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In the paper non-linear torsional vibrations of the geared drive systems are
investigated. There are considered effects of backlashes in the gear stages,
variations of the tooth stiffnesses, wear and manufacture errors of teeth as
well as effects of various models of damping application. Considerations are
performed using a discrete-continuous mechanical model. An application of
the d’Alembert solutions of the wave motion equations leads to an appro-
priate system of linear and non-linear ordinary differential equations with a
"shifted” argument. Numerical integration of these equations is very efficient,
stable and accurate.

1. Introduction

The vibration problems associated with gear stages of the drive systems of ma-
chines and vehicles have been difficult to deal with from an engineering viewpoint.
An operation of the gear stages is usually affected by torsional, lateral, longitu-
dinal and circumferential vibrations of the drive system elements. Backlashes in
the gear stages, variation of the tooth stiffnesses, wear and manufacture errors as
well as a complex character of damping have a significant influence on vibrations
of the whole drive system. These vibrations result in high stresses in shafts, cou-
plings and gear teeth and in a generation of unnecessary noise. As it follows from
(Laschet, 1988; Neryia et al., 1987; Kubo, 1987; Chou and Yang, 1987; Pfeiffer
and Kunert, 1990), for investigations of gear dynamics torsional vibraticns are the
most important and couplings with remaining kinds of vibrations often can be
neglected. |

Computer simulations of the geared drive systems for an analysis of the vibra-
tion effects are mostly based on a discrete mechanical model described by coupled
non-linear ordinary differential equations. But a numerical integration of these
equations is usually time consuming (Laschet, 1988; Pfeiffer and Kunert, 1990;
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Boga.cz et al., 1992b) and often can bring sxgmﬁca.nt erTors, pa.rtlcula.rly in a case
of impact mvestlgatxons of the gear teéth due to backlashes (Chou and Yang, 1987;
Pfeiffer and Kunert, 1990). Thus, in the present paper there is proposed an al-
ternative method of non-linear vibration analysis based on a discrete-continuous
mechanical model and on the wave interpretation of the vibration phenomenon.

2. Assumptions and formulation of the problem

A subject of considerations in the paper is the drive system of a machine driven
by the electric motor or the internal combustion reciprocating engine by means
" of n single-stage gears. It is assumed that torsional vibrations in the system are
predominant and an influence of other kinds of vibrations is negligible. For the -
torsional vibration analysis a discrete-continuous mechanical model is employed.
It consists of 2n + 2 rigid bodies of constant or variable mass moments of inertia
I, I( m) yIng2, 5 = 2,3,...,n+1, m = 1,2, respectively, n+1 torsionally deformable
cyhndnca.l elastic elements with contmnously distributed parameters of lengths I;
and constant torsional stiffnesses ki, 1 = 1,2,...,2+ 1, as well as of n massless
torsional springs of variable stiffnesses hj, j = 2,3,...,n + 1, Fig.1. The rigid
bodies represent mass moments of inertia of rotating parts of the driving motor,
2n gear wheels and of the driven machine rotor, respectively. The élastic elements
with distributed parameters correspond to the shaft segments. While the massless
torsional springs represent flexibility of the gear teeth. The considered system is
excited to vibrations by the imposed on rigid body (1) active external torque
M;(t) produced by the driving motor as well as by the imposed on rigid body
(n+2) passive external torque Mpn42(t) received by the driven machine. Absolute
damping and shaft material damping in the system are represented by a linear
model of the viscous type in the form of equivalent damping moments imposed
~ on the rigid bodies. Moreover, for the gear stages, additional non-linear damping
terms with variable coefficients e; are introduced.

Commonly applied drive systems are usually equipped with elastic couplings,
. Jjoints, friction clutches and others. A more detailed description of the discrete-
continuous model of the drive system with the a.forementxoned elements ope can
find in Bogacz et al. (1992b).

An essential problem is to select an appropriate model representing stiffness
and damping properties of the gear stages, which reduces to the assumption of
proper functions for h; and e;. In the classical backlash model of the gear stage
h;j(AO;) = hoj = const for |AQ;| > € and h;j(AG;) = 0 for |AB;| < ¢ (Laschet,
1988; Neryia et al., 1987), where ¢ is a constant value of the tooth backlash angle
and AQ; is a difference between angles of rotation of the rigid body j— (1) and
i—(2),5 =2,3,..,n+1, Fig.1. If the variation of tooth stiffness is considered,
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Fig. 1. Discrete-continuous model of the geared drive system

h;(A©;) can be expressed by sinusoidal or trapezoidal functions (cf Laschet, 1988;
Neryia et al., 1987; Kubo, 1987). In practice due to wear and manufacture errors.of
teeth ¢ is not a constant value. Because of difficulties in establishing real backlash
values, ¢ is usually assumed as a sum of the harmonic deterministic component and
the random component expressed by the filtered white noise function generated in
the form of solution of the following equation (Neryia et al., 1987)

&r(t) + b1é,(2) + bae, () = G(2)

where G(t) is the Gauss white noise process, 8, b3 are a.ppropna.te filter coeffi-
cients and t denotes time. The coefficients of damping in the gear stages e; are
usually expressed as parabolic or exponential functions of A8; (Laschet 1988).

Currently, to the gear dynamics analysing also various impact theories are
applied. For example, Chou and Yang (1987) employ the Hertzian contact theory
and thus the stiffnesses h; and damping coefficients e; are expressed as

m(AG,)
Wi 4(1- u’)
e/(A6;,A6,) = 6(1 -

h(AQ)—

___hi(A6;)
) a(ea - 19+ 9146
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- Young modulus

W; -. product of the tooth thickness and square of the jth driven
wheel] radius, 7 =2,3,..,n+1

m - number of tooth pairs in contact

v - Poi_sson ratio
eg — coefficient of restitution.

~

Equations of motion for angular displacements of the elastic element cross-

sections are classical wave equations

a%6; zz(z,t) ~ 6; u(z,t) = 0 i=12,...,n+1 (2.1)

where: a2 = G/.p and z is a spatial coordinate parallel to the system rotation
axis, Fig.1. These equations are solved with the assumed-initial conditions (e.g.
homogeneous) and with the following boundary conditions

1
Li(61)61,u + |d1 + 261,L1(61)|61,4 — €11161 2t — k111612 = Mi(2)
5 .
for z=0

I8, 14+ dV0; 14+ ¢i-1lj- 1612t + K€ (A6;)[K;051,4 — Ozl +
+kjo11j-10;-1,2 + Kihi(AO;)[k;j6;-1 — 6] = M)

16,4 + d8; - €162t — €;(A8;(8))[K;0;-1, — O56] ~ k165 =

—hi(A8;(#)[x;05-1 - 6;] = MY | . (2:2)
j-1

AB; (t) = KvJ 3-1= ej J ;.2,3,...,”-{-'1 - for z= Zl'
=1

4260416t + 420041t + Eni1ln41Ont1,0t + knt1ln1Gnt1 2 =

n+l
= Mpya(t) for z= Z I
=1
where
t _ @5(64) ). . h;(A8;)
Li(6,) = a6, M;= '~‘3811(A9j)"5j"K—jJ
M) = sgn(A6;)e;h;(A6;)
Kj — gear ratios, j =2,3,..,n+1
d; ~ constant absolute damping coefficient, k = 1,2,...,n+ 2

¢~ constant shaft material damping coefficient, [ = 1,2,...,n+ 1.



ANALYSIS OF THE GEARED DRIVE SYSTEMS - 397

Superscripts (1) and (2) are assigned to the quantities corresponding to the
driving and driven elements in the system, respectively, Fig.1. The subscripts
after commas denote partial differentiations.

Solutions of Eqs (2.1) are sought for in the form of the d’Alembert solutions

-1 -1
Oi(z,t) = fi(at —z+ Y _1;) + gi(at + z - Y _1;) i=1,2,..,n4+1 (2.3)
j=1 i=1

The functions f; and ¢; in Eq (2.3) represent torsional waves propagating in the
elastic elements as a result of the external torque application. They are determi-
ned by the boundary and the initial conditions (Bogacz et al., 1992a,b). Thus,
substitution of Eq (2.3) into the boundary conditions (2.2) leads to the following
system of linear and non-linear ordinary differential equations with a "shifted”
argument z for the functions f; and ¢;,1=1,2,...,n+1

T2.0429n41(2) + F1n420n41(2) = Mng2(z = lnpa) + 82042 fna (2 = 2lagn) +
+8l.n+2fn+1(z = 2p41)

ra(2)fi (Z) +r(2)fi(2) = M1(2) + 521(2)91(2) + 311 (2)91(2) (24)

[ P2.1 ] [ gh(z+ 1) ] + [ Pr(2) ~kjei(Aj(2))
f1(2) —rje;(A;(2)) r1,i(2)

931(z+’:1) ] [ k2hi(Aj(2)) —kihi(Aj(2)) ] [911(2+’j1) ] _ [ By ]
fi(2) -Nah i(Aj(z))  hi(A(2)) fiiz). | 7| B

where

By =M{"+ uz,,-lf;',(z = i)+ wn(2)fa(z = 1) + Kjej(Aj(2))gi(2) +
+r;hi(A(2))9i(2) — 85 fn (2~ 1;1)]

By = M + 531(2) + 31,391(2) + 3¢ (D i(2)) Falz — bin) ~
~h; (A (Z))L‘IJ(Z) - "Jle(z - lJl)]

Aj(z) = "J[fJ—l(z - l:-l) + gJ—l(Z + 1)) - fi(2) - QJ(Z)

Jj=23,. ,n+‘1 jl=j-1
T2.n+2 = Cnt1lns1 + alng2 Pinsz = .l.(k"+l’"+;-+ adpy3)
82,42 = Cngilnt1 = alnys 1043 = la(kn+llﬁ+; — adpy2)
ra(z) = ey + al1(z) ru(z) = Lk + a(dy + 21(2)L1(2))]

a
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Lkl — a(dy + £21(2)L1(2))]

s21(2) = ey — alh(2) sn(z) = "

P21 = ciilin + aI,(-l) pig(z) = Llkidjn + a(d§1L+ Kiei(4(2)))]
w51 = ciuljy — oIV ur1(z) = Llkilin - “(dg'l)a‘ riei(85(2)]
ra = ¢ilj +all?) r,i(2) = Llksts + a(dﬁ-”a-y ej(4,(2)))]

02 = et = oI os(e) = a(d§2.),_ &;(84(z)))]
o) = AN +GE] dl=i=1 =23l

and [, is an arbitrary value. Using the Newmark method to solve Eq (2.4) together
with Eq (2.3) one obtains a system transient or steady-state dynamic response in
the form of torques or tangential stresses in the shafts and in the form of forces
or angular accelerations of the gear teeth. The ”shifted” argument in Eq (2.4),
which is a consequence of the wave interpretation of torsional vibrations, makes
their right hand sides always known at each computation step. Thus, in contrary
to coupled differential equations for an analogous discrete mechanical model, it is
possible to solve Eq (2.4) sequentially, one after another, in the presented order.
As it follows from (Bogacz et al., 1992a,b), this feature very essentially simplifies
the numerical procedure making it much more efficient, stable and accurate.

3. Numerical example

In the numerical example there was performed a start-up simulation of a ma-
chine driven by the asynchronous motor by means of n = 4 gear stages. The
system was accelerated from a rest to its nominal rotational speed. In this exam-
ple for simplicity and clarity of results only variable tooth stiffness in the gear
stages is considered. The external torque M;(t) produced by the motor was assu-
med according to (Laschet, 1988). Time history of this torque is showed in Fig.2.
However, the load torque Mjg(t) of the driven machine was assumed in the follo-
wing form: Mg(t) = —(2.8-10%)t [Nm] for ¢<0.5[s] and
Me(t) = —1.4-10° = const [Nm] for &> 0.5 [s]. The gear stiffnesses 4;(A8;),
7 =2,3,4,5, are ‘described by harmonic functions (cf Laschet, 1988; Kubo, 1987).
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Fig. 2. Torque produced by the asynchronous motor

However, for the damping coeflicients e;(AO;) parabolic functions were assumed
(cf Laschet, 1988).
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Fig. 3. Dynamic torque transmitted through the first gear (2) - in time domain

Fig.3 and 4 present system response in the form of dynamic torque transmitted
through the first gear stage (2) in time-and frequency domain, respectively. Howe-
ver, Fig.5 shows a history of the dymamic torque transmitted through the second
gear stage (3). From Fig.3 and 4 it follows, that after 3.5 seconds of the start-up,
when the nominal rotational speed was achieved, the system fell into resonance
excited by the first gear stage stiffness variation of the frequency equal to 618 [Hz],
which is close to the fourth natural frequency with the node location just in the
first gear stage (2). However, in the second gear stage, together with the afore-
mentioned resonance, an influence of the additional excitation due to variation of
the stiffness hj is visible, Fig.5.

The amplitude spectrum in Fig.4 shows, that for the first gear stage an influence
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Fig. 4. Dynamic torque transmitted through the first gear (2) - in frequency domain
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Fig. 5. Dynamic torque transmitted through the second gear (3)

of the pulsating component of the asynchronous motor torque of frequency 50 [Hz]
is relatively small, but vibrations excited by a variable tooth stiffness due to the
gear meshing are predominant. In this example vibrations caused by the variable
tooth stiffnesses are also predominant in the remaining gear stages and they can
be particularly dangerous for fatigue process of the tooth material.

4. Final remarks

In the presented paper a discrete-continuous mechanical model and the tor-
sional wave propagation theory were applied to investigation of dynamic effects
in the geared drive systems. Using the presented procedure a consideration of
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backlash effects, tooth stiffness variations, wear and manufacture errors as well as
of various damping models reduces to a selection of an appropriate gear stiffness
and damping coefficient functions for a numerical simulation. In the proposed
method all the aforementioned properties of the gear stages are included in the
boundary conditions of the problem. Because of an application of the d’Alembert
method, the boundary conditions determine motion of the system. The obtained

.in consequence ordinary differential equations with a "shifted” argument are easy
for the efficient numerical integration and achieving high computational stability
and accuracy.
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O analizie nieliniowej przekiadni ch ukladéw napedowych przy pomocy
’ mem falowej

Streszczenie

W pracy badane s3 nieliniowe drgania skretne przekladniowych ukhdow napgdowych.
Rozpatruje si¢ efekty w przekiadniach z¢batych wywo}ywane luzami, zmienncscia sztywno-
§ci zazgbienia, zuzyciem i bledami wykonawczymi, jak réwniez efekty wywolywane przyj-
mowaniem réznych modeli tlumienia. Badania te sa przeprowadzane za pomoca dyskretno—
ciaglego modelu mechanicznego. Wykorzystanie rozwiazan d’Alemberta falowych réwnan
ruchu prowadzi do odpowiedniego ukladu liniowych i nieliniowych rwnan .rézniczkowych
zwyczajnych z "przesunietym” argumentem. Calkowanie tych réwnain jest bardzo efek-
tywne numerycznie, stabilne i dokladne.
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