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The analytic solution to the Neumann boundary problem for the Laplace
equation 1n a space-periodic domain has been obtained. This domain is the
exterior of the y-periodic palisade of contours from the 2-parametric family.
Such solution can beused as a test for the accuracy checking of numerical
algorithms.

1. Formulation of the problem in physical and transformed domain

The general task is as follows

e Find the y-periodic solution to the Laplace equation in the domain §2 pre-
sented in Fig.1, satisfying the Neumann conditions on the boundary 812.
In terms of the ideal fluid dypamics it is the problem of determining the
velocity potential having the normal velocity on the given boundary. Addi-
tionally one requires that the flow far a way from the front of the palisade is
a homogeneous stream with prescribed velocity V.

Generally, two different approaches can be applied here

1. solving the problem directly in a physical domain; the main difficulty is to
assure the y-periodicity of the solution and the fact that domain is infinitely
multi-connected is also an obstacle, .

2. transforming the domain, using some conformal mapping, so that y-per-
iodicity would be obtained automatically.

The first approach has been discussed by Szumbarski (1993). Hereinafter the
second one is useful, with the obvious observation that the mapping we need is
‘the simply expohent function (according to Fig.l. the y-period is equal to 2r).
Then every contour of the palisade is mapped onto the same closed curve and the
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Fig. 1. The exponential conformal mapping transforms y-periodic domain to
double-connected, unbounded region

inlet line (z = 0) - onto the unit circle. Thus the problem has been reduced to
solving the Laplace equation in a double-connected, unbounded region 2 with
transformed Neumann conditions on the boundary 812 (Fig.1).

In general case, in order to find a solution, some numerical methods should
be employed. The analytical treatment is possible when, for instance, we assume
that

1. the contours of the palisade (9{2;) are mapped onto a circle,

2. there is no inlet line i.e. the physical domain 2 is extended (to the left) to
infinity. Thus 842 is reduced to the origin.

If in the domain {2 a certain velocity at infinity (in front of the palisade) is
. prescribed Vo = [too, Uoo] then, after transformation, one obtains at the origin
- the source has the flux

Q = 2ruy (1.1)

— the vortex circulation of which will be determined below on.
Thus the flow past the cylinder due to the presence of the singularity of the origin
has been obtained in the transformed domain 2. Its complex potential can be
constructed with the use of the Milne-Thomson theorem (cf Milne-Thomson, 1952)

o If W(z)is a certain complex potential, the circle of radius R with a center
at the origin is the one of the flow stream lines given by potential »f the form

Wo(s) = W)+ w ()
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Two cases are of particular interest!

a) W(2) = %lnz ~ source at the origin

b) W(z) = -z%ln z - vortex at the origin
If we consider the conFiguration shown in Fig.2a, it can be calculated (see Appen-
dix A) that

Qe+ Sy _ 9
We(2) = 3= In(z - b) + 211n(z ; ) ~Inz (1.2)
Hence, W_(z) is the superposition of three sources. Similarly in the case shown
in Fig.2b, the following formula can be calculated

r r r R?
\Wc(z)—2—7riln(z-b)+%lnz—-é;i-ln(z—-7) (1.3)
Hence, W_(z) is the superposition of three vortices.
(a) J 5] )y

" |

-
S <
B‘Ri’ ES
e
-

-

Fig. 2. The configuration of the singularities of the flow in the exterior of the circle
induced by: (a) — single source, (b) - single vortex

However, unlike Eq (1.2), the formula (1.3) is only one of many possible choices.
It is easy to see that the second term in Eq (1.3) represents the vortex located
in the center of the circle. Thus no normal velocity is induced by this vortex
regardless of its circulation.

We consider the following 2-parametric family of circles

z(a) = —d + re~ie-") (1.4)

1For certain reason it is more convenient to consider these cases separately instead of
_introducing the single value Q —iI’
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The complex coordinates of singular points can be introduced

=0 — origin, omitted below
5 =-d — center of the circle
r2 . C (1.5)
2=—-d+ g — inverse of the origin with
respect to the circle center
Then, applying Eq (1.3), one obtains
-9 '
W,(z) = ;{lnz—ln(z— a)+1n(z - )} (1.6a)
for the source flow, and
r
W.(z) = m{lnz+ln(z-— 2)—In(z- zz)} (1.6b)

for the vortical flow.

2. The flow in the physical domain

Application of the inverse transformation (ln(z)) to Eq (1.4) generates the
2-parametric family of oval contours in the physical domain. Since this trans-
formation is multivalued we obtain the y-periodic palisade. Some examples of
contours from this family are shown in Fig.3. '
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~ Fig. 3. Four examples of the contours for various choices of the parameters r and d: a -
r=20,d=3.2;b-r=20.0,d=215;¢c-r=2000,d=206; d - r =500.0,d = 504.0.

The following formula defines the complex velocity field in the physical do-
main {2
o(() = 7V(2) (2.1)
where z = exp((), { € 2. The formula (2.1) is implied by the general formula

vm=§§ . (=F(z)
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where £'(z) = Inz in this case. R
The velocity field V(z) in the auxiliary domain {2 is obtained by derivation

of Eq (1.6)
Y LY S (2.20)

- source-flow velocity

(2.2b)

rii 1 1
Vr(2) = 571[;-'- z-z Z—Zg]'
~ vortex-flow velocity. _

To find the flow in 2 the circulation I should be determined in the way
ensuring that the condition imposed on the velocity at infinity is satisfied. It can
be shown (cf Chmielniak, 1989) that an infinite y-periodic ”palisade” of identical
vortices (called y-periodic vortex from now on) induces the velocity field due to
the formula '

Vo(e) = 4-% coth £ 280 (2.3)

where (, (o € £, (o — complex location of the vortex with 0 < Im(p < 2x. This
velocity does not vanish at infinity

m V() = ——

i r
Re(¢)——00 4mi Rc«li’f’.m Vr(€) = 4ri

Thus, at left-side-infinity the vertical velocity equals -—g, and at right-side-
infinity it has the same absolute value but an opposite sign. Hence we have

" I'=-41V, - v (2.4)

Moreover the equivalent vortical flow in 2 should be taken in the modified form

r 1 1 1

Vo(z) = 4‘75[‘7' - z_zz] (2.5)
(which is also geometrically admissible) due to the fact, that the y-periodic vortex
flow is transformed by an exponent function into the flow induced by the pair of
vortices: the first with I’ circulation at the center of circle, and the second one
with —T circulation at the origin (see Appendix B).

Finally, the total velocity field in the physical domain §2 is calculated by
superposition "

| v(¢) = 55(C) + 9:() (2.6)

where vy, v., @ and I are given by Eqs (2.2a), (2.5), (2.4), (1.1), respectively.
Two examples of flow that can be obtained are shown in Fig.4 and 5.
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Fig. 4. The example of the flow in the palisade of contours for r =200 and d = 206.
The velocity at infinity is (1.0,0.2)
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Fig. 5. The example of the flow in the palisade of contours for r = 500 and d = 504.
The velocity at infinity is (1.0,0.7)
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3. Conclusion

It has been shown that the potential of the infinite, y-periodic palisade of the
airfoils belonging to certain 2-parametric family can be obtained analytically in
the closed form. The Milne-Thomson theorem has been used with a special care in
choosing the proper form of vortical component of the flow field. The obtained fa-
mily of flows can be treated as a convenient testing example for numerical methods
designed to solve the problem formulated in the beginning of the present paper (cf
Szumbarski, 1993). Also the case of flows within semi-infinite domains with the
vertical inlet line can be considered — one needs only to calculate analytically the
normal velocity distribution over the inlet and employ it as-a boundary condition
in numerical algorithms.

Appendix
A The derivation of formulas (1.2) and (1.3)

We show that the formulas (1.2) and (1.3) hold. To prove Eq (1.2) we start
with the complex potential function for the source

W(z) = %ln(z ~b) (A.1)

Thus the flux of the source is @ and its location is (b, 0). Accordmgly to the
Milne-Thomson theorem

wo(z) = () + w(Z)

one obtains

BT
2 inz - ) + (2 - p) =

We(2)
(A2)

where the obvious identity Inz = InZ has been used.
Since the velocity is determined by the differentiation of W, an drbitrary

constant can be added to (A.2). We chose this constant to be equal to 29; ln(— i—)
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Then
W) = -0+ Zu(E -5+ In(-;)=
2 -~
= %h(z—b)+%m[(37-—b)(—%)]= | (A.3)

- 9 Qn(--EBy_Q

= Zh(z-b)+=h(z- ) - s
(since (b~E)} = (2~ B)/z in accordance with Eq (1.2). Similarly the formula
(1.3) can be derived. After application of the Milne-Thomson theorem the constant
equal to 5 In(—}) should be subtract and after simple calculations Eq (1.3) is
obtained.

B Comments on the formula (2.5)

Accordingly to Eq (2.1) we have

vie=29

where ( =Inz. Thus
I oth ((2)=(o(z) I eB-6@ 41
4ziz 2 T 4riz el(z)—Co(z) — 1

r 241 T 242z _ I 1 I/21
4rizZ -1 dmiz(z-2) 2miz—2z 27z

Vr(2)

i.e. the flow in the physical domain in transformed into the fiow induced by the
pair of vortices in the auxiliary domain (Z). In order to eliminate the normal
velocity induced on the circle, the third vortex with the circulation I'/2 has to be
added to 2z; = —d + r2/d. Moreover the circulation of the vortex located at z
" should be taken as I'/2 rather than I, which allows to obtain the proper value
of the y-component of the velocity in the physical domain, at infinity behind the
contours of the palisade.
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Analiza przeplywu potencjalnego w obszarze okresowym

Streszczenie

W artykule oméwiono przyklad analitycznego rozwiazania zagadnienia wyznaczania
potencjalnego pola predkosci w stopniu okresowej palisady konturéw z pewnej dwupa-
rametrycznej rodziny. Przy konstrukcji rozwigzania uzyto odwzorowania konforemnego
z = exp(Wg a nastepnie twierdzenia Milne-Thomsona. Otrzymane rozwiazanie moze
sluzy¢ jako test dokladnosci metod przyblizonych wyznaczania przeplywéw potencjalnych
w obszarach o geometrii okresowe;.
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