results of the experiment realized by the method of photoelastic coating.
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3.1. Physical relations within the elastic range

For the elastic range of the material work (the first segment of the charac-
teristic, ¢+ = 1, Fig.3) the relationships resulted from the Hooke’s law for two-
dimensional state of stress may be formulated as

(601 = -[(oh ~ (o]
(3.1)

(eah = g [(oa)s = (o))

At the moment of the material passing into the nonelastic state (points (K,),,
(K2) in Fig.3), the stress components are defined by the formulas (2.7) for i = 1.
In that case the strain components may be expressed by the relationship

(51)(1(,), = ﬂg—)l—[(kl)x - Vl(k2)l]
! (3.2)

(e2)xz)y = ﬁEKll[(kz)l - Vl(kx)x]

3.2. Physical relations in the nonelastic range

After the material passing into the nonelastic state (the second segment of
the characteristics, i = 2, Fig.3) the relationship between strain and stress com-
ponents remains the straight line, but of different slope, corresponding with the
modulus E,. The nonelastic part of the components of the strain tensor is deter-
mined similarly like in the elastic range, considering separately the stress effect in
the directions 1 and 2 and using the principle of superposition.

In the case of the effect of stress component o), nonelastic parts of the com-
ponents of strain tensor are expressed by the formulas (according to designations
in Fig.5)

' ’ ’ (01)2 (kl)la(K)l
2 2 b (3.3)

(e2)ps2 = —va(€1)paz = —Vz[(c232 - (kl)‘a(K)nl

E,

In analogous way may be formulated nonelastic parts of the components of
strain tensor connected with the effect of stress component o2
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(o2)2 _ (k2)l‘7(K)1
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Summing up the corresponding expressions (3.3) and (3.4), the formulas de-
scribing nonelastic parts of the components of strain tensor in the two-dimensional
stress state 0y, 0, are obtained

(€1)psz = (€1)pa2 + (€1)pa2 =

= EL{[(al)g - V2(02)2] = O(K) [(kl)l - Vz(kz)ll}
2 (3.5)

(52);02 + (52);:12 =

= El.;{[(a’)z - V2(01)2] = O(K), [(kZ)l - V2(k1)1]}

(52 )paZ
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To get the physical relations between the total strain (e),e;) and stress
(01,02), the superposition of the strain states described by the formulas (3.1)
and (3.5) should be carried out. After realizing a number of transformations the
following expressions are obtained

(€1)2 = %[(01)2 - V2(02)2] +
+ oo { g [ = k] = - [k = k] }
(36)
(€2)2 = %2[(02)2 - V2(”1)2] +

+ auen{ g [k = k] = - [(ka)s = ma(ha] )

It has to be noticed that the above formulas are valid within the first overelastic
range (7 = 2), what is marked by 2 index at the values ¢, €, 01, 02.

In the analogous way the total strain components may be calculated for the
succeeding stages of the material overelastic state which correspond to particular
segments of the characteristics (¢ = 3,4,...,m,...,n — 1) (Fig.2). The generalized
relationships between the total strain and stress components in the m segment of
the characteristics are as follows

(e1)m = ﬁ[(al)m - Vm(az)m] +
+ ia(K);_l{E_l_l[(kl)i—l = Vi1 (k2)i-1| — éf[(kl Ji-1— Vi(k2)i—1]}
= - ' (3.7)
(e2)m = E—lm'[(ffz)m - Vm(al)m] +
+ ia(K)“‘{E'}—l[(’cz)i‘l —vici(k1)ioa| - %[(kz)i—x - Vi(kl)i—l]}
i=2 i- i

To analyze the results obtained by the method of photoelastic coating it is
more convenient to use the sum and the difference of the principal strain or stress
components. These relations calculated on the base of the formulas (3.7) (taking
into account (2.9) and (2.4)) have the following form

(614 €2)m = (1= vm) [ (01 + 02} + 4/1 = 3K, (ws)m ]
™ (3.8)

(61 = €2)m = (1 + ¥m) (=01 = 03} + $hyi(wR)m ]
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where the new designation have been introduced

_ 1 i 1—-vi4 1 -y
(wS)m B 2.f¢(1 - Vm) ;‘7(1().'_1 El'-l - Ei
(3.9)
_ 1 b 14+ vy 14y
(wR)m = 2f¢(1 + Vm) ;a(Mi-x Ei, E;
The inverse to (3.8) relations can be wriiten in the form
1 2
(014 02)m = B [7——~(e1 + €2)m +4y/1 = 3k (ws)m ]
(3.10)
1
(01 = 02)m = En [75—(61 = €2) = dkyi(wR)m .

It has to be noticed that the relationships (3.7), (3.87) and (3.10) have the
universal character. If in Eq (3.10) the coefficients (wg)m and (ws)m are equal to
zero, the physical relations proper for the elastic range are obtained (compare with
the formulas (3.1)). These terms are then equal to zero, because the summation
starts from the segment i = 2 of the characteristics, while the elastic segment is
designated by the number 7 =1,

It should be noticed also, that the coefficients of Eq (3.9} depend on the con-
stants of the material only. They can be calculated "a priori” before the separation
of strains.

4. Application of the obtained physical relations — the method of the
strain separation on the axis of symmetry

In many practical cases the region tested by the method of photoelastic coa-
ting has the geometric and loading plane of symmetry (Fig.6). In this case the
calculation of the strain components on the axis of symmetry (which is the line of
intersection of the plane of symmetry and the plane of photoelastic coating) is sim-
plyfied. To illustrate the making use of the previously derived physical relations,
they were applied to the strain separation in this simplyfied case.

4.1. Basic equations

The coordinate system, in which the axis z stands for the axis of symmetry is
accepted.
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Fig. 6.

In this case for the strain separation only the isochromatic pattern is used,
since the directions of the principal strain components in the points of the axis of
symmetry are known.

The method of the strain separation on the axis of symmetry in the elastic
range of the material work was described in the paper by Kapkowski (1977).

Below, the case in which some points on the axis of symmetry may lay in the
elastic region and others in the nonelastic zone, is considered. This is schematically
shown in Fig.6 (the nonelastic zone is marked by hatching).

Therefore the equations used for the strain separation were derived for the
general case — the multisectional model of the material (Fig.2). The method of
deriving of these equations is analogous to the one presented by Kapkowski (1977).
The physical relations (3.10) are introduced to the element equilibrium equations.
After making adequate transformations, these equations assume the form

1 9 ( € ) + —1_[%(N cos 2ay,,) + %(N sin 20,,)] =

1= v 0z \f./ " 21+ vn)
) ) o,
= 2(ws)m5;(,/1 — 3k2) + 2(wR)m [a(k,,, 05 20n) + - (kptsin 20,.(1] \

1 _0e 1 o .. ) _
1-v, %('f_e) + M[E(Nsm 2a,) - 3—y(Ncos 2a,,)] =

i} 0 . d
= 2(ws)m5;(,/l - 3k§,| + 2(wR)m [a—z(kpl sin 2ap, ) — ;')Z(kpl cos 2a,.)]
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Now, the new variable is established
b(z) = —a—(M sin 2a,,) (42)
Oy

together with the designations

N
= 5 = (1= ) (wR)mkp

K = (1 - Vzn)(wS)mV 1- 3k;2>l

The quantities ¢, and ¢, are the principal strain components on the axis =z,
so along this axis: Jda,/0z = 0. Besides, because of the symmetry, dN/0y = 0.

Taking the above properties into account, the quality (e/f,) may be eliminated
from Eq (4.1) by means of the strain compatibility condition.

Then, the only one equation in the unknown function b(z) is obtained

(4.3)

dr 2\ 0y? 0z? S <0 = 9M cos 20,
(4.4)
. 0%, 1,0°K O°K
— M sin2a,, 5y + -2—( 522 5y )

After determining from the above equation the function &(z), the function
(e/ fe) may be calculated from one of the equilibrium equations (4.1) (e.g. from
the first one). After making adequate transformations and taking the strain field
properties on the axis of symmetry into account, the equilibrium equation may be
transformed into the form
Ly 29K 2
dz 1+v,l0zr Oz

fe

Further, taking under consideration the fact, that on the axis of symmetry the
directions of the principal strain components are known (a, = 0 or an, = 7/2)
Eqs (4.4) and (4.5) may be rewritten as

N)] (4.5)

N) cos2a,,—%(M— 1 +4u,,.

14
(M_ 4Vm

db M M b? 0°K 0°K

dz (3y2 "~ 9z? ) T om + %(612 + 3y2) (46)
d 2 0K d m b 1 m

dz(f_i) = 1+Vm[3z :Faz(‘" B 1+4V N) - M(M - +4V N)] e

In the above equations superscripts refer to the case, when the greater principal
strain component overlaps the direction of axis of symmetry (a, = 0), while the
lower ones refer to the case when a, = 7/2.
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Substituting in Eqs (4.6) and (4.7) for (wr)m = (ws)m = 0, the relationships
adequate for the elastic region are obtained (see Kapkowski, 1977).

So the strain separation at the points of the axis of symmetry, both in the
elastic region and in the plastified one, resolves itself into successive solving Eqs
(4.6) and (4.7) with the appropriate boundary conditions.

4.2. Boundary conditions

For the equations (4.6) and (4.7) the boundary conditions at the point, from
which starts the solution should be formulated. Analogously as Kapkowski et al.
(1987), we establish that, the stress state in the boundary element lying on the
axis of symmetry has to be considered (Fig.7 — the axis z is the axis of symmetry).

It is assumed, that the shape of the border is described by the function
y = f(z) and on the border may act the normal loading o} and the tangent one
.

q

')

. gt
a = arctan ™

Fig. 7.

The boundary loading is connected with the principal stress components at
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this point: (o)), and (02); by the relationships
or | _ (o1 +a2)s + (_01 ~02)b
gy -

cos 2[(an)s — a]

2 2
(4.8)
n = _91‘2_"2)" sin 2[(an)s — a]

After introduction the physical relations (3.10) and taking (2.4) into conside-
ration, it is possible to calculate from the relationship (4.8) at the boundary point
(with the known boundary loading) the following quantities

— the angle between the direction of the greater principal strain component
and the axis =z

(an)e = a— %a.rcsin[ L ] (4.9)

f(l—lin:,:)'Nbfc - 2Emfz(wR)m(kpl)b

— half of the sum of the principal strain components

(%)., - 1,,. " {a,,-{-ZE,,.f,(ws)m\/l—3(kpl)52+

\/[2(1 m/fe 2Emfz(wn)m(lc,,,),,]2 — 72 }

where N, is the isochromatic order at the boundary point.

Above relationships enable us to calculate the boundary quantities for Eqgs
(4.6) and (4.7).

According to (4.2) the value of by should be calculated at the starting point.
After introduction of the expression (4.9), taking (4.3) into account and making
some transformations it is obtained

B = =[Ns~2(1 - vE)(wR)m(kp)e] -

(4.10)

(4.11)

d’z 14 v, 1 J /1
[(Eﬁ)ﬁ Em N,,_4(1_Vm)(wR)m(kp,),,a—y(]:)b]

In the above equation z = f(y) is the inverse function of the function descri-
bing the border shape.

The boundary condition for Eq (4.7) is obtained directly from Eq (4.10) by
introducing m, = 0. After transformations this condition assumes the form

e _ 1-v, Em.fz
(7:)., T Enf. "“L2(1+Vm)N"]Jr (4.12)

+ 201 = v)[(ws)my/1 = 3(kp)E = (wR)m(kpi)s]
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It should be noticed, that the boundary conditions (4.11) and (4.12), similarly
as Eqs (4.6) and (4.7) describe the elastic range, if only (wRr)m = (ws)m = 0 is
assumed.

4.3. Example

To illustrate above method, the strain separation along the horizontal axis of
symmetry AB of the two-dimensional model showed in Fig.8.

PARAAALAM
i

!

)
il

!

Fig. 8.

The model was made of duralumin sheet 4.0 mm thick. After polishing and
etching the model was covered (to avoid bending effect) with the photoelastic coa-
ting 2 mm thick made of epoxy resin on both sides. The model was loaded within
the overelastic range of material and under various levels of loading the photogra-
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phs of isochromatic pattern were taken. On the base of these pictures the &(z)
function was determined enabling the e/f.(z) function along the axis of symme-
trydetermination is then possible to calculate all the strain and stress components
along the axis of symmetry. To determine necessary derivatives the finite-difference
method was applied while to numerical integration the Runge-Kutta method was
used. Because the loading of the model caused its transition into the overelastic
state, it was necessary to define the multisectional model of the material charac-
teristics. On the base of experimentally determined characteristics the adequate
mathematical model was accepted. To prove the effect of approximation of the
real material characteristics on the accuracy of results, three different mathema-
tical models were accepted: 2-sectional (bilinear ) model, 5-sectional model and
8-sectional model (see Fig.2).

To complete calculations it was also necessary to determine the values of the
coeflicients k; and k; along the axis of symmetry. In the first approximation it
was assumed that: k; = 1 and k; = 0 (the direction 1 is perpendicular to the
axis of symmetry z and the direction 2 - along the axis ). As it was shown after
doing some calculations for different cases of increasing loading, real coefficients k,;
and k; are approximately constant along the axis of symmetry and their average
values are very close to the assumed ones (k7 =1 and k2 =0).

The calculations for different cases (different mathematical models and different
loading levels) were done using the computer program.

The distributicn of stress component o, along the axis of symmetry for one
of the loading leveis (P/Rp2 = 0.67) and for three diflerent mathematical models
is shown in Fig.9.

The distribution of the stress component ¢y along the axis of symmetry for dif-
ferent loading levels calculated for one chosen mathematical model (the 5-sectional
model) is shown in Fig.10. )

It has to be mentioned that the participation of the photoelastic coating in
the transmitting of the loading (the coefficient of correction) was neglected in the
calculations because of its small value (less than 3%).

5. Conclusions

On the base of the results shown in Fig.9 it may be proved that increasing
the number of segments in the mathematical model describing the real material
characteristics gives the better accuracy of the values of strain and stress compo-
nents in the most interesting range of the first overelastic deformation (n = 2,
Fig.2). It gives the possibility of more real evaluation of the material effort in this
range. Practically, however, there is no use for taking too many segments in the
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mathematical model. As it is shown in Fig.9 the difference of the calculation ac-
curacy between 5-sectional model and 8-sectional model is inconsiderable. Further
increasing the number of segments has no sense, though it requires only some more
data input (E;, v, U(K),.) and does not cause noticable increase in the calculating
time.
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Analiza odksztalced w obszarach uplastycznionych metoda elastooptycznej
warstwy powierzchniowej

Streszczenie

W pracy przedstawiono metode wyznaczania odksztalcerl : maprezen w uplastyce-
nionych obszarach konstrukcji na podstawie obrazu izochrom otrzymanego w badaniach
metoda elastooptycznej warstwy powierzchniowe). Obliczenie skladowych odksztalcenia
(rozdzielenie odksztalcent) wymagalo wprowadzenia schematyzacji charakterystyki mate-
rialu i zwiazkdw fizycznych obowiazujacych w obszarach, w ktérych zostala przekroczona
granica plastycznosci. Wyprowadzone zaleznosct zastosowano do rozdzielenia odksztalcen
wzdluz osi symetrii. Przebieg obliczen zilustrowano przykladem.
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