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The paper deals. with the dynamic analysis and the synthesis of control of
mechanical systems in specified motion. The program requirements are tre-
ated as so-called program constraints and the control reactions ensuring the
realization of the constraints are determined. In general, available control
forces of the system may not project explicitly into directions orthogonal to
the manifolds of particular constraints. Thus, the problem at hand is more
general then the classical problem of the dynamic analysis of constrained
systems and the determination of constraint reactions. It is proved (and illu-
strated by examples) that the program constraints can be realized by control
forces which have any directions respective the constraint manifolds, and in
extreme, by tangent control forces. Criteria for solvability of the problem
(controllability of a system in a given program motion) are formulated, and
a systematic formulation of the solution of the problem is proposed. Two
illustrative examples are included. .

1. Introduction

The problem at hand is as follows. Given a controlable mechanical system and
~ a prespecified motion of the system, find how to control the system in order to
ensure the realization of the programmed motion. Do Sahn (1984) and Galyullin-
(1989) solved the problem by direct application of the inverse dynamics appro-
ach and the theory of constrained systems. The progra.m requirements concerning
the system (expressed analytically) are considered as specific constraints inposed
on the system, so-called program constraints, and the required control reactions
ensuring the realization of program of motion are supposed to correspond to the
reactions of program constraints treated as material ones. The well known pro-
cedures for determination of constraint reaction forces (Lagrange multipliers) as
functions of the system position, velocity, and applied forces (cf Wittenburg, 1977;
Schiehlen, 1986;) are then applied to determine the xeq\ured control reactions
(control parameters).
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The aforementioned approach may be lacking in practical applications. By
using it, the determined control reactions are, in principle, orthogonal to the ma-
nifolds of particular constraints, or more general, the solution of the problem exists
only if the control forces of the system are represented explicitly in the directions
orthogonal to the constraint manifolds. For a given mechanical system, however,

“the available control forces may not satisfy the above requirement, i.e. the control

_forces may not be represented in the directions orthogonal to some or even all
constraint manifolds. In this case, the control forces cannot regulate directly the
balance of forces orthogonal to those particular constraints. Nevertheless, when
the applied forces on the system depend on the system position and velocity, it
may be possible to match the control by tangent forces so that to accommodate
appropriately the changes in the system state of motion and assure the balance of
the orthogonal forces without adding any control forces in these directions. To this
end, a specific approach to the problem has to be undertaken and some necessary
conditions for the existence of tangent realization of program constraints have to
be fulfilled. In any way, the statement of the fact that the (program) constraints
can be realized by tangent (control) reactions may be considered as an extension
of the classical theory of constrained systems, which postulates that the constraint
reactions are orthogonal to the corresponding constraint manifolds (cf Wittenburg,
1977; Schiehlen, 1986).

Parczewski and Blajer (1989) present some general remarks on how to solve
the dynamics/control problem of systems in specified motion, and classify diffe-
rent possible ways of realization of program constraints (including tangent realiza-
tion). Blajer (1990), (1991) and (1992c), Blajer and Parczewski (1989), (1990) and
(1991) demonstrate then some applications of that formulation with the emphasis
on tangent realization of program constraints. In this paper, the mathematical
formulation for the dynamic analysis and synthesis of control of mechanical sy-
stems in specified motion is developed and modified. Due to the applied linear
algebra formalism, a geometrical insight into the problems solved is gained and
some simplifications and generalizations are achieved. Two simple and illustrative
examples are reported to clarify the mathematical formulation introduced in this

paper.

2. Problem formulation

Consider an n-degree-of-freedom controlable mechanical system subject to m
(m < n) independent. program constraints. Assume that there are m independet
control inputs in the system, and let us limit ourselves to the linear dependence
on control parameters. The governing equations of the considered problem can be



ON THE CONTROL SYNTHESIS... - 347

written as follows

“(x, t)v = h*(v,x,8) + BT (v,x,)A (2.1)
= A(x,t)v (2.2)
C(V,X,t)ﬁ + C;(V,X, t) =0 (2'3)

In the dynamic equations (2.1), M is an n X n symmetric posmve—deﬁmte in-
ertia matrix (metric tensor matrix of the base e,, M = e,e] ); v = [n1,...,,]T and
X = [Z1,...,Zn] T are the (contravariant) representations of quasi-velocity vector v
and position vector z in the bases e, = [e,1,..,ym]T and e; = [ez1,....ezn]T,
v = vie, and =z = x'e,, respectively; h* is the (covariant) representa-
tion of forces applied on the system and gyroscopic terms, h = h*Ter e; and
rr= ':L’u: = {L’uj b?\; = BT\ is the (covariant) representation of the total of control

=1 =1
forces, r = r*Te}, where Bis an m x n full-rank matrix, b is the ith columm of
BT, and X = [A;,...,As]T contains the control parameters. The aspects of con-
travariant and covariant representations of vectors in a multi-dimensional space,
the motivation to distingunish between them, and the meaning of superscript * are
explained in more detail by Blajer (1992a,b), and are condensed in Appendix.

Due to the generality of Eq (2.2), v may be any combination of quasi-velocities
and/or generalized velocities, and the analysis can be carried out without paying
any attention to distinguishing between the cases, refer also to Blajer (1992a,b); A
is an 7 X n invertible transformation matrix, e, = A'e,. Finally, Eqs (2.3) denote
the program constraint equations in the second-order kinematic form, where Cis
an m X n full-rank constraint matrix, and ¢j is an m X 1 matrix. If the program
requirements concerning the system are in the form of geometric and/or first-order
kinematic constraints, f(x,#) = 0 and ¢(v,x,t) = 0, respectively, they have to
be transformed to the form (2.3) by differentiating with respect to time twice or
once, respectively. Then C.= f A and ;¢§ = (f;A) + (f)" for f(x,t) = 0, and
C=¢,and ¢§ = @Av+ ¢, for (v,x,t) = 0; where the subscripts denote
partial . differentiation. Obviously, the lower-order constraint conditions must be
satisfied by the initial values w and Xoi f(xo,to) = 0, f(vo,xo,to) = 0, and
#(vo,%o,10) = 0.

Following the method of classical mechanics for elimating the reaction forces
(cf Wittenburg, 1977; Schiehlen, 1986), the required values of control parameters
may be determined after substituting Eq (2.1) for v in Eq (2.3), i.e.

A= ~(CMT'BT)H(CMh + ¢5) = Mv,x,1) (24)

Using this, Eqs (2.1) and (2.2) can be solved for v(t) and x(t), and the control
of the system in the prespecified motion, A(t), can be determined from Eq (2.4).
However, the above formulation is valid only if the matrix CM™*B7 is invertible,
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which suits the case when the control forces are explicitly represented in the di-
rections orthogonal to all constraint manifolds. In a general case, CM BT may
not be of maximal rank, and a specific approach to the problem solution has to be
undertaken.

3. Method of solution

The columns of BT (full-rank control matrix) can be interpreted as (covariant)
representations of independent vectors b; (¢ = 1, ...,m) which define the directions
of control forces in the system configuration space; b; = b?Te: = b7 M~le,, where
b is the ith column of BT, and M (the inertia matrix defined in Eq (2.1)) is the
metric tensor matrix of the base e,. Thus, the vectors e, = [by,...,bn]T span an
m-dimensional subspace of the n-space, and let us call.the subspace a controlled
subspace. Then, a k-dimensional (k = n — m) subspace which is complementary
to the controlled subspace can be defined as spanned by independent vectors d;
(7 = 1,..,k). Assuming that these vectors are represented by (contravariant)
components gathered as columns in DT (Disa kxn full-rank matrix; d; = d;re,,;
and d; is the jth colunm of DT), the complementary condition of the two
subspaces can be written as

DBT =0 (3.1)

i.e. D is an orthogonal complement matrix to B in the n-space. In other words,
each vector d; is orthogonal to any vector b, diod; =0(j=1,...,ki=1,..,m).
The vectors eq = [dy,...,d;]T form the base of the uncontrolled subspace.

As the vectors ey = [e] €]]7 = [by,...,bm,ds, ..., d;]T are linearly independent,
they form a new base in the n-space. The trasformation formula between the
(covariant) bases epq and e, is (refer also to Blajer (1992a,b))

eu=[::]=[mg_l ]—e,=ugv (3.2)

Since the dynamic equations (2.1) are represented in the (contravariant) base e,
their covariant representation in the base e}, is equivalent to the left-sided mul-
tiplication of these equations by H, see Appendix. This leads to the following
decomposition of the dynamic equations

Bv = BM~'h* + BM~!BT) (3.3)
DMy = Dh* : (34)
which corresponds to the projection of the dynamic equations into the controlled

and uncontrolled subspaces, respectively.
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The above partition of the dynamic equations enables one to separate the pro-
blem of synthesis of program control from the problem of dynamic analysis of the
program motion. Namely, since the matrix BM™!BT is invertible in principle, Eq
(3.3) can be solved for A, whereas, Eqs (2.3), (3.4) and (2.2) can be assembled to
form the following reduced-dimension (control-reaction free) governing equations

EA R

x = Av

(3.5)

Now, an important characteristic is the rank of matrix R. If rank(R) is
maximal (rank(R) = n) Eqs (3.5) are ordinary differential equations (ODEs) and
can be solved for v(t) and x(t) using a range of ODE methods. Then, the required
program control A(t) can be synthesized from Eq (3.3) which, after substituting
v = R™'h};, can be manipulated to

A = (BM~'BT)"'B(R'hj; — M~1h*) = A(v,x, ) (3.6)

However, if ra.nk(R) < n, Eqs (3.5) are differential-algebraic equations (DAEs),
and the formulation (3.6) fails (R is noninvertable). Nevertheless, if a solution of
these DAEs exists, the program control can be found from

A = (BM~'BT)~1B(v — M~'h") = A(v, v, x, £) (3.7)

and v may be determined either analytically by transforming the DAEs (3.5) into
an equivalent set of ODEs (by differentiating the algebraic equations) and then
solving the ODEs for v, or numerically from the solution v(t) to the DAEs (3.5).
Prior to discussing these problems, let us interprete the loss in rank of matrix R,
which will be of importance in the fo]lowmg

The rank of matrix R can be conveniently evaluated by mspectmg how the
constraint vectors ¢; = ¢{'e} (i = 1,...,m; ¢} is the ith column of CT) project
into the controlled and uncontro]led subspa.ces. This is equivalent to the following
factorization of C7 .(see Appendix for the transformation formula of covariant

vector components) .
P| ¢t _ | BMICT | .
HEGE @8

The m X m matrix P = BM™!CT expresses the representation of the constraint
vectors in the controlled subspace, and the k x m matrix Q = DCT is the
representation of these vectors in the uncontrolled subspace.

The metric tensor matrix of the base ey is

M, O ]

o M, (3.9)

My = HMHT = [
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where M, = BM~!BT and My = DMDT are the metric tensor matrices of the
bases e, and eg, respectively; and O denotes the k x m null matrix. After
considering that (H™1)T = M,/ HM, it comes from Eq (3.8) that

C=P"M;'B+Q"M;!DM " (3.10)
Using this, the matrix R defined in Eq (3.5); can be stated as follows
R=[PTM;? alH™M +[Q"M;* SIIDM © (3.11)

where |is the k X k identity matrix; and a and g are real constants satisfying
the condition a + 8 = 1. After some inspection, one can deduce from Eq (3.11)
that rank(R) = p + k, where p = rank(P). Thus, only the maximal rank of P,
p = m, assures that Eqs (3.5) are ODEs and Eq (3.6) is valid; for p <'m, Eqgs
(3.5) are DAEs.

The case when rank(P) = m has been dassified by Parczewski and Blajer
(1989) as an orthogonal realization of program constraints. This means that the
constraint vectors ¢; (¢ = 1,...,m) give nonzero projections in all directions of e,
or inversly, the control forces are represented explicitly in all the directions ortho-
gonal to the program constraints (are represented explicitly in the constrained
subspace spanned by e. = [¢),...,c;m]7). Irrespectively of the control forces give
also projections in the unconstrained subspace, which occurs when rank(Q) > 0
and is referred fo a nonideal orthogonal realization of program constraints, the ma-
trix Rin Eq (3.5), is of maximal rank and the program control can be synthesized
from Eq (3.6). As mentioned in Section 2, for the case when rank(P) = m the
program control can be synthesized from Eq (2.4) as well, and the dynamics of
program motion can be analysed using Eqs (2.1) and (2.2) after substituting Eq
(2.4) for A in Eq (2.1). Nevertheless, the formulations Eqs (2.4) and (3.6) are
identical only if B = C, i.e. when the control forces replace exactly the reactions
of program constraints treated as material ones.

Rank(P) = p < m indicates that [ = m — p constraint vectors do not project
into the controlled subspace but are represented in the uncontrolled subspace, or in
other words, the control forces are not represented in the directions orthogonal to
! corresponding program constraints. Thus, the realization of those particular con-
straints must be tangent, if the realization is possible at all. When rank(P) =0,
all the program constraints have to be realized by tangent control reactions. Since
rank(P) + rank(Q) = p+ ¢ > m and rank(Q) = ¢ € k¥ = n — m, the necessary
condition of existence of mixed (orthogonal-tangent) realization of program con-
straints is 2m < n + p, and for the case of pure tangent realization (p = 0),
the condition 2m < n must be fulfilled.. Obviously, these are not the sufficient
conditions of existence of orthogonal-tangent and tangent realizations of program
constraints. As the program control can be synthesized from Eq (3.7) only if w(t),
v(t) and x(t) are available from the dynamic analysis of the program motion, the
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clue of the subsequent formulation for the case when rank(P) < m lies in the
treatment of the DAEs (3.5) and in the inspection whether the DAEs are solvable.

As previously stated, P = BM~!CT containes in columns the (covariant) com-
ponents of constraint vectors ¢; (i = 1,...,m)in the base e} of controlled subspace.
On the other hand, the columns of PT = CM~'BT express the (covariant) com-
ponents of control vectors b; (7 = 1,...,m)in the base e? of constrained subspace
(spanned by vectors ¢;i=1,...,m). f rank(P)=p < m,only pfrom m control
vectors project explicitly into the constrained subspace. Thus, by introducing a
full-rank ! X m matrix U which satisfies the condition ,

- UPT =0 . (3.12)

! = m — p independent vectors ; (j = 1,...,I) can be defined in the constrained
subspace, which are orthogonal to the control forces represented in this subspace;
u; = u] e., where u; is the jth column of UT. Then, by formulating a matrix W
(p x m full-rank matrix), which is an orthogonal complement matrix to the matrix
U in the m-subspace, i.e.

WUT =0 (3.13)

a set of independent vectors w; (i = 1,...,p) can be introduced, and the vectors
are orthogonal to #; (7 = 1,...,1) and tangent to the control forces represented in
the controlled subspace; w; = wiTe? = w!TM;'e., where w; is the ith column of
WT and M, = CM~ICT is the metric tensor matrix of the base e, = [e1y-yem]T-

The vectors e, = [¢] el]T = [uy,...,u;,w),...,w,]T form a new base of the
constrained subspace, and -

where H,,, is the transformation matrix. Since the constraint equation (2.3) can be
interpreted as the (covariant) representation of quasi-acceleration vector v in the
base e’ (the values of the corresponding components are gathered in the column
matrix —c}), the projection of this equation into the base e,,, is equivalent to the
left-sided multiplication of these equations by H,,,. After considering the preceding
formulation, this leads to the following partition of the constraint equations

g(v,x,t) = U(QTM;'Dh +¢§) = 0 (3.15)
WM;ICy = —-WM 1) (3.16)

The [ algebraic equations (3.16) express the projection of the constraint con-
ditions (2.3) into the base e,, and the new acceleration balance conditions are not
affected by any control forces. Then, since the matrix WM1C can be interpre-
ted as an inner product of the constrained and controlled subspaces, the matrix
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E = [(WM;XC)T (DM)T]T is of maximal rank, and the governing equations (3.5)
can be rewritten in the following semi-explicit DAE form .

E(v,x,t)v = h.(v,x,t)
x = A(x, t)v " (3.17)
g(v,x,t) =0

where h, = [(—WM_c3)T (Dh*)T]T. The problem arising now is whether Eqs
(3.17) are solvable and, if s0, how to solve the DAEs. The existence of a solution
of these equations amounts to the controllability of the system in the prespecified
motion.

A trivial case of nonsolvability of Egs (3.17) is when at least one of the algebraic
equations (3.17)3 depends neither on v nor x, and an'example of such a case is
mentioned in Section 4 (in the discussion to Example 1). In a general case, one
may detect the solvability of Eqs (3.17) by inspecting the differentiated forms of
Eqgs (3.17)3, i.e.

R (v, W+ £E(v,x1)=0  (s=1,2) (3.18)
where s relates to the number of differentiations (up to 2), |

Rl =g,

i =gAvV+E:

R; = (g, M~ 'h*), + Av

& = (&8M7h"):AV + (g,M7'h"), + (&A)A + (&)

and the subscripts v, x and t denote partial differentiation with respect to the
corresponding variable. The DAEs (3.17) are solvable if (for s = 1 or, if not, for
s = 2)the n x n matrix

[ET RIT (3.19)

is nonsingular, and s indicates the number of times the algebraic equations have
to be differentiated in order to transform the DAEs into ODEs. When two dif-
ferentiations are required (s = 2), after the first differentiation M~'h* should
be substituted for v. Evidently, the initial value problem of the produced ODEs
must be in agreement with the additional conditions, i.e. g(vo,Xo,t0) = 0, and
eventually (for s = 2) g(vo,%0,%) = 0.

The above conclusions can be interpreted as follows. As previously stated, Eq
(3.17)3 (= Eq (3.15)) expresses the balance condition of the system accelerations
due to the forces conserved in h* and accelerations due to the constraint require-
ments (conserved in ¢3), both projected into the base e, i.e. in those directions
of the constrained subspace where the control forces are not represented. Thus,
the control forces cannot influence directly the balance conditions. However, since
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Eq (3.17); depends-on v and x, an appropriate accommodation of state variables
may assure the maintenance of the balance conditions. This must be ensured by
the (tangent) control forces which do not project into the constrained subspace, as
the (orthogonal) control forces projecting into this subspace are involved to govern
the first p equations of Eqs (3.17)a (= Egs (3.16)). This can be done only if
. the gradients of the algebraic equations (3.17); are represented explicitly in the
directions of tangent control forces. Mathematically, the matrix [E'” R]]" is non-
singular if the gradients with respect to v satisfy this condition, and the matrix
[ETR]]T is nonsingular when the combined gradients with respect to v and x
satisfy this condition. When neither [E7 R{]T nor [ET RJ]T is nonsingular,
the imposed program motion cannot be realized with the available control of the
system as assumed in this paper.

According to the definitions given by Campbell (1982), Brenan and Enquist
(1988), Galyullin (1989), Blajer (1992c), s defined in Eq (3.18) is the index value
~ of the DAEs (3.17), and for the case at hand s < 2 (solvable case). Thus,

instead of transforming the DAEs into the corresponding ODEs by differentiating
the algebraic equations (3.17)3, which may be a laboruos task, Egs (3.17) can be
solved directly using a range of DAE solvers. However, as discussed by Gear and
Petzold (1984), Brenan and Enquist (1988), Brenan, Campbell and Petzold (1989),
it is usually difficult to solve DAEs with index greater than one. Thus, in the case
when s = 2, the DAEs (3.17) can eventually be transformed to a corresponding
set of DAEs with index one by replacing Egs (3.17)3 by Eq (3.18); g(vo,X0,%) =0
-must be satisfied (for some general remarks relating the initial value problem of
DAE:s referred to by Brenan, Campbell and Petzold (1989), Leimkuhler, Petzold
and Gear (1991)). Then a range of automatic codes for solving index-one DAE
systems, see e.g. Gear and Petzold (1984), Brenan and Enquist (1988), Brenan,
Campbell and Petzold (1989), can be applied to solve the problem considered in
this paper. ‘ :

By solving the governing equations of program motion in the form of DAEs,
the time histories v(¢) and x(t) will be obtained. Then the program control can
be synthesized from Eq (3.7), where v(t) has to be determined numerically using
v(t). Such an approach is suggested in Example 2 of this paper and was used
by Blajer (1990) and (1991) for numerical simulation of aircraft predetermined
‘trajectory flight.
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4. Some applications

4.1. Example 1

‘ qvH
Ay
av?
Ct---m=-—- - D
X
L

L

Fig. 1. Prticle motion along a horizontal trajectory

Consider a particle of mass m and charge ¢ moving in the gravitational,
electric, and magnetic fields, respectively. Let us limit ourselves to the planar
motion case, and assume that the vectors of gravity acceleration g, electric field
intensity E, and magnetic induction H, respectively, act as follows: g = —ge,,
E = Ee,;, and H = —He, (see Fig.1). Then, suppose that the particle is to
move along the path f = y — ¢ = 0, where c¢ is a constant value. The governing
equations of the problem at hand, corresponding to Eqgs (2.1) + (2.3), are

mv, = —avv; + qF — qu, H

(4.1)
mv, = —avv, — mg + qu- H
=
! (4.2)
y= vy
7, =0 (4.3)

where ¢ is a constant value (av? denotes the drag force); v = /22 + §2; and
% = ¢ and vy = 0 must be assured. Obviously, for the case at hand the
equations can be simplified by applying v, = 0 and v; = v, which will be used in
the following.
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" Let us consider two possible ways of control of the program motion: by changes
in H (Case A), and by changes in E (Case B); and when one of these variables
is considered as a control paiameter, the other is an arbitrary function of time.
Following the formulation of Section 3, it is easy to state that

M = diag(m, m) (44)
C=1[0 1] (4.5)
BA=1[0 gv] BZ =[q 0] (4.6)
DA =[1 0] D=0 1] (4.7)
P4 = [qv/m] PB = (0] (4.8)-
Q4 = 0] Q% =1] (4°9)

The results obtained in Eqs (4.8) and (4.9) are evident as the control forces,
respectively for Cases A and B, are orthogonal and tangent to the imposed trajec-
tory. Then Eq (3.5); takes the forms

[ 7‘7)1 (]i ] [ Z: ] = [__avZ _2 qE(t) ] (C&Se A) (410)

0 1 Uz 0 _ |
[0 m][z,]=[_mg+g,,ﬂ(,)] (Case B)  (#11)

Thus, Eqs (4.10) and (4.2) are ODEs, whereas Eqs (4.11) and (4.2) are DAEs.
Then, for the Case A, Eq (3.6) takes the form
- mg )
H="" | (4.12)
i.e. following the solution v(t) to the ODEs formed by Eqs (4.10) and (4.2), the
program control by changes in H can be synthesized. Note'that v # 0 is required
both for maximal rank of P and for validity of Eq (4.12). '

For the Case B, since Eqgs (4.11) and (4.2) are DAEs, the program control has
to be_ synthesized from Eq (3.7) which takes the form
E- mv; + av?

. ’ q
In order to solve the problem of Case B, first the implicit DAEs formed by Eqs
(4.11) and (4.2) have to be transformed to the semi-explicit form (3.17). For the
case at hand this leads to '

(4.13)

[ 0 m ] [ Zz ] = —mg + quH(t)
v
equations (4.2) (4.14)

1
-g+ ;quﬂ(t) =0
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and v; (= v) has been introduced intentionally to show that single differentiation
of the algebraic equation (4.14)3 transforms the above DAEs into ODEs. In other
words, the index of the above set of DAEs is one, and the problem can be solved
conveniently either by integrating Eqs (4.14) directly (by applying a range of DAE
solvers suited to index-one systems) or Eqs (4.14) can be transformed to an ODE
form, and then solved. In the first case, v, = v(t) and z(t) will be obtained, and
() has to be determined numerically in order to synthesize the program control
from Eq (4.13). In the second case, (t) can be determined analytically which,
for this simple case of study, leads to

moH(t) + av?H(t)
qH(t)

The above result can be interpreted as follows. Since the control force g¢FE
does not affect the acceleration balance (4.14)3 explicitly, any changes in H which
will lead to the violation of this balance condition have to be compensated by the
appriopriate changes in v; = v, i.e. assuring that Eq (4.14); is satisfied at a given
instant, Z(9;H + v;H) = 0 (the differentiated form of (4.14)3) must be fulfilled.
Using the dynamic equation (4.1);, this can be assured by appropriate changes in
E, which is reflected in Eq (4:15). Note also that H # 0 must be assured for
existance of the tangent control. In this nondirect way the tangent control force
gE assures the balance condition of orthogonal accelerations.

It may be worth noting that the tangent control could be impossible if the
condition (4.14)3 would not depend on wv,. For instance, removing the magnetic
field and assuming that the electric field is such that F = E_e; + E,e,, where
E.(t) and E,(t) are independent, the control of the program motion by changes
in E; would be impossible; Eq (4.14)3 would be of the form —g + ZE,(t) = 0.
Given an arbitrary function E,(t), the balance of orthogcnal accelerations can be
assured only by adding a control force which gives an orthogonal projection.

E=

(4.15)

4.2. Example 2

In order to illustrate some other aspects of the formulation introduced in Sec-
tion 3, let us consider the problem of aircraft controlled flight along a predeter-
mined trajectory. The problem has already been studied by Blajer (1990) and
(1991), Blajer and Parczewski (1989), (1990) and (1991), hereinafter it is reformu-
lated and solved systematically using the improved formulation reported in this

paper.
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f(x,y)=(j

Fig. 2. Aircraft trajectory motion

Assume that the aircraft is moving in the vertical plane, and the program
requirements are a predetermined trajectory and a prespecified speed history (see
Fig.2), i.e.

1}

f(z,9)=0 (4.16)

o(v,2,¥) = v—¢§(z,1) =0

Then introduce two control parameters: the thrust force T', and the elevator
displacement angle §. Following some other assumptions epitomized in Fig.2, the
governing equations of the problem, corresponding to Egs (2.1) + (2.3), can be
written as follows
md = —avic,(a) — mgsiny + T cosa
mvy = avic,(a) — mgcosy + Tsin a (4.17)
J§ = a;v? (c,,‘o(a) + Cm;(ﬁ)&) ‘
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£ =1vcosy

y=wvsiny (4.18)
6=

vy - Kkv? =0 (4.19)
v—-b6=0

where m and J are the aircraft mass and moment of inertia, respectively;
a = 1pSand a = ca, p - air density (assumed constant), § - wing
area, ¢, — mean chord value; ¢, ¢,, and ¢, = Cmo + Cm1 are the coefficients
of drag force, lift force, and pitching moment, respectively; o« is the angle of
attack; v is the angle of inclination of velocity vector », and gq is the air-
craft angular velocity. In the constraint equations (second-order kinematic form):
& = (foaf2 + fiuf2 + 2fzy fo£,)/(f2 + f2)*/? is the curvature of the trajectory
f(z,y) = 0, and b = v(¢;cosy + ¢,siny) + ¢. Obviously, the initial value
problem of Eqgs {4.17) + (4.19) must satisfy the lower-order constraint condjtions:
(IO,yO) = 0; fx(zOsyO) cosve + fy(z()a )Sill")fg = 0; and vg — (IO)tO)
Since a = @ —v (see Fig.2), the state variables of Eqs (4.17) + (4.19) are », 7, g,
z,y,and @, and vy should be interpreted as a quasi-acceleration (the correspon-
ding quasi-velosity has no physical meaning). The path axes for the translatory
dynamic equations (4.17); and (4.17); have been chosen for the convenience in
formulating the orthogonal and tangent directions to the imposed constraints.
Following the formulation of Section 3, it is easy to find that

M= djag(m;}n, J) (4.20)
_| @19 ¢my (4.21)
T | cose sinea 0 )

010
= [1 . 0] (4.22)
[ —sina cosa 0 ] . (4.23)
0 0
P= . 4.24
[ lsina Llcosa ] (4.24)

Q= [ cosa —sina ] (4.25)

As rank(P) =1 (< maximal), only one program constraint (velocity requirement
(4.16)2) can be realized in an orthogonal way (by changes in T value), whereas the
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other constraint (trajectory requirement (4.16);) has to be realized by a tangent
control reaction (changes in § displacement).-

\

s~
Nl L
R
- \\\
—_—— \
\\ u
tx,y)= 0 O,
\ N
L@

Fig. 3. Vector representations in the constrained subspace

In accordance with Eqs (3.13) and (3.14), the matrices U and W can be
defined as follows

1

U= [— cosa sin a] W= [sin a cos a] (4.26)

and the directions of « and w, as well as the other involved vectors, are demon-
strated in Fig.3. Then the governing equations (3.17) take the form

mcosa msina 0 vv. _ mv?ksina + mbcosa
—msina mcosa 0 q7 av?(c, sina + ¢, cos a) — mgcos §
equations (4.18) - (4.27)

. .

av ] .

-—(ep sina 4 ¢, cosa) + gcos @ + v2kcosa — bsina = 0
m

According to the comments in Section 3, the algebraic equation (4.27); expresses
the balance. of accelerations projected in the direction of u, i.e. in such a direction
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of the constrained subspace where the control forces are not represented, see Fig.3.
On the other hand, the first equation of Egs (4.27); expresses the total of the
constraint conditions (4.19) projected in the direction of w, i.e. in the direction
of the control force T.

It is easy to prove that the index of the DAEs (4.27) is two; after differentiating
twice Eq (4.27); and substituting for 6 = gand & = §—%, ¢ will appear explicitly
in the resultant formulation of this equation, and the corresponding equations will
be ODEs. Such an approach is not recommended however, as leading to complexity
in’ mathematical formulation. Instead, Egs (4.27) can be solved directly using a
range of DAE solvers, see e.g. Gear and Petzold (1984), Brenan, Campbell and
Petzold (1989). It is worth noting that, for the case at hand, Eqs (4.27);, (4.18)y,
(4.18); and (4.27)3 form a subset of DAEs of index one with the state variables
v,7,z,yand 6. From the solution of this DAEs, 9(t), %() and §(t) = é(t) can
be determined numerically, and the program control can be synthesized from the
following relations (corresponding to Eq (3.7))

Jgq Cmo .
= - — =¥ v, 70
a;v%¢m) Cm1 (q 7 ) (4 28)

T = m(i;cosa + vysin a + av?(c, cosa ~ ¢, sina) + gsin 0) = T(9,9,v,7,0)

Some examples of numerical simulation of aircraft program motion in prespecified
trajectory flight are demonstrated by Blajer (1990) and (1991), and the above
approach to the solution of the problem has been used there.

5. Conclusions

A unified and systematic approach to ‘the dynamic analysis and synthesis of
control of mechanical systems with prespecified motions has been presented. It is
proved theoretically and illustrated by examples that the program constraints may
be realized by control reactions which have any directions relative the program
constraint manifolds, and in the extreme, which are tangent to the constraints.
Criteria of controllability of systems in prespecified motions are formulated, and
a general mathematical formulation for the solution of the problem is proposed.

One of the principles (and advantages) of the proposed formulation is the
partition of the general problem into two subproblems: the dynamic analysis of the
system prespecified motion, and the synthesis of control ensuring the realization
of the motion. The latter subproblem bases on the solution of the former one
and is solvable only if that solution exist. This partition technique reduces the
dimension of the governing equation which have to be solved, and is equivalent to
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one-step index reduction technique for DAEs (cf Gear and Petzold, 1984; Gear,
1988; Brenan, Campbell and Petzold, 1989).

The proposed formulation is valid for systems depending linearly on control
parameters. This comprises a wide range of systems encountered in practice.
In general, control forces may -depend nonlinearly on control parameters and/or
. control parameters may influence indirectly the forces acting on the system.

In the mathematical formulation of the paper, the linear algebra/tensor for-
malism is applied. This gives a geometrical insight into the problems being solved
and enables one to systematize the formulation. This may be, however, comber-
some to the readers which are unfamiliar with the formalism. Those readers are
recommended to follow only the matrix notation of the proposed formulation.

The orthogonal complement matrix D to the control matrix B, and then
matrices U and W are introduced. One may face difficulties in determination
of these matrices. As shown in examples, for small systems the matrices can be
simply guessed, however, in a general case the difficulties may arise. These aspects
are not referred in this paper.

The synthesized program control can be considered as a feed-forward control of
the system, and the time histories A(t) are important both from the investigative
and practical points of view. Obviously in practical applications, a feed-back
control should be added to stabilize the system program motion.
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Appendix

Consider an n-dimensional metric space. A vector @& can be expressed
by its contravariant components a = [ay,...,a,]T in the covariant base of this

space ¢ = [ey,...,€,]7, or by its covariant components a* = [a},...,a3] in the
contravariant base e* = [e},...,e%]T (¢f Sokolnikoff, 1962; Pobedrya, 1974).
a=a'e=a"Te*

With the use of the metric tensor matrix M of the base e
M=ee’

the interdepend‘ences between the contravariant and covariant bases and vector
components are as follows

e= Me a*=Ma
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A dot product of two vectors a and b can then be wtitten in four possible ways
aob=a'Mb=a"b*=a"TM~1b* =a"Tb

and the orthogonality condition is defined as aob =0. .
When the reference frame changes from the given one to another (denoted by
the superscript ~ ), the transformation formulae are

= He e =H'e
= Ha"* a=H"3

.2 ®)

and the metric tensor matrix of the base €is
M= HMHT

where H is an invertible n X n transformation matrix.-

References

1. BLAJER W., 1990, Aircraft program motion along a predetermined trajectory. Part
II: Numerical simulation with application of spline functions lo trajectory defini-
tions, The Aeronautical Journal, 94, 53-58 )

2. BLAJER W., 1991, Numeryczna symulacja programowej realizacji figur akrobacji
lotniczej, Mechanika Teoretyczna i Stosowana, 29, 2, 413-426

3. BLAJER W., 1992a, A gencralizel projection method for the dynamic analysis of
constrained mechanical systems, Mechanika Teoretyczna i Stosowana, 30, 2, 379-
399 .

4. BLAJER W, 1992b, A projection method approach to constrained dynamic analysis,
ASME Journal of Applied Mechanics, 59, 643-649

5. BLAJER W, 1992¢, Indez of diﬁeren'tial;.algebraic equations governing the dynamics
of constrained mechanical systems, Applied Mathematical Modelling, 16, 70-77

6. BLAJER W., PARCZEWSKI J., 1989, On realization of program constraints. Parl
II - Practical implications, ASME Journal of Applied Mechanics, 56, 680-684

7. BLAZER W., PARCZEWSKI J., 1990, Aircrafi program motion along a predetermined
trajectory. Part I. Mathematical modelling, The Aeronautical Journal, 94, 17-23

8. BLAJER W., PARCZEWSKI J., 1991, Modelowanie matematyczne figur akrobacyi
lotniczey jako programowego lotu samolotu, Mechanika Teoretyczna 1 Stosowana,
29, 2, 427-442

9. BRENaAN K.E., CamMPBELL S.L., PETZOLD L.R., 1989, Numerical solution of
initial-value problems in differential-algebraic equations, Elsevier, Amsterdam

10. BrReENAN K.E., ENcQUIST B.E., 1988; Backward differentiation approzimations of
g;nh?uear differential/algebraic ¢quations, Mathematics of Computations, 51, 659-
6



ON THE CONTROL SYNTHESIS... - 363

11. CamPBELL S.L., 1980, 1982, Singular systems of differential equations I-II, Pit-
man, New York

12. Do SAHN, 1984, On the motion of controlled mechanical systems, Advances in
Mechanics, 7, 3-23

13. GALYULLIN A.S., 1989, Inverse problems of mechanics: methods and applications,
(in Russian), Advances m Mechanics, 12, 71-97

14. GEAR C.W., 1988, Differential-algebraic equation index transformations, SIAM
Journal on Scientific and Statistical Computing, 9, 39-47

15. GEar C.W., PETzOoLD L.R., 1984, ODE methods for the solution of differen-
tial/algedraic systems, SIAM Journal on Numerical Analysis, 21, 716-788

16. LEmMKUALER B., PETzZOLD L.R., GEAR C.W., 1991, Approzimation methods
for the consistent initialization of differential-algebraic equatsons, SIAM Journal on
Numerical Analysis, 28, 205-226

17. PARCZEWSKI J., BLAJER W., 1989, On realization of program constraints. Part I
- Theory, ASEME Journal of Applied Mechanics, 56, 676-679

18. PoBEDRYA B.E., 1974, Lectures on lensor analysis, (in Russian), Moscow Univer-
sity Publ., Moscow

19. ScrHiERLEN W., 1986, Technische mechanik, Teubner, Stuttgart

20. SoXOLNIKOFF 1.S., 1962, Tensor analysis; theory and applications, John Wiley &
Sons, London

21. WITTENBURG J., 1977, Dynamics of systems of rigid bodies, Teubner, Stuttgart

O syntezie sterowania ukladami mechanicznymi w ruchu programowym

Streszczenie

Praca dotyczy dynamicznej analizy i syntezy sterowania ukladami mechanicznymi w
ruchn programowym. Warunki nakladane przez program ruchu traktowane sg jako wigzy
programowe i wyznaczane sa reakcje sterowania zapewniajace realizacje tych wigzéw. Po-
niewaz sily sterujace ukladem moga w ogdlnosci nie by¢ reprezentowane na kierunkach
prostopadlych do nogéinionych powierzchni wiezéw, rozwazane zagadnienie wykracza poza
klasyczny problem dynamicznej analizy ukl adéw skrepowanych wiezami i wyznaczania
reakcji wigzéw. Pokazano (i zilustrowano przykladami), ze wiezy programowe moga by¢

realizowane silami sterujacymi, ktére moga mie¢ dowolne kierunki wzgledem uogolnio-, ..

nych powierzchni tych wigzéw, a w granicznym przypadku rowniez poprzez styczne sily
sterujace. Sformulowano kryteria istnienia rozwiazania rozwaZanego zagadnienia (= ste-
rowalnosei ukladu w ruchu programowym) i zaproponowano sformulowanie matematyczne
prowadzace do znalezienia tego rozwiazania. Rozwazania teoretyczne zilustrowano dwoma
przykladami pogladowymi.
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