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THE METHOD OF THE BOUNDARY INTEGRAL EQUATION
FOR. THE POTENTIAL FLOW INSIDE THE PALISADE OF
AIRFOILS IN THE SEMI-INFINITE PLANE REGION
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In the paper the boundary problem of the Neumann type for the Laplace
equation in a certain periodic, 2-dimensional region is considered. The ap-
proach based on the boundary integral equation of the second kind has been-
suggested and the periodic version of such an equation has been obtained.
The algorithm for solving this equation has been proposed and some sample
results of numerical calculations have been presented. '

1. Introduction

Solution to the fundamental problem of classical aerodynamics describe the
motion of an ideal fluid flowing around the given 2- or 3-dimensional body, actually
appears as a single task not so often. It seems that much more often problems
of finding potential velocity fields arise as auxiliary steps.incorporated in more
complex algorithms designed for the flow models closer to reality. Typical examples
are models of airfoils, wings or even the whole aircraft design obtained by iterative
methods based on the external flow-boundary layer splitting.

Another example is the method of random vortices (blobs) for real liquid flow
simulations. This method allows us to calculate, in a direct way, nonstationary,
2-dimensional flows of viscous liquid in domains of practically any geometry and
at any Reynolds number. At each step of the "numerical evolution™ of the flow
one has to solve a certain boundary problem of the Neumann type to find an
auxiliary potential velocity field, which is necessary to obtain the given normal
“velocity (usually to eliminate it) on the boundary contours. The Autor has been
motivated mainly by a strong need for solving such a problem occurring when one
wants to apply the random vortex method to calculate flows inside palisades of
airfoils. Such a space-periodic potential problem can be also interesting in itself.
The aim is to show that this task can be performed quite efficiently and directly



376 - J.SZTUMBARSKI

in a physical periodic domain (i.e. without any additional trans-formations of the
domain).

2. Formulation of the problem

We consider the flow of ideal fluid at one stage of the 2-dimensional, infinite
palisade of airfoils. In such a case it is natural to postulate space-periodicity of the
flow field. Thus we can divide the domain into the infinite number of semi-infinite
rectangular regions. The width of each region is assumed to be equal 27 so the
flow is 2x-periodic with respect to y-coordinate.

Farther on, the region of the range closed within the interval < 0,27 > is
considered and called 2 with the boundary 32 oriented as it is shown in Fig.1.
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Fig. 1. The y-periodic computational domain

Now the formulation can be stated as follows
o find the velocity potential @ which satisfies

— the Laplace equation A® = 0 inside 2

— the periodicity condition #(z,y) = &(z,y+2kx), k - arbitrary integer
number
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— the Neumann boundary condition

D& | 24 on 4, - contour of an airfoil
dn uy(y) on 08, - inlet line

where u,,(y) = uu(y + 2k7), V; is the prescribed, normal velocity on
the airfoil.

Furthermore we assume that

C1 The circulation of the airfoil-connected vortex is chosen in the way which
meets the Kutta-Zukovsky condition at the trailing edge (which, actually, is
the point corresponding to the maximal curvature of the contour)

C2 The integral of the y-component of velocity along the inlet line is given and
equals [,.

3. Construction of the y-periodic velocity potential

We assume the following form of the potential sought for

_ _ I,
(z,y) = UooZ + Ty + 4—:31 + ¢, + ¢+ 1,9, (3.1)
where
oo - averaged z-component of the inlet velocity
2w v
o _ 1 / d
Uoo = Gy uw(y) Y
0
Yoo — velocity equivalent to given I,
- I,
Yoo = ox
I, - circulation of the airfoil-connected vortex
o, - velocity potential corresponding to the airfoil-connected vortex

with unitary circulation
&#,, $2 - additional harmonic potentials selected to satisfy boundary
. conditions for &, derivatives of which vanish at infinity.
It is important to point out, that the airfoil-connected vortex is actually the
infinite set of vortices with the center of each one located inside the corresponding
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airfoil. Such a y-periodic vortex with unitary circulation induces the following
velocity field

u, —iv, = V,(z) = coth 2 ;"’ (3.2)

The complex notation is convenient here
z = z + iy — any point within the flow domain,
2o = To + iyp — the center of the palisade vortex which is located inside f2.
The corresponding velocity potential is given by

1 L, Z2=2
$.(z) = Re[m In sinh ~— (3.3)
Unlike in the case of a single vortex, the y-periodic vortex inducing the velocity
field does not vanish at infinity
1 1

Ve(z) = — im V.(z)=-—

li - :
4xi Re(z)—ro0 4xi

m

Re(z)—o0

Thus the nonzero y-component of the velocity 6f opposite sign exists at infinity

on each side of the vortex. This explains the presence of the third component in
Eq (3.1) - it satisfies C2 condition.

Farther on we consider the particular case V; = 0 on the whole contour 942,.

Then the additional potentials &, and &; should fulfill the following conditions

on the boundary 812

d 0 on 02,
"H(ﬁoo:+ﬁooy+¢l) = .

uy(y) on 012,
d /1 ' o
E(Hy+¢r+¢2) =0 on 0f2

Thus we have the following Neumann boundary conditions

— - d
o, —umaf—l - vooa% on 01,
dn
t_loo(y) — fleo on 082,
(3.4)
dd, d /1
—E = -d—rz_(:l_r-y+¢r) on 412

In Eq (3.4), the simple observation has been employed that the normal unit vector
to 942, is simply the versor of z-direction. In the next paragraph the method of
calculating &, and #,. Now, assuming, that both potentials have been already
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determined, the Kutta-Zukovsky condition can be applied and unknown I} can
be found iu the following way.
The derivation of Eq (3.1) with respect to the arc-length coordinate s yields
the tangent velocity on the boundary
- - 1 dd, d¥; dé,
Vi(8) = Glotz + Dooly + I‘,(4—'t, +—-+ T) + (3.5)
where t = [dz/ds,dy/ds] is a tangent unit vector. Then, assuming that the
trailing edge corresponds to s = 0 one has

_ ootz + ooty + i

St a9 ' (3.6)
Lt,+ L+ 4 Lo

which is due to V(0) = 0.

4. The method of the boundary integral equation

We have to find unknown potentials &, and ¢,, which are harmonic, y-
periodic functions in {2 with normal derivatives on 912 given by Eq (3.4). It is
well known that the Neumann boundary problem for the Laplace equation can be
solved by means of introducing the Fredholm second kind integral equation called
the boundary integral equation. In the case when 2 is unbounded, multi- but
finite-connected region in R? this equation has the form

1 d 1 d
w(sp) — = f ——Inr o p(sg)dsg = -'f Inr,q—w(sq)ds, (4.1)
x J dng, x dn,
a0 an

where
n, - internal normal unit vector to 812
3p,8g ~— arc-length coordinates on 32
Teq  — distance between points P and Q lying on on
jd;? — ' given boundary distribution of the normal velocity.

Eq (4.1) originates from the two dimensional Green identity and boundary
properties of double layer integrals (X € 2)

1 pd 1 d
AX) =~ § 2 lnregp(sg)dsg + 5= flaryozplsoddsg  (42)
én 9 an 9

becoming its limit form when X — P € 812. (See for example Vladimirov, 1981).
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It should be emphasized that Eq (4.1) can be obtained when 0£2 is smooth
enough. When one assumes that n, exists on the where 92 and the curvature
k(s) in bounded, then the kernel of Eq (4.1) is also bounded and the equation is
not singular in fact. When the condition of existence of a solution is fulfilled

d
f Fdi(a)da =0
an 9

then the boundary value of the potential produces the velocity field with no cir-
culation and vanishing at infinity.

In the case of the palisade the physical domain is infinitely multi-connected.
The assumption of the y-periodicity allows us to consider the problem in the
semi-infinite region f2.

The next step one has to do is to obtain the y-periodic version of Eq (4.1) so
that the integration would be carried along 32, and #2,. Such equation exists
(see Appendix B) in the form

w(sp) + % f Re[% coth fg—;—z’-.nq]gp(sq)dsq =
oa (4.3)
- fne[lnsmh o) L ~ploq)isg

Moreover Eq (4.3) corresponds to the following, y-periodic analog of the Green
formula Eq (4.2)

PX) = 5o Re[gooth 2 Thn (s )dsg +
50 (4.4)
+ f Rein sinh —9—"5-] an; Ploa)isg

In Eqs (4.3) and (4.4) 802 = 302,U812;, complex numbers z,, z,, z, represent
points (zy,yx) € 2 and (z4,y,), (zp,¥,) € 892.

It is easy to notice that both the kernel and the right hand side of Eq (4.3) are
y-periodic, hence the solution is also y-periodic. The numerical method of solving
this equation is described in the next paragraph. Finally, the solution to Eq (4.3)
allows as to rearrange the velocity field inside 2 in a simple way. It seems that
the simplest way should consist of two steps

1. numerical derivation of the potential on the boundary with respect to s-co-
ordinate gives the tangent component of velocity on the boundary (see Eq
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(3.5)); having v(s) and v,(s) (given) one can calculate the complex velocity
V(s) = ufs) — iv(s) = (ne(s) — iva(s))(s) (4.5)
where u, v are the cartesian components and #(s) = t.(s) — ity(s),
2. calculation of y-periodic analog of the Cauchy integral

1 Zg—Z
V(z) = maé V{(s)coth dzy(s) (4.6)

where z,(s) — s-parameterized complex representation of 92,
z=z+iy € .

Thus, after determining &, and ®&,, the corresponding velocity fields V; and
Vs can be found. The total complex velocity field can be calculatec then, using
formula

V()= Vo + (Ve +V2)+ V4 (4.7)

where Voo = fleo — i(t_)oo + %), V. and T, are determined by, Eqs (3.2) and
(3.6), respectively.

5. The numerical method

In order to find the solution one has to determine the unknown potentials &,
and @, satisfying the integral equation (4.3), which can be written in a form

o(s) + }{ K(s, )p(t)dt + / K(s,)p(t)dt = r(s) (5.1)

812,

The solution to Eq (5.1) is assumed to be periodic with respect to the arc-length
coordinate s, separately oh 942, and on 3%, respectively, which is equivalent
to y-periodicity. We introduce the nodal points on 3f2,, which divide it into
segments (sg,Sx41), kK = 0,..., NP, 8., = S¢; the inlet line 8102, is umformly
partitioned into segments [sk,skH] k=0,.,NW,syy,, =2r.

The following set of the linear B- splmes can be defined

$ — 8k-1
k= Sko1 for 8 € [8[:-1, ak]

={ Sky1—38 '
, LK(-S) = T:.f;l—__Tk for s € [-”c—la"k] -

0 otherwise
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separately for 82, and 8f2,. The solution to Eq (5.1) can be approximated by
a piece-wise linear function of s in the form

NT
o(s) =D wiLi(s) NT=NP+NW+1 (5.2)
=0
Accordingly to the introduced partitions of 92, and a£2,, B-splines Lo,...,Lnp
have their supports included in 8f2,, and B-splines Lnpti,...,Ly7 in 0802y,

respectively.
Next, the kernel K and the right-hand-side of Eq (5.1) can be represented in

{L;:}-basis

NT NT NT
K(s,0)= 3 3 KL L) ()= Yonlds)  (53)

The decomposition coefficients ¢;, K;;, r; are given by the values of corresponding
functions in nodal points

wi = ¢(8i) Ki; = X(si,t;) ri = r(s)

After substitution of Eqs (5.2) and (5.3) in to Eq (5.1) we obtain

NT NTNP NP
3 wiLi(s) + f S K5Lis)Li(t) S e Le(t)dt +
=0 a1, 1=0 =0 k=0
NT NT NT NT
+ / Y Y KsLi)Li) Y eele(t)dt= Y riLi(s)
o7, =0i=NT+1 k=NP+1 i=0

Then, a!'t_e-r some calculations the following formula holds

NT NP NP
> [soe + Ky o f Li(t)Le(t)dt +

=0 i=0 k=0 ,p

NT NT
+ 2 Ki Y & / Lj(‘)Lk(t)dt—f.']Le(s)=0
j=NP+1  k=NPH1 gp ’

The B-splines {Lo,..., LyT} are linearly independent, thus

NP NP NT NT
‘Pe+E(E/C.','],'k)w+ Z ( > K:c‘jljk)V’k:Tc'

k=0 j=0 k=NP+1 j=NP+1
) (5.4)

i=0,...,.NT
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In Eq (5.4), the following, 3-diagonal matrix L of Lj; entries has been introduced

Lix = / Li(t)La(t)dt (5.5)
an
_ Onme can define the new matrix _
M=KXL (5.6)
to o‘bta.in the final form of the set of linear equations

(1+M)p=r '

(5.7)
= [¢o7 ey ¢NT] r= [To, ooy TNT]

8. The results of the numerical analysis

The numerical computations have been performed for the palisade constructed
of the blade-like airfoil obtained by the parametric, complex formula given in the
Appendix. The airfoil partition into segments results from the transformation of
the uniform partition of the circle, chosen to assure, that the point of the contour
with the maximal curvature (trailing edge) belongs to the set of NP 4 1 nodes.

The inlet line has been divided into NW + 1 segments.

The calculations were carried out for various values of NP and NW; herei-
nafter, the results for NP = 599 and NW = 119 are presented. Thus the set of
720 linear equations has been solved using the Crout’s L-U decomposition algo-
rithm (cf Press et al., 1989) and double-precision calrulations. The velocity and
the pressure distributions, respectively, dcros the boundaries have been obtained
for various normal-velocity conditions on the inlet line. The results are presented
in Fig.2. The example of the flow (stream lines) within the periodicity region,
computed in one of the cases under consideration, is shown in Fig.3. It should be
emphasi-zed that the palisade airfoil has not to be, in general, totally included in
the single periodicity region.

As it was shown by Szumbarski (1993)', the 2-parameter family of symetric oval
contours exists, for which a potential flow in the palisade can be determined in:
a close, analytic form. This fact allows as to compare the approximated solution
(numerical) with the exact one and to acquire an idea how accurate the numerical
method is. The only minor complication is due to the disappearent of the domains
of the flow for the analytic and the numerical solutions, respectively. In the former,
the domain is the whole plane and the flow is completely determined by the velocity
at infinity in front of the palisade. In the latter the domain is obviously a half-
plane, to the right of the inlet line, which is the part of the boundary with the
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Fig. 2. The velocity (a) and pressure (b) distribution. In all cases the uniform
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= —0.2. The

1.0, Ve

shape of the airfoil is determined by the parametrization given in the Appendix

Fig. 3. The streamlines of the y-periodic flow computed for u,,
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Fig. 4. The difference between the analytical and numerical solutions of the symmetric
flow in the palisade of the oval contours (r = 20, d = 204) for uniform velocity
distributiox; on the inlet u, = 1.0

Fig. 5. The example of the nonsymmetric flow in the palisade of the oval contours (see
text)
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Neumann condition imposed on it. Thus, to obtain equivalent numerical solution,
one has to evaluate, using analytical solution, the velocity distribution across the
inlet line and then use it as-a boundary condition for the numerical calculations.
The numerical results have been computed for the palisade of the ovals for
parameter r = 200 and d = 204 (cf Szumbarski, 1993). The number of nodal
points on the oval and on the inlet line has been varied, however the proportion
of the number of nodes on the oval and on the inlet, respectively, has been fixed
and equal to 3:1. The symmetric flow has been assumed and t'he_a.bsolute values
of the differences between the exact and the approximated boundary velocities,
respectively, in all nodal points have been calculated in each case. The results are
shown in Fig.4. The example of the nonsy mmetric flow has been calculated for
NP = 599 and NW = 199; the resulting stream lines are presented in Fig.5.
The velocity distribution over the inlet line (nonuniform) corresponds to such an
uniform flow at infinity, that the rear stagnation point is placed in the prescribed
nodal point (its number is 50) on the oval. The velocity of the uniform flow has
been obtained numerically with a high accuracy (approximately ve,/uoo = 0.3).

7. Conclusion

The method for solving a certain class of space-periodic potential flows has been
proposed. The main feature of this method is the decomposition of the unknown
ones using the boundary integral equation. The kernel and the right-hand-side
function of this equation are y-periodic, like are the solutions: boundary values
of unknown harmonic functions. To solvethe integral equation a simple, linear
approximation has been applied, employing the idea of B-spline functions. Thi-
sapproach has proved to be quite efficient, however the accuracy test (performed
on the specific example, for which the analytic solution can be obtained for compa--
rison) showed that relatively high errors could occur in some areas of the domain
of the solution. One can expect that the application of higher-order numerical
algorithms (square, cubic or more sophisticated approximations) would lower the -
level of errors and, probably, smooth their distribution. :

Appendix

A The parametric definition of the shﬁpe of the airfoil used in the
numerical computations \

The palisade has been constructed from the airfoil given by the following com-
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plex parameterization
-1

F(z)=co+ 12+ z ez z = exp(iQ) (A1)
k=—5

The coefficients are as follows

c-s = 0.0058548432 — 0.0058548432
c—4 = 0.040983908 + 0.040983908i
c-3 = —0.078064588 + 0.078064588i
c_3 = —0.409839087 — 0.80016203i
c.1 = 1.366130302 —- 1.366130302i
cg = 5.3 — 2.54i
¢) = 2.14678 — 2.14678i
Obviously, the coefficient ¢g causes only horizontal and vertical shift of the

airfoil. Since the geometry of the flow domain is, y-periodic the imaginary part
can be given an arbitrary value.

B Derivation of the kernel functions of the integrals in Eq (4.3)

The kernel of the integral equation in the classical (nonperiodic) case can be
expressed using complex notation as

cos(QP,1ig) __ d

r

n
lnr,, = —Re—9 (B.1
qr Codng T Zq = %p )

K(sp, 30) =
where

Ng = (n:; )x + i(n:;)y
zq = z(sg) +iy(sq)
zp = z(sp) +iy(s,)
To obtain the periodic kernel the following infinite sum sheuld be calculated

+o00 d
2 gl V(zo =222 + (v + 2kx) — 3,2

According to Eq (B.1) it is equivalent to calculate the sum
: +oo )

‘ k=¥oo Zg — é, + 2kxi



THE METHOD OF THE BOUNDARY INTEGRAL EQUATION... - 389

and to take the real part of it.
The following identity plays the crucial role

coth(¢) = +2E a7 kw (B.2)

The calculation goes as follows

+00
) bl e -
w2 Zq — Zp + 2kmi zQ—z,+2k1r1 zq —zp —2kmil 25 -2,
Th—%
=3 400 2z, — zp s 1 e 411
— (20 — 2p)2 +4k?x2 " 2, -2z, 4= (zg=2p)® 2.2 227%
k=1 Q~ “p QTP k=1 3 + k3x Ar

Comparing the foregoing equation with Eq (B.2), it is easy to notice that

+00 -
S . - = ! otnZe=?e
ot %q—2p +2kmi 2 2

In order to obtain the kernel of the integral in the right-hand-side of Eq (4.3) one
has to calculate the following sum

+o00
Z In \/(3Q ~25)% + [(yg + 2k7) — y, |
k=—o00 .

* Using complex notation it i¢ equivalent to calculate the sum

3

+00
> In(zg — zp + 2kxi)
k=—c0 ’

and taking the real part of it. However this sum does not converge unless a certain,
properly chosen, set of constants is added. One is allowed to do it, because of the
" type of conditions imposed or the boundary data, namely

‘al va(8)ds = 0

"The set of constants is following
Ci = —In(2kri) C-k = —In(~2kni) " k=1,2,3...

Additionally, to obtain the sum in a closed form, Cp is defined: Cp = —In2.
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Then the calculations go as .follbws

.- 400 . +00
> [in(zg = 25 +i2km) + Ci] = 3 [In(zq = 2, +i2km) +
k=1

k=—00

+1n(z, — 2, +i2k7) — In(~i2kr) - In(i2k7)] + In(z — 2,) -2 =

= ¥ +oo[lnf(zg — z,)? + 4k*x7] — In(4k*?)] + 0 TO 27 <

3

k=1

400 _ 2 - - +o00 -
=k§h[1+ (zikﬂ*:;) |25 =h?.'zq P kl;I,[H (52 ]

- Now, from the identity

. R (2
sinh(z) = zk]_-:]; [1 + (—kr) ]
it follows, that

3~ +oo[in(zq ~ 2 +i2kx) + Cs] = Insinh 20222
k=1
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Zastosowanie metody calkowego réwnania brzegowego do analizy przeplywu
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Streszczenie

W artykule oméwiono metode wyznaczania pola predkoéci ruchu cieczy idealnej
w stopniu okresowej palisady lopatkowej, oparta na. wykorzystaniu calkowego réwna-
nia brzegowego £ okresowym jadrem. Zaproponowano elementarns metod¢ numeryczna
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rozwiazania tego réwnania wykorzystujaca aproksymacje jadra, funkcji prawej strony i
funkcj1 niewiadomej (brzegowego rozkladu potencjalu predkoéci). w bazie B-splajunéw li-
niowych. Zaprezentowano wyniki przykladowych obliczenri oraz oszacowano dokladnos’ ¢
metody stosujac jg do przypadku ze znanym rozwiazaniem analitycznym.
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