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The longitudinal-transversal vibrations of a rope with varying length are
considered. The analysis of parametrical resonances is a primary purpose
of this paper. The dynamic state of mv&stlgated system is described by
a nonlinear set of partial differential equations with boundary conditions
varying in time. The physical nonlinearity and damping properties of the
rope material as well as the dry friction between flakes are taken into account.
Determination of the unstable regions by means of the balance harmonic
method for the main, secondary and combination resonances respectively is
done. Diagrams of the regions of instability are presented.

Influence of the physical nonlinearity and the character of the kinematic
excitation are considered. The starting and the braking of wmdmg machine
is taken into cons:deratlon

1. Introduction

The problem of stability of a rope has been studied for more then 20 years,
cf the early research on the subject by Goroshko and Savin (1971). Considerable
progress in this field was made due to Marczyk and Niziol (1978), Ulshin (1975)..
All works mentioned consider longitudinal-transversal vibrations of a lifting rope
only for a linear physical model and an uniform motion of the drum. Studies on
the subject connected with stability are concentrated only on determination of the
unstable region for the main resonance and for the first mode of the transversal
oscillations. One can see that the wider analysis is necessary. The primary purpose
of the work reported in the presented paper is, thus, the analysis of parametric
resonance in the case of a nonlinear physical model.



A.KuMANIECKA, J.NIZiot

2. Formulation of the problem

The investigated system consists of a drum rotating with a circumferential
velocity v(t), on which a steel rope loaded by a load Q is reeled (Fig.1).
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Fig. 1. General system model

The analysis of small longitudinal vibrations of such a system was presented
by Kumaniecka and Nizio} (1992). ‘

In the present paper the following simplifications and assumptions are adopted

the longitudinal-transversal vibrations are small,

the rope material is homogeneous,

the rope material is physically nonlinear,

the internal viscous damping of the material is according to the
Voigth-Kelvin model,

the dry friction between particular rope flakes exists and the stress
resulting from dry friction forces is proportional to the absolute value
of nonlinear elastic stress in the rope,

the flexural stiffness is disregarded,
the drum is perfectly rigid,
the slip of the rope on the drum is neglected,
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- aload Q@ is treated as a point load with one degree of freedom which
can move along the {z axis only,

- the kinematic excitation consists of the starting, uniform motion and
braking of the winding machine.

All considerations are done in a movable reference system 0zy, which starts at
the point where the rope is fixed on the drum. The total length of the undeformed
rope is lp and its part reeled on the drum is (t). The functions wu(z,t) and
w(z,t) describe longitudinal and transversal displacements, respectively.

The assumed physical model is presented in Fig.2.
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Fig. 2. Physica"al model

The stress in the rope is described by the following equation

o(z,t) = Ec + aEe® + B¢ + ulo.|sgné (2.1)
where
0. = Ec + aE¢® (2.2)
The internal force has the form '
P(z,1) = AEZ“+ AE(‘Z;‘) +[3Aa T AEg +aAE(gu) Jsgn a o (2.3)
where the following notation is used
E - Young modulus,
A — the cross sectiona.l-aréa.,
I3 — the strain rate,
AE - thelongitudinal rigidity of the rope,
a - the coefficient of physical nonlinearity,
B8 - the coefficient of viscous damping,
u - the overall coefficient of dry friction due to geometry and struc-

ture of the rope,
0, - the nonlinear elastic stress.
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Since damping in the rope is complex and nonlinear we examine the equivalent
viscous damping, which was widely discused by Kumaniecka (1992).
We introduce dimensionless variables and constants

- - v . _ P _ 309212
r = f[o K= m P = ?[a A = —C-T—Q
_ct . _ l - _ L I cT
=1 = o Q= E% 0
(2.4)
_ EAgly ,2_ EA = 4! = kb
51—7‘%1 b—?'q bs—gc—zq Py =
. ‘uC2 . _ w_c2 s _ C «_ C
e TTar i S
where
u*(£,7) - the dimensionless longitudinal displacements,
w*{f,7) - the dimensionless transversal displacéments,
T* — the period of the basic mode of longitudinal vibrations,
Py - the frequency of the basic mode of longitudinal vibrations,
q - the specific weight,
c - the velocity of longitudinal wave propagation,
g - the acceleration of gravity,
A - the dimensionless coefficient of physical nonlinearity,
a; - the equivalent viscous damping coefficient,
K - the coefficient of slow variability of the length of the rope.
3. Analysis of the equation of motion
Applying d’Alembert’s law gives the fcﬂlowing equations of motion
Y
o173 {[1 +’\( ) ] 'agzar} =
(3.1)
0% i) Ow*
T~ g (P ) =0
where
c;=p"+5;
(3.2)
ou® u
2
Pr=b {[H (3¢ ) ag ’8{31'}
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The boundary conditions are
— for the lowerend £ =1
u”

W::ﬁ"l{[” 3 (%5 )] 'afar
w*(l,7)=0

— for the upper end £ = I*(7)

rre Ju=(l*, r) dl'
u*(! ,‘r)—o/ |€=l‘(r) o dr

v
dr

(3.3)

(3.4)
w*(l*,7) =
The initial conditions are written in a general form
u"(§,0) = ¢i(§) w™(£,0) = ¥3(£)

2D <y fwlen)

(3.5)

= ¢3(6)

=0 =0

where @7(€) for i =1,2,3,4 are given functions.
The formula for the change of the length of the ropes has the form

T

1(r) = bs / v (r)dr (3.6)

0

The fact that during one period of oscillations the length changes insignificantly
is of prime importance. '

The solution of the first equation from Eq (3.1), that is the one for the longi-
tudinal vibrations, was discussed by Kumaniecka (1992).

Because of the slowly-varying character of the function 1*(7) that solution was
obtained by means of the Galerkin and Bogolubow-Krylov-Mitropolski methods.

For the basic mode of oscillations the longitudinal displacement has the follo-
wing form

l e
W) = a(r)sinp i eosgs+ €11+ ) (5 + ) +

3.7
+ ![ﬂl:L_(Ti%COS‘P(‘)'*' ( tf;:)(i}l--*— 1;—.‘,’.)]%&;'
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where
a3, - slowly-varying amplitudes and phases for the basic mode of
longitudinal oscillations,
B ~ the first eigenvalue.

When considering the equation of transversal vibrations the solution sought
for is in the form

(€, 1) = E Zm(&,7)2m(7) (3.8)

m=1
where Z,(£,1%) are slowly-varying eigenmodes of the transversal oscillations.
They are selected in the from

Zon(€,17) = sin 1‘% (3.9)

These functions satisfy the boundary conditions (3.3) and (3.4).
By means of the Galerkin method one obtains the following set of N equations

E AmnQm + Z Banf2m + E Connf2m = 0 (3.10)

m=1 m=1

where

Amn = [ Zn(6,17)2a(e,17)de
"(T)

B, =2 / di*8Z,(£,1°) Z (€,1°)de

T
I+(r)
(3.11)
d71' 8Zm(£,7) o (4\202Zm(€,T) .
m_,(/){ o ol + () TR e -
_ 2 L] BZm(f,r) -
b [P (6, 1) =5 ] 2a(, 1) e
Taking into account Eq (3.9) we obtain
0 for n#m
Amn = !
l — *
5~ for n=m
(3.12)
i —,———”’2_": %’— for n#m

—%dl- for n=m

l_ad
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Due to complexity of Cy., their values are not explicitly given here. It was
already done by Kumaniecka (1992).
FEach equation of the set (3.10) can be written in the form of Hill equation

f)n(r) + H"(r)[l + H,, cos(pf + 9,.)] 2.(7) =

N
= E Gm"(T) [l + Gonm COS((P; + 6""")] Om(T) -

m#n

1 1
- [§h,,. cos 2} + 7 han cos 3¢} 2a(7) + (3.13)

N
1 1
+ E [§g2mn cos 2‘/’: + ng'mn Cos 3901':] Om(T) +
m#n
LY +% dnm_ o )
T () omil-lm

mi#n
The set of equations (3.10) can be written in the matrix from
2+BQ+CQ=0 (3.14)

where Q, Q, Q are one column matrices.

The analysis of the properties of the B matrix elements was done by Kuma-
niecka (1992) and it turned out that Egs (3.10) are coupled due to the "giroscopic”
character of the B matrix elements for i # j.

When one analyzes the properties of the matrix C elements one comes to the.
conclusion that Eqs (3.10) are coupled not only due to the elements of B matrix
but of the C matrix as well.

The most important fact is that the solution to the set (3:10) can not be limited
only to the analysis of the nth equation as has been done till now by Ulshin (1975). ,

In the analyzed problem the solution to Eqs (3.10) is not of such importance
as the determination of the regions of dynamic instability.

Because of the set (3.10) complexity we have chosen the set of only two equa-
tions for the analysis that follows.

It can be written in the form

2 +w? (1 + €11 cos ¢f + 311 8in ¢} + €12 ¢0s 2% + €13 cos 330;) -
-wi, (1 + 12 cos p% + 571 8in f 4 c22 €08 2¢0% + €23 cos 3<pz) 2 +

.+buf)1 + buf}g =0
. (3.15)

!72 +'w§ (1 + c21 cos ¢} + 821 8in @} + €22 cos 2% + €23 cos 3<p,") ;-
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-wi (1 + €11 cos ) + 313 sin @} + €12 €08 200} + €13 cos 3¢p:) 2+

+b1182; — b12fy = 0

4. Analysis of the dynamic instability

The value of the internal force P*, resulting from the longitudinal vibrations
couples “parametrically” the transversal and longitudinal vibrations. Physically
this means that for some values of parameters of the rope the longitudinal vibra-
tions can excite the transversal vibrations with an increasing amplitude. From this
it follows that there is a probability and a danger of the occurrence of parametric
resonance.

In this chapter we are looking for the answer to the question

e what are the values of frequencies and amplitudes of the longitudinal vibra-
tions for given parameters of the rope which cause the dynamic instability
of the system.?

Due to the complexity of the considered set (3.15) the harmonic balance method
has been chosen for determination of the boundaries of the parametric resonances.

For the analysis of this problem we have adopted the following method — the
amplitudes ag of the longitudinal vibrations are treated as changeable and for
each of their values the interval of the frequency pj§ is sought for.

Considering the main parametric resonance the solution on the boundaries of
unstable regions is soughtfor in the form

.1 .
2, = Apysin Elpz + By cos -l-tp,"‘ + Anasin gtp,“ + Bysa cos Etp;

2 (4.1)
n=1,2
where k is the number of the longitudinal vibrations mode.
We assumed that
dog _ . ?y; _
dr P(7) dr?2 ~ 0 . (4.2)

For the case when each of {2, consists of only one harmonic mode the solution
is as follows

o1 1
2, = Ap sin -2-¢p; + By cos -2—¢p; n=1,2 (4.3)



DYNAMICAL STABILITY OF A ROPE... 71

In both cases we obtain a set of homogeneous equations. The condition for the
existence of a nonzero solution leads to the determination of the soughtfor regions
for the first and the second modes of the transversal vibrations. We also examine
the possibility of the occurrence of the third mode.

If we consider the secondary parametric resonance the solution sought for has
the form

1 ] - . - -
2, = Ebo" + Apisin @} + Bpy cosp; + Aqa sin 25 + Bya cos 2%

(4.4)
n=12
When limiting the analysis to the first approximation
2, = %bo,, + Api sin pf + Bqy cos n=12 (4.5)
the boundaries of instability zone are described by the following condition
pP=wl-o ['W?(Cu +sh)+ bu] x5 \/_ (4.6)

where
1 1
A = [Ewiz(cxgl + 3?1) + b%] —4 [Zw,‘-‘(cﬁ - 3?1 - C€2)ci2 + b?lw?] >0 (4_7)

for i = 1,2 as we only consider the first and the second modes.

A vibrating nonlinear system with many degrees of freedom is rich in many
kinds of resonances. Because of the particular type of coupling taken into acco-
unt in the present constribution, periodic combination resonance is particulary
interesting.

In our considerations the following assumption is adopted

pP=p+pr (4.8)
where p}, p3 are the frequencies of two components of the solution sought for

£, = Any sin 9§ + Byy cos ¥7 + Apzsin ) + Bpa cos¥3

(4.9)
n=1,2
The following notation is used
ar _ . a; _ .
dT -pl dT _p2 (4.10)
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and the following assumptions are adopted
Y1 _ 0 d*y3
dr? dr?
The analysis was done for both, the case when two components are excited and
for the case as follows

2, = An1sin ¥ + By cos ¥y, n=1,2 (4.12)

=0 (4.11)

Using the balance harmonic method the set of equations was obtained

4 [( - +wi)(-p +wi) + P;P;bgl] = whws) \/(8?1 +54,)(¢, + 3(%;)13)

(- pi? +wi)ps = (- p3* +whpl
The condition (4.8) and Eqs (4.13) determine the regions of the combination
resonance.

5. Computations

For numerical calculations the following values of parameters have been chosen:

Q=2-10°N] £ =0043- 10-'[m*/N2] FEA=2-108[N]

¢=102N/m] & = 0.005[s] ¢=510%[m/s]

lo = 103[m] p=0.11

The starting, the uniform motion and the braking of the winding machine have
been taken into account based on the diagrams given in Fig.3.

The diagrams of frequency p*(r) and amplitude a*(7) of the longitudinal
vibrations were presented by Kumaniecka and Niziol (1992).

Diagrams of the regions of the main, secondary and combination parametric
resonances for the first and second modes of the transversal vibrations and for
the arbitrarily chosen times 7 = 0 (the moment of the starting of the machine),
7 = 22.5 (from the starting interval), 7 = 125 (from the uniform motion interval)
are presented in Fig.4, 5, 6.

The influence of decrease in stiffness of the system on the character of instability
regions is considered. We also examine the effect of decrease in the value of weight
Q*. The result obtained is presented in Fig.7 only for the first mode of transversal
vibrations and for 7 = 22.5. The change of physical nonlinearity has the influence
on the location of instability regions. The graphs in Fig.8 shows this effect for the
first mode of transversal vibrations and for 7 = 22.5.
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Fig. 3. Diagram of the velocity v*(r)

8. Conclusions

The results presented in the present paper are of qualitative and quantitative
character. The system considered serves as a model of a realistic system undergoing
the variation of parameters. The nonlinear model which was adopted includes
many features occurring during the work of ropes as a load carrying and winding
elements. The set of differential equations of motion based on a physical model
describes almost precisely the occurring processes.

Analysis of the dynamic instability leads us to the following conclusions

o for some values of the frequencies and the amplitudes of longitudinal vibra-
tions, the motion of considered system can be unstable. The longitudinal
vibrations bring about the increase amplitudes of the transversal vibrations;

o for the chosen parameters of rope only the first or the second modes can be
parametrically extitated, but it requires a high amplitude of the longitudinal -
vibrations;

o the lowest value of frequency of the longitudinal vibrations, for which the
third parametrically excited transversal mode occurs, is higher than the real
value of frequency for the longitudinal vibrations. Having chosen the pa-
rameters of rope as in the present paper we can’t excite the transversal
oscillations even for high amplitudes of longitudinal vibrations;

o the higher the mode of transversal vibrations is, the wider the regions of
instability occur;

o the value of peak coordinate of an unstable region along the amplitude axis
depends on the coupling and it increases with the increase of velocity v*(r);
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Fig. 4. Regions of: main, secondary and combination parametric resonances for first and

P second modes of the transversal vibrations for =0
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Fig. 5. Regions of: main, secondary and combination parametric resonances for first and
second modes of the transversal vibrations for 7= 22.5
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Fig. 7. Region of main parametric resonance for first mode of the transversal vibrations
for T = 22.5, for load 0.5Q*
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Fig. 8. Region of main parametric resonance for first mode of the transversal vibrations
for = 22.5, for lead @Q* and for coeflicient of physical nonlinearity 0.5\
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o for the velocity v* = 0 the regions for the main, secondary and combination
resonances have a similar width and they occur even for the amplitudes

tending to zero;

o for small changes in the velocity v* the unstable regions for main resonance
are located in the neighborhood of doubled frequencies of the transversal vi-
brations for the considered first and second modes. The regions of secondary
resonances are placed in the neighborhood of frequencies which are twice as
low as the main resonances. The combination resonance occurs in the region
of the arithmetical mean frequencies corresponding to the main resonances;

o as a result of the increasing v*(7) the broadening of the unstable regions
for the secondary resonances is noticeable. It is due to the existence of the
Pgiroscopic” in character elements of B matrix. The regions for the main
and the combination resonances become narrower and the instability regions
shift towards increasing values of the amplitudes a*;

o as a result of the changes in the frequencies the instability regions shift
upwards the p* axis;

o the decrease in the load @* shifts the unstable regions downwards the fre-
quency axis;

o the decrease of the physical nonlinearity has the effect of negligible narrowing
of the zones of instability and it moves them down the frequency axis.

We end up with the following most important conclusion.

As a result of the coupling between the longitudinal and the transversal vibra-
tions the parametric resonance is theoretically possible, but its occurrence requires
high amplitudes of the longitudinal vibrations. It can occur only in emergencies
(i.e. impulses resulting in high increaseof the longitudinal amplitude a*).
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Statecznoéé dynamiczna liny z wolnozmiennymi parametrami

Streszczenie

W pracy przedstawiono analize drgan poprzeczno-wzdluznych lin stalowych o zmien-
nej dlugosci. Analize teoretyczna i obliczenia numeryczne wykonano na przykladzie
lin wyciaggowych. W analizie uwzgledniono nieliniowa sztywnos¢ wzdluzna, wiskotyczne
tlumienie oraz tlumienie tarciem suchym pomiedzy splotkami liny proporcjonalnym do sily
wzdluznej. W budowie modelu matematycznego tarcie suche zastapiono tarciem lepkim, -
przyjmujac energetyczne kryterium réwnowaznosci.

Matematyczny model sprowadzono do nieliniowych réwnad réiniczkowych czas-
tkowych typu hiperbolicznego z zaleznymi od czasu warunkami brzegowymi. Badano
drgania przy nawijaniu lmy,ilorqc pod uwage wymuszenie kinematyczne, uwzgledniajace
faze rozruchu, ruchu ustalonego i hamowania.

Przeanalizowano problemy wystepowania rezonanséw parametrycznych: gléwnych,
pobocznych i kombinowanego. Zbadano wplyw parametréw liny i charakteru wymuszenia
kinematycznego na uksztaltowanie obszaréw dynamicznej niestatecznosci.
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