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Design of modern laminat-flow-control aircraft depends on the prediction of
the growth of the disturbances in the boundary layer. However, despite large
research effort the origins of turbulent flow and the transition process re-
main one of the most important unsolved problems of aerodynamics. This
gives a survey of the experimental and theoretical research on the stability
and transition of three dimensional boundary layer. Four types of instability
which can occur and lead to transition are analyzed: leading edge contamina-
tion, crossflow instability, streamwise instability and centrifugal instability.
The eV method of transition point prediction is discussed.

1. Introduction

Because of the trend in world fuel prices (Fig.1, ¢f Thomas, 1985) since the
early seventies the aircraft drag reduction has become one of the most important
tasks for ajrcraft designers. There are various sources of aircraft drag such as skin
friction, left induced drag,separation and wave drag. The greatest contribution is
due to a turbulent skin friction drag (about 50% of the total drag, cf Thomas,
1985).

One of the ways of reducing the turbulent skin friction is to delay laminar-
turbulent transition on the wing surface as much as possible. This approach is the
continuation of the laminar flow control (LFC) programs that were undertaken in
England after the second world war. LFC means the maintenance of laminar flow
through the use of wall suction (Saric, 1985b; Thompas, 1985). The suction itself
cannot suppress any existing turbulence but modifies the curvature of the laminar
velocity profile which in turn reduces the amplification of any instability waves in
the boundary layer and, in consequence, delays the laminar-turbulent transition.

Fig.2 (Braslow and Fischer, 1985), shows the effect of suction on growth of
different types of disturbances. Other physical effects that could be applied to
the turbulent skin-drag reduction are the wall cooling and the effect of favourable
pressure gradients (natural laminar flow — NLF). A new transition control concept
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is to detect any low amplitude pretransitional instability waves in the flow an
then to introduce a control disturbance i.e. of equal amplitude and 180 degre
out of phase with the original one. Superposition should then remove the primai
disturbances from the wall (Thomas, 1985; Braslow and Fiscler, 1985; Liecpman:
1982).

From the aerodynamic point of view, probably the greatest difficulty in i
troducing the foregoing ideas is the accurate prediction of where transition wi
occur. Because our knowledge of transition is not complete, prediction methoc
to a great extent base on an cmpirical data. Thercfore, the most important ta:
is to underst: d the transition process, which in the future will enable us to pr
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dict the point of its location and finally enable us to control the laminar-turbulent
transition. The goal of this paper is to describe the generic nature of the laminar-
turbulent transition of three-dimensional boundary layer and to show how many
unanswered questions we still have.

Shortly, we can describe the transition process in the following way. Distur-
bances from the freestream enter the boundary layer as steady and unsteady fluc-
tuations. This part of the transition process is called receptivity. The receptivity
problem is discussed in Section 2. The instability leading to transition starts with
the weak growth of disturbances which can be described by the linear stability the-
ory (the linear stability theory is shortly analyzed in Section 3). When the initially
weak disturbances reach a certain amplitude, their development begins to deviate
from that predicted by the linear stability theory. Strong three-dimensional (3D)
and nonlinear interaction in form of the secondary instability takes place, followed
by a rapid growth of disturbances. Then the breakdown of turbulence occurs.

The flow over a swept wing is a typical example of the 3D boundary layer. In
this case we have four types of instabilities that lead to transition (Reed and Sa-
ric, 1989): leading edge contamination, crossflow instability, streamwise instability
and centrifugal instability. The leading edge contamination occurs along the at-
tachment line. This instability is discussed in Section 4. The crossflow instability
(Section 5) that occurs withiu the strong pressure-gradient regions is the domina-
ting type of instability on swept wing. Typically, the upper surface of the airfoil is
characterized by an extensive supersonic region preceded by a leading-edge nega-
tive pressure peak and followed by a gradual shock-free recompression to subsonic
flow with a subsequent rear pressure rise. Consequently, the crossfiow instability
will dominate before and after of the midchord region (Fig.2, ¢f Braslow and Fi-
scher, 1985). Steamwise instability (Section 6) is associated with the streamwise
component of flow and is similar to processes which take place in 2D flows where
Tollmien-Schlichting (T-S) waves are developed. This kind of instability occurs
in zero or mild positive pressure gradient region. On a swept wing T-S instability
affects midchord region. Centrifugal instability, which can occur on the lower side
of the wing, is described in Section 7. A major unanswered question concerns
the interaction of different waves, particularly the interaction of crossflow waves
with T-S waves. Instability interaction is analyzed in Section 8. In Section 9, eV
transition prediction method is shortly discussed.

2. Receptivity

The boundary layer transition can be interpreted as the consequence of non-
linear response of the laminar boundary layer to forcing free-stream disturbances.
The environment in which the boundary layer develops can include different types
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of disturbances, such as vorticity, entropy disturbances, surface vibrations etc.,
or any combination of these. The laminar-turbulent transition process depends
very strongly on the nature and spectrum of the free-stream disturbances and on
so-called receptivity. By receptivity we mean the way in which particular envi-
ronment disturbances enter the boundary layer, and the nature of their signature
in the flow. If the initial disturbances are small, they will tend to excite free di-
sturbances (normal modes) in the boundary layer. The behavior of these normal
modes is usually determined from the linear stability theory (the eigenvalue pro-
‘blem). K the free-stream disturbances are large enough, they can grow by forcing
mechanisms leading directly to non-linear levels and then to turbulent flow. Such
rapid transition caused by a sufficiently large free-stream turbulence level is called
"bypass” by Morkovin (1978).

The receptivity problem, in contrast to normal modes stability calculations, is
not a problem with homogeneous boundary conditions. In the receptivity theory
the boundary layer is determined by the external forcing disturbances - that is
why the response of the boundary layer is the solution of the initial-value problem.

The receptivity problem is described by Morkovin (1978) and Roshotko (1984).

3. Linear stability theory

The historical development of the linear stability theory is described by Mack
{1984) and Saric (1985a).

In the linear stability theory, flow parameters are described as a sum of the
mean-flow terms (U, W,V,T, Ro, P) and the small unsteady disturbance terms
(u’7 w" v” r” pl’p’)

u(z,y,2,8) = U(z,y,2,1) + «'(2,¥, 2, 1)

w(z,y,2,1) = W(z,y,2,t) + v'(z,9, 2,1)

v(z,9,2,t) = V(z,9,2,1) + v(2,7,2,1)

r(z,y,2,t) = T(z,y,2,t) + P(z,y, 2,1) (3.1)

z,¥,2,t) = Ro(z,y,2,t) + p'(z,¥,2,1)

»z,9,2,t) = P(z,y,2,t) + p'(z,9,2,1)
where u, v, w are velocity components in z, y, z directions respectively; pis
density; pis pressure; r is temperature. Assuming that the mean flow is locally
parallel (the mean velocity V normal to the surface equals zero and velocity

components U, W in streamwise z and apanwise z directions respectively are
functions of y), we can describe the disturbances in the following form

(v, o, w', ¢, 0, )T = ((y), W), +{y), Hy), Ay), Fy)) Tlesthr—ut)  (3.9)
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In Eq (3.2), u(y), 3(y), w(y), #(y), A(y), 7(y) represent amplitude functions (com-
plex values); a and  are components of the wave number k in z (streamwise)
and 2z (spanwise) direction respectively; w is frequency. In general case, a, §
and w are complex. If all parameters a, §, w are real, the wave propagates with
constant amplitude in the zz plane. If at least one parameter is complex, the
amplitude changes as the wave propagates.

Egs (3.2) are introduced into the three equations of motion, the equation of
continuity and the equation of energy. After linearization we obtain basic equations
of the compressible stability theory, which can be written in the following way

8
Dei(y) = ) aii(v)ei(y) i=1,..,8 (3.3)
=
where
_ d

D=2 _
pr=al+pw ¢p2=Dpr  @3=7 Pa = ;7—1\%7 (3.4)

ps =T e = DT pr=aw- Pz @g= Deyr

In Eq (3.4) v is the ratio of specific heat and Ma, is the edge Mach number. The
boundary conditions are

‘Pl(o) =0 903(0) =0 ‘PS(O) =0 907(0) =0 (3 5)
Ppry)=0 3(y)=0 s(y)=0 @r(y)=0 y-—o0 '

The relations for nonzero elements of the matrix a;;(y) are listed in Appendix 1
(Mack, 1984).
For incompressible flow, from (3.3) we can obtain a single fourth-order equation

[D’- (a*+ ﬁ?)]’a = iRe{(al + BW -w)|D? - (a? +6?)] - («D?U + 8D*W) }5
3

with the boundary conditions

D3(0)=0
Do(y)=0  y— oo

v
b

W

s

When W =0 and B =0, Eq (3.6) is reduced to the Orr-Sommerfeld equation
(D2 - 02)26 = iRe [(aU - w) (D2 - az) - aDZU]T) (3.8)

In the above equations, Re is the Reynolds number based on the reference
ength and on reference velocity making all quantities dimensionless.
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Since the boundary conditions are homogeneous, this is an eigenvalue problem,
so that the solution exists only for particular combinations of a, 8, w. The
relation of these eigenvalues is called the dispersion relation and can be written in

the following form
w= 2a,f) (3.9)
The basic task for the linear stability theory is to evaluate the dispersion relation
for a given Reynolds number and a basic state U(y), W(y), P(y), T(y), Ro(y).
The eigenvalues a, 8, w with the corresponding eigenfunctions #(y), 9(y), W(y),
#(y), A(y), 7(y) specify the normal mode. The normal modes obtained for 2D
boundary layer are called Tollmien-Schlichting waves.
The mathematical form of the wave numbers a, 8 and frequency w leads to

two theories: the spatial and the temporal one. In the temporal theory frequency
is complex (w = w, + iw;) and a and J are real. In this case the value of wave

number kis
k=y/a?+ 52 . (3.10)

and the angle (so-called wave angle) between the direction of % and streamwise
direction z is 5
¥ = tan™! 5 (3.11)

The phase velocity has the value

(3.12)

W =~ ' (3.13)

where A represents the value of disturbance amplitude at some particular y
{(for example y for which amplitude has the maximum value). The disturbances
are damped, neutral and unstable for negative, zero and positive values of wy,
respectively.

In the space theory, w is real and a and B are complex (o = a, + iq;,
B = B, +iB;). In this case the wave number vector k has the value

k= /o2 + 2 (3.14

(3.15

The wave zngle is defined

and the phase velocity is
c= % (3.16
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The growth of the waves is
1dA

Adz
The disturbances are damped, neutral and unstable for positive, zero and negative
values of a;, respectively.

The temporal theory is simpler from the computational point of view, because
with a, 8 real and w complex, there are fewer terms to compute than in the
spatial theory. However, the spatial theory corresponds more closely to the usual
physical situation. To convert the temporal amplification rate to the spatial one
so-called group velocity is used. The group velocity is, in a conservative system,
the velocity of propagation of such overall quantities as the energy of the wave
packet (every single wave propagates with the phase velocity). By a conservative
system we mean the system where energy is not exchanged between the waves
and the medium. But instability waves in the boundary layer don’t constitute a
conservative system so in general case the group velocity is complex (Mack, 1977
and 1984)

- a; (3.17)

. (002 80
¢ = (32 35) (3.18)
We can write (Mack, 1984)
d d
‘-i-; = C,-E (319)

where C, is the magnitude of vector C, (the real part of group velocity vector)
and z, is the coordinate in C, direction. From Eq (3.19) we obtain the relation
for spatial amplification rate in the direction parallel to C, (Gaster’s relation)

wy
~ (@ = & (3.20)

The results of the linear stability theory are often shown in the form of a
neutral curve separating the region of stable disturbances from that of unstable
disturbances. Fig.3 shows an example of such a neutral curve obtained for a Blasius
flow (constant amplification rate a; is analyzed). Frequency F (Fig.3)is defined

in the following form

Fe 211 fv

_w
U2 " Re
where f is the physical frequency. From the neutral curve we can see that a
single frequency wave traveling in the laminar boundary layer is at first damped,
then amplified and finally damped again. The total amplification rate of a single
frequency wave (for the spatial theory) is defined as

(3.21)

:;io = exp (j —-a,-dz) (3.22)
o

where index o refers to the streamwise position where the wave becomes unstable.



12 E.SzNITKO

0.16 |
w= F.Re
0.12 }'
~T
t ."n._ -
i i-00m0 ————
0.08 BRANCH T —
i
1
0.04 } i
i
]
c.,Re | Re — Re
0

500 1000 1500 2000 2500 3000

Fig. 3. Stability diagram for the Blasius flow

4. Attachment line contamination

Fig.4a shows the scheme of the flow near the leading edge of the swept wing.
The line along which the flow splits over and under the wing (line A-A, Fig.4a) is
called the attachment line.

On unswept wings the boundary layer starts at the attachment line and de-
velops towards strong negative pressure gradient, which stabilizes it. Generally,
on unswept wings the boundary layer (on smooth surface) remains laminar up to
the end of the negative pressure gradient. In the boundary layer on swept wings,
the component of the free-stream velocity along the attachment line V,, (Fig.42)
gives rise to a spanwise velocity within the boundary layer. In such a boundary
layer, disturbances (often coming from the fuselage boundary layer) can propa-
gate spanwise within this layer and, depending on the conditions, instability and
transition can occur. Because the boundary layer over the wing originates at the
attachment line, transition to turbulence at this line can result in turbulent flow
over the whole wing.

The attachment-line boundary layer is characterized by the Reynolds number R

(Poll, 1981 and 1984)
= Voot _  [QooCosin®d
R== =/ o (4.1)

where V is the spanwise velocity; v is the kinematic viscosity; v is the sweep of
the wing (Fig.4a); Cp is the chord length measured perpendicularly to the leading
edge (Fig.4b); and 7 is the characteristic length scale

7= v (dUe/dI):,':O (42)
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Fig. 4. a) Flow near the leading edge of a swept wing; b) definition and notation

and U, is the velocity gradient at the wall (Poll, 1984)

[d(uc/Qoo)

d(I/CO) ]z:O (4.3)

The transition becomes more likely with the increase of R. Eq (4.1) shows that
the increase of R occurs as a result of the increase in the free-stream Reynolds
number (Q4Co/v) or the increase in the wing sweep ¥ or in the reducing velocity
gradient Uj.

Spanwise turbulent contamination was observed for the first time by Gray
(1952) on the aircraft AWS52. This phenomenon had been known earlier but the
conditions under which it could appear were not documented. The first detailed
measurements were made in the 1960’s in order to clarify the mechanism which
was responsible for the failure of the early laminar-flow swept wing designs. This
problem was investigated by Gaster (1967) and later by Poll (1984). The experi-
ments showed that in the presence of large boundary layer tripping devices such
as boundary layer fences, 3D roughness elements or 2D trip wires, transition at
the attachment line began when R reached approximately 250.
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Fig. 5. The variation of R with d/n and s/n for the appearence of spots

Poll (1977), (1979) and (1984) provided detailed measurements of boundary
layer at the swept attachment line. He investigated the response of the laminar
boundary layer of the attachment line to the presence of trip wires of various
diameters, arranged so that the wire axis lied in the z direction (Fig.4b). He varied
three parameters: the free-stream Reynolds number, the sweep of the wing and the
size of disturbances. Fig.5 {Poll, 1984) shows results of these measurements. In this
figure the Reynolds number R required for the onset of transition is shown versus
the nondimensional diameters of trip wires d/n and the nondimensional distance
3/n along the attachment line from the pomt of introduction of disturbance to the
onset of transition.

The result presented in Fig.5 indicates that the transition behaviour of the
boundary layer of the infinite swept attachment line can be divided into four
regimes (Poll, 1984).

The first regime (of high value of R) is limited by the maximum value of non-
dimensional disturbance diameter equal approximately to d/mmqr = 0.8 (Fig.5).
In this regime the transition is the result of the instability of the laminar flow to
the small free-stream disturbances. In this case the laminar boundary layer selec-
tively amplifies disturbances of certain frequencies and wave numbers. For swept
wing, wave packets are observed near the attachment line for R greater than 570.
These waves are convected along the leading edge. The disturbance amplitudes
increase and eventually the breakdown to turbulence takes place. This process is
similar to the one observed in 2D flows (Tollmien-Schlichting waves). Fig.6 (Poll,
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1984) illustrates hot-wire measurements of these disturbances.

Fig. 6. Hot-wire signals showing the disturbances which precede turbulent spots when
R exceeds 570

The theoretical aspects of this problem were considered by Hall and Malik
(1986) and Hall et al. (1984). They found that the most unstable linear distur-
bance was the traveling wave of the T-S type.

The point of transition s/7 can be predicted by the eV method. This method,
based on the linear stability theory, is analyzed in Section 9. The experimental
data indicate that theoretically obtained relations between the transition Reynolds
number R and the transition distance s/7n are correct (Poll, 1984) although
the predicted value of transition Reynolds number R is about 10% greater than
the one observed in the experiments. Despite the differences between theory and
experiment, it is clear that the upper limit for maintaining the laminar attachment
line is R = 570. Up to this value the laminar flow is stable to small disturbances.
To maintain a laminar attachment line boundary layer for R greater than 570,
some forms of boundary layer control (suction for example) must be used.

In the second regime the transition occurs for the Reynolds number between
400 and 600 (0.8 < d/n < 1.6). It is seen from Fig.5 that the distance downstream
from the point of introduction of trip wire to the point of o¢ccurrence of transition
is still large but perturbations which precede the transition are no longer similar
to T-S waves. The hot-wire signal of these waves is shown in Fig.7 (Poll, 1984).

i

Fig. 7. Hot-wire signals showing the disturbances which precede turbulent spots when

R =495

For R between 250 and 400 (1.6 < d/7n < 2.0) the turbulent spots occur at
the trip wire and then propagate along the spanwise direction.



16 E.SzNniTKO

In the last regime, R is less than 250 (d/n > 2.0). Fig.5 shows that the
increase in size of d/7 has no effect on the establishment of full turbulence. The
turbulence spots still originate at the trip wire but disappear as they convect along

the attachment line.

5. Crossflow instability

A,
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DIRECTION
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NVISCD
STREAMLNE

A —

Fig. 8. Scheme of an inviscid streamline over a swept wing

Let us assume that the attachment line boundary layer is laminar and stable to
small free-stream disturbances (R < 570). In the attachment line region both the
surface and the flow streamline are highly curved. Along every streamline there is
a negative pressure gradient so the flow might be expected to be stable to small
disturbances. However, not in this case. The combination of pressure gradient
and wing sweep deflects the streamling of inviscid flow in the way presented in
Fig.8 (Reed and Saric, 1989). As the result of viscous effects, this deflection
is larger in the boundary layer and causes a crossflow. This crossflow velocity
component, existing inside the boundary layer, is perpendicular to the inviscid
flow velocity vector. The inflection point on the crossflow profile (Fig.9) causes so-
called crossflow vortex structure. The reader can find more information concerning
the crosflow mechanism in the papers of Saric (1985a) and (1986), Reed and Saric
(1989). :

The discovery of the crossflow instability is attributed to Gray (1952). Using
the sublimation method he discovered closely spaced stationary streaks parallel to
the local flow direction in the region near the leading edge of swept wing. These
streaks are though to be caused by the action of co-rotating, stationary vorti-
ces. Gregory, Stuart and Walker (1955) demonstrated that the same phenomenon
existed on rotating disk.

In 1952 Owen and Randall introduced the crossflow Reynolds number defined
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Fig. 9. Scheme of crossflow velocity component

in the following way

Recr = WCFm:zJIO% (5.1)
where Wepmer is the maximum crossflow velocity for which y = ymer (Fig.9),
and §;9% is the value of y above ymqa, for which the crossflow velocity is 10%
of WcEmer- The crossflow Reynolds number turned out to be very useful in
analyzing crossflow fields.

The essential features of a crossflow instability can be studied using the sim-
plest 3D boundary layers of such rotating axisymmetric bodies as disks, cones
and spheres. These boundary layers allow for simpler applications of theory and
experiments. The exact numerical solution to the Navier-Stokes equation for the
laminar mean flow over rotating disk (Karman, 1921}, makes this boundary layer
particularly profitable to the theoretical stability analysis. '

5.1. Experimental work

In the boundary layer of a rotating disk, Gregory, Stuart and Walker (1955),
using a china-clay technique, observed 28 + 31 stationary co-rotating vortices.
These vortices spiralled outward around their logarithmic spiral axes. The angle
of the spiral axes with respect to the radius of the disk was 90° + ¢ (Fig.10)
- typically ¢ is from 11° to 14°. The crossflow vortices appearing in boundary
layers of the rotating axisymmetric bodies were recently investigated by many au-
thors (Kohama, 1984a,b, 1985, 1986, 1987a,b,c; Kohama and Kobayashi, 1983a,b;
Kobayashi, 1981; Kobayashi and Kohama, 1984; Kobayashi and Izumi, 1983; Ko-
bayashi et al., 1980, 1983, 1987) by a hot wire technique and a smoke visualization
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layer of rotating cone
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method.

As mentioned above, in the transition region of boundary layer of rotating
disk co-rotating vortices appear spirally. In the co-rotating vortex structure all
vortices rotate in the same direction and take on the form of so-called ”cat’s eye”
structure (when you look down in the stream direction). This pattern contrasts
with the counterrotating structure (Fig.11). It was found that on rotating cone
surface there exist two kinds of spiral vortices (Fig.12): co-rotating vortices and
counterrotating vortices. In counterrotating structure every vortex winds in the
opposite direction to the neighborring vortex. Counterrotating vortices transform
to co-rotating vortices when the total angle of the cone @ and the axial flow
velocity exceed certain values. The transformation takes place when the angle &
is about 30° (Kohama and Kobayashi, 1983).
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Fig. 13. Scheme of spiral vortice on rotating disk with turbulence intensity distribution
and hot wire measurement

Basing on more detailed investigations by close-up camera, we can divide the
whole transition region into three stages: primary linear instability, primary non-
linear instability, and secondary instability. All these stages are clearly seen in
Fig.13 (Kohama, 1987a), where spiral vortices are sketched. Fig.14a,b,c (Kohama,
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1987b) illustrate velocity profiles with the corresponding vortices and hot wire si-
gnals for different sections of the spiral vortices - starting at the linear stage and
moving downstream. The dark regions correspond to the areas of low velocity
(when compared with the velocity of surrounding fluid). The flow pattern changes
its structure from the wave shape at the linear stage to the vortex shape at the
nonlinear stage.

In the linear part of primary instability we have a sinusoidal hot wire signal of
the same frequency as the visualization pattern (in Fig.14. a hot wire measurement
of meridional velocity disturbance is shown). At this stage disturbances grow
linearly, and the linear stability theory is applicable here.

When the amplitudes of the primary linear waves exceed certain values, a
strong nonlinear interaction takes place and higher harmonics are produced. The
linear stability theory is no longer applicable. For nonlinear cases (Fig.14b,c), a
visualization pattern develops into the curled vortex shape. Here, the primarily
sinusoidal hot wire signal is deformed. The kinks in the hot wire signal (indicated
by K in Fig.14) correspond to the tips of low speed fluid. As the vortices develop,
the intensive mixing of high and low velocity fluid takes place. In section A-A
(Fig.15, cf Kohama, 1986) the low velocity fluid from the lower half of the boundary
layer is lifted up. At the same time, the high velocity fluid from the upper half
of boundary layer (section B-B) is shifted down. The important fact is that as
the low velocity fluid is lifted up to the outer edge of boundary layer, a high shear
layer with inflectional point appears.

Fig. 16. Scheme of secondary instability

The appearance of inflectional velocity profile gives rise to a new type of insta-
bility, called secondary instability. As a result of this, new unsteady disturbances
appear on the surface of each primary crossflow vortex (Fig.16, cf Kohama, 1987b).
These secondary disturbances, which are initially of the wave type, develop into
ring-like traveling vortices. It is interesting to know that traveling vortices of
high frequency (about 1kH) travel at the speed of about U = 0.8U. (Kohama,
1986). Secondary instability depends very strongly on the level of the free-stream
turbulence intensity. When the level of turbulence is very high or very low, the
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secondary instability is not likely to appear. It is observed only when the intensity
of the free-stream is moderate.

In Fig.13 the hot wire signal of secondary instability is shown. The appearance
of spike-like signals does not mean that this is a chaotic phenomenon typical for
turbulent flow. This signal is the result of the occurrence of two regular disturban-
ces differing in direction and in scale, namely primary and secondary disturbances.
It is interesting to notice that the turbulent level at the fully turbulent stage is

lower than at the secondary stage.

Fig. 17. Scheme of the expected flow field on swept wing

Using all the results concerning the crossflow field, Kohama (1987b) sketched
‘the expected flow on a swept wing in the manner presented in Fig.17. The bo-
undary layer consists of co-rotating spiral vortices. The whole transition region
can be divided into primary and secondary instability. The main difference be-
tween this flow and that of rotating disk is the absence of the laminar region. The
boundary layer is so strongly affected by the negative pressure gradient that the
crossflow instability occurs almost immediately downstream of the leading edge.
Some information about experimental measurements concerning crossflow vortices
in the swept-wing boundary layer can be found by Saric and Yeates {1985).
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5.1. Theoretical work

Stuart (Gregory, Stuart and Walker, 1955) derived the 3D linear stability equ-
ations (including streamline curvature and boundary layer growth) for parallel
incompressible flows. He also determined the transformation for reducing the 3D
. stability problem to a 2D problem (for the velocity profile in the wave number
vector direction). The equations for the linear stability theory of parallel, com-
pressible boundary layer were derived by Lees and Lin (1946) - the work was
continued by Lees and Roshotko (1962).

In 1977 Srokowski and Orszag brought out the SALLY code for stability ana-
lysis of the parallel 3D incompressible boundary layer on an infinite span swept
wing. In spite of using the incompressible stability theory this code was widely
used. Then it was superseded by code COSAL (Malik et al., 1982) — compressible
version of SALLY. Mack (1979) tested the influence of including compressibility
on the stability characteristics (the flow around an infinite span swept wing was
considered). He found that the inclusion of compressibility significantly reduced
the amplification rate.

In 1981 Padhye and Nayfeh studied nonparallel, incompressible flow over the X-
21 wing. They found that the nonparallelism, when regarded, gives more unstable
results. Nayfeh (1980) formulated the nonparallel compressible problem (he used
multiple scale method) but he didn’t present numerical results.

Malik and Poll (1984) found that the inclusion of the streamline and surface
curvature in stability calculations had a stabilizing effect on the disturbances (they
analyzed incompressible flow around an yawed cylinder). For rotating disk flow
again Malik et al. (1981) showed that streamline curvature and Coriolis forces had
a stabilizing effect. They calculated temporal eigenvalues which were converted to
spatial eigenvalues by using group velocity transformation; Eq (3.20). Then Mack
(1985) (following Gaster, 1975) studied stability characteristics of rotating disk
spiral vortices. The critical Reynolds number, predicted by Mack, depended very
strongly on whether or not the streamline curvature was included.

Singer et al. (1989) studied the nonlinear development of crossflow vortices
in an incompressible 3D boundary layer using the weakly nonlinear theory and a
direct numerical simulation. Their nonlinear theory is based on the approach of
Herbert (1980) and (1983a).

From recent works we know that the linear stability theory used for flow with
crossflow component suffers significantly from the discrepancies between theory
and experiment. These discrepancies are the result of negligence in calculations of
curvature, freestream disturbances and interactions of waves (waves interactions
are discussed in Section 8). To avoid all these simplifications, the full Navier-Stokes
equations must be solved directly by employing the finite-difference or the spectral
methods. In this approach no restrictions with respect to the form of amplitude
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of the disturbances are imposed because no linearizations or spatial assumptions
concerning the disturbances are necessary. No assumptions concerning the basic
flow , such as parallelism, have to be made. The main idea of this approach is
to disturb the established basic flow and to analyze the response of the boundary

layer.

8. Streamwise instability

Apart from crossflow instability, which is the dominating instability in the 3D
boundary layer, there is also the streamwise instability. This kind of instability
occurs in zero or mild positive pressure gradient. On a swept wing it occurs in
midchord region, which is shown in Fig.2. Streamwise instability is very similar
to viscous instability of the 2D boundary layer but with small differences due to
the presence of crossflow. ’

The existence of small, regular oscillations traveling in the 2D laminar boun-
dary layer was first postulated in 1887 by Rayleigh and then by Prandtl (1921).
Some years later Tollmien (1935) worked out the theory of boundary layer instabi-
lity and Schlichting (1933) calculated the total amplification of the most unstable
frequencies. In 1947 Schubauer and Skramstad experimentally demonstrated the
growth of 2D disturbances leading to laminar-turbulent transition. Physically,
the birth of these waves can be related to the concept of receptivity introduced
by Morkovin (1978). The instability leading to transition starts with the weak
growth of 2D waves called Tollmien-Schlichting waves which can be described by
the linear stability theory. When the initially weak disturbances reach a certain
amplitude, their development begins to deviate from that predicted by the linear
stability theory. This deviation is a resylt of the quadratic terms neglected in the
linear theory which become remarkable and of appearance of the 3D effects. The
occurrence of 3D phenomena in an otherwise 2D flow is a necessary prerequisite
for transition.

For a moderate Reynolds number (Re = U,.6; /v about 20000 where &; is the
displacement thickness), the wavelength A = 27 /a, of these 2D waves lies between
66 and 186 (Arnal, 1984). So, the T-S waves are larger when compared with the
boundary layer thickness 4. The question is how these harmless 2D waves of large
wavelength are related to the violent 3D small-scale and high-frequency motion
called turbulence.

Klebanoff et al. in 1962 studied the 3D development of T-S waves under
controlled conditions. He performed detailed hot-wire surveys of 3D stages of
transition. One of the first observations, using smoke method was made by Brown
in 1959 and then by Knapp et al. in 1968. Overall scheme of the transition process
made by Knapp is shown in Fig.18.
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Fig. 18. The transition process in 2D flow-smoke visualizations and typical hot-wire
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Fig. 19. Peak-valley patterns: a) ordered peak-valley structure, K-type, b) staggered
peak-valley structure, C-type or H-type
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The appearance of 3D effects was attributed to the spanwise differential am-
plification of T-S wave. The process leads rapidly to spanwise alternating ”"peaks”
and "valleys” regions of enhanced and reduced wave amplitude (Fig.19, cf Arnal,
1984). The distributions of the streamwise fluctuation intensity at three stream-
wise positions are shown in Fig.20 (Arnal, 1984).

Regions of maximum and minimum amplitude respectively in this figure cor-
trespond to the peaks and valleys. Knapp discovered two clearly distinguished
arrangements of the peak and valley structure, which were characterized as orde-
red structure (Fig.192) and staggered one (Fig.19b). In ordered structure peaks
follow peaks and valleys follow valleys while in staggered structure peaks follow
valleys and valleys follow peaks. Recently the experiments showed that a necessary
condition for the staggered pattern was the excitation of the subharmonic of the
fundamental T-S waves in the boundary layer. Staggered type of 3D transition
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Fig. 20. Spanwise disturbances of u'/U, at different distances z;,z2,z3 downstream
from the source of disturbance

phenomena was investigated by Kachanov el at. (1984), Kozlov et al. (1984),
Kozlov and Ramazonov (1984). In fact, two different types of staggered structure
have been observed. The subharmonic of the fundamental wave excited in the bo-
undary layer produced either the Craik (1971) resonant wave interaction (C-type
structure) or so-called secondary instability of Herbert (H type) (Herbert, 1983b).
Saric (1986) pointed out that the important parameter is the maximum value of
the primary fluctuation. For amplitudes of the order of 0.3% U. we have C type
structure in which A, is larger than A;. At amplitudes between 0.3% to 0.6% U.
(H type) A is larger than A,. Larger amplitudes of the primary fluctuations lead
to the appearance of the ordered structure studied by Klebanoff (K-structure).
In the nonlinear stage of transition the distribution of the mean velocity is di-
storted - the profiles measured at the peak develop a point of inflection (Fig.21, cf
Arnal, 1984). Fig.22 (Arnal, 1984), shows the iso-vorticity contours measured at
the peak position (vorticity in this figure is approximated by (6,/U,)0U/0y). We
can observe a considerable increase in spanwise vorticity in the mild part of boun-
dary layer. In Fig.22 T* represents the period of time of the T-S wave motion.
The thin layer of high concentration of vorticity is called high-shear layer. As the
flow proceeds downstream, the high-shear layer becomes more and more intense,
and finally induces so-called secondary instability (Herbert reserves this term to
describe nonlinear process — the Herbert secondary instability). The secondary in-
stability takes the form of a strong negative pulse called ”spike” (Fig.18, cf Arnal,
1984). The amplitude of ”spike” can reach the value of 30% =+ 40% U.. In the
later development a second "spike” will appear. Fig.23 (Arnal, 1984) illustrates
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Fig. 22. Contours of approximate spanwise vorticity at peak position, Arnal (1984)

the iso-vorticity contours for one and double "spike” stages, respectively. For each
cycle of the primary wave, the number of ”spikes” increases and forms bunches
of high-frequency fluctuations. That can be interpreted as the division of vortices
which are broken down again into smaller vortices. The fluctuations finally take a’
random character and form turbulent spots. Once created, the turbulent spots are
swept along with the mean flow, gradually growing and finally covering the entire
surface. More information about secondary instability can be found in Herbert’s
papers (1984b) and (1988).

In order to explain theoretically the 3D phenomena in the transition region,
weakly nonlinear models were primarily developed. The weakly nonlinear theory
is in fact a standard perturbation method using expansions about the solution of
linear problem (amplitudes of T-S waves are often used as expansion parameters).
In this early theoretical work two groups of models were distinguished.

The first group represented nonresonant model. Benney and Lin (1960) studied
the interaction between the T-S wave A(a,0) and the 3D wave B(a,f), where
o, f are the streamwise and the spanwise wave numbers, respectively. A and B
are the amplitudes of the 2D wave and the oblique wave, respectively. This model
yields the following amplitude equations

dA
i A(ao + a1/A[* + az| B|*) + a3 B A"
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Fig. 23. Contours of approximate spanwise vorticity at peak position, Arnal (1984): a)
one spike stage, b) double spike stage

(6.1)

dB 2 2 2 pe
v B(bo + b1|B|* + b2]Al*) + baA' B
where B*, A* are the conjugate amplitudes; ag and b are given by the linear
stability theory and ea,, @2, by, b2 are the interaction coefficients.

The second group (resonant) was represented by the Craik resonant triad
- (Craik, 1971). The triad consisted of the T-S wave A(a,0) and the two sub-
harmonic oblique waves B{a/2,+8). The nonlinear interaction analysis led to
equations

dA

= agA + a3 B?
at (6.2)
dB .
i boB + bAB

‘The calculations revealed that the nonresonant model (Eqs (6.1)) gives the
growth of vortices similar to those reported by Klebanoff. However, this model
was unable to estimate the preferred spanwise periodicity. The Craik model (Eqs
(6.2)) turned out to be consistent with some experimental observation but was



INSTABILITY OF BOUNDARY LAYER 29

inoperative in other cases. Both models are discussed more widely by Arnal (1984),
Herbert (1988). To avoid all restrictions that usually have to be imposed on ¢he
theoretical model, the full Navier-Stokes equations must be solved directly by
employing the finite difference or the spectral method (Singer et al., 1986; Orszag
and Kells, 1980; Spalart and Yang, 1987; Fasel et al., 1987; Hussaini et al., 1987).

7. Centrifugal instability

Modern supersonic aircraft designs may have regions of concave curvature on
the lower side of the wing. It is a well known fact that in the boundary layer over a
concave surface a strong centrifugal instability takes place. This type of instability
is manifested by the presence of counterrotating vortices, the axes of which are
parallel to the principal flow direction (Fig.24a).

Gortler (1954) was the first who studied the counterrotating vortices on the
concave surface and this vortex structure beared his name. Later, Wortmann
(1969) studied the development of centrifugal instability in a water tunnel with
curved walls. He described the transition process on concave surface in the follo-
wing manner.

The first step in the transition process is characterized by the classic Gortler
vortices pattern shown in Fig.24a. We can see a strong spanwise deformation of
the mean velocity profile. Then the steady second-order instability destroys the
symmetry of the vortices (Fig.24b). The onset of the second-order instability de-
pends on the Reynolds number on one hand and on the intensity of the primary
vortices on the other hand. Further downstream the vortices show a characteri-
stic oscillating motion which becomes turbulent a few wavelengths downstream.
Wortmann found that these 3D oscillations were not a result of the second but of
the third-order instability.

In his theoretical work Gortler assumed that 3D disturbances (superposed on
the mean flow) could be described in the following form

(u’,v',p')T = (f, ‘P’“’)T cos(@z)F
1.1

v’ = hsin(&z)F

where in temporal theory F = exp(wt) and in spatial theory F = exp(ﬁz); &
was the spanwise wave number; [ was the streamwise wave number; f, @, k, T
were amplitudes of disturbances u’, v/, w’, p’, respectively. Gortler introduced
the above relations to the equation of continuity and to the linearized equations
of motion. In his calculations he assumed parallel flow and neglected terms of
order §/R* (R* - radius of the wall curvature, Fig.242). Many attempts were
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Fig. 24. Development of instability along a concave wall: a) primary instability; b)
second-order instability; ¢) third-order instability, Wortmann (1969)
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made to correct and extend the Gortler’s analysis. The review of these works, with
comparison of resulting neutral curves (Fig.25), can be found in Herbert (1976).
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Fig. 25. Neutral curves obtained from different models and different computation
procedures of the Gortler instability, Herbert (1976): 1 — Gortler; 2, 3, 5 — Hammerlin;
4 - Smith; 6 — Schultz-Griinow and Behbahani; 7, 8 - Kahawita and Meroney;
9 - Floryan and Saric

In Fig.25 the spanwise wave number & is normalized with the reference length
6, = /vzo/U. (zo is the dimensional chordwise location) and G is the Gortler
number defined in the following manner

ReK (7.2)

The Reynolds number in the above relation is based on reference length 6, and
K is the surface curvature normalized with §é,.

It is clear that the discrepancies between the various curves are large. The
discrepancies between these curves can be attributed to the treatment of the
streamvise curvature, treatment of the boundary layer growth and computatio-
nal accuracy. More recently Floryan and Saric (1979), Ragab and Nayfeh (1979)
received better agreement of their results. The linear development of Gértler vor-
tices in growing boundary layer was investigated by Hall (1983). The influence of
wall curvature oscillations on Gértler vortices was studied by Jallade (1989) (the
asymptotic method).

The concave lower surface in the leading edge region of supersonic airfoil was
theoretically analyzed by Collier and Malik (1987). They found that at low sweep
the instability is of centrifugal type. For bigger sweep (when the crossflow Reynolds
number increases) the crossflow instability will occur. Hall (1985) showed that
centrifugal instability is unimportant in the concave region of swept wings if the
sweep angle was large in comparison with Re~ =1/2 This condition is easily satisfied
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so in this region of swept wings we can expect the crossflow rather than the Gortler
breakdown to turbulence.

8. Waves interactions

A 3D boundary layer is rich in different instability modes such as T-S wa-
ves, crossflow vortices, Gortler vortices. A major unanswered question concerning
swept wing is about the interaction of these different disturbances.

In the early LFC work Bacon (1962) noticed a somewhat anomalous behavior
of transition when sound was introduced in the presence of crossflow vortices.
Klebanoff (1962) showed that the onset of 3D structure is quickly followed by
the breakdown of the laminar flow and "various instabilities have been found to
interact”. It is well known that streamwise vortices in the boundary layer strongly
influence the behavior of other disturbances. '

Nayfeh (1981) analyzed a 2D boundary layer (nonparallel spatial theory) and
found that a finite Gortler vortex could interact with two oblique T-S waves of
spanwise wavelength twice that of the Gortler. He showed that Gortler vorti-
ces produce a double-exponential growth of T-S waves. The concept of double
exponential growth was also suggested by Herbert and Morkovin (1980) for the
interaction of finite-amplitude of T-S waves with Gortler vortices. Floryan and
Saric (1984) showed a similar behavior for streamwise vortices interacting with
Gartler vortices.

At the swept wing the most important problem is the crossfiow/T-S interac-
tion. If the crossflow vortex structure continues into the midchord region where
T-S waves are amplified, the crossflow/T-S interaction could appear and cause
premature transition. Reed (1984) showed that the interaction of the crossfiow
vortices with T-S waves produces a double-exponential growth of T-S waves. Bo-
eing Commercial Airplane Company, in the case when both crossfiow and T-S
waves occur, proposed the relation (useful for engineering design) between ampli-
fication factor for steady crossflow transition Ncp and T-S transition N7g (Reed
and Saric, 1989)

Nrs =12~ 1.2N¢cp (8.1)

In her more recent paper Reed (1988) considered the crossflow/crossflow inte-
raction in the leading edge region of swept wing (disturbance streamlines in the
crossflow plane are shown in Fig.26b). Reed explained theoretically, using her in-
teraction theory, the anomalies found in the Saric and Yeates (1985) experiments.
In their visualization observations they found vortices at the wavelength predicted
by the linear stability theory. However, using hot wire measurements they found
that the second harmonic with three times the amplitude of the primary wave was
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Fig. 26. Calculations of disturbance streamlines in the crossflow plane: a) without
interaction; b) in the case of crossflow/crossflow interaction, Reed (1988)

dominant. In such cases the basic transition prediction method based on the linear
stability theory would fail. In fact detailed crossflow stability experiments such
as Poll (1985), Michel et al. (1985), Saric and Yeates (1985) are few in number.
Detailed research is still required because the nature of crossflow vortex structure
is still not fully understood.

Wave interactions are also investigated theoretically in Malik (1986), Hall and
Smith (1989), Balachander and Streett (1989).

9. Transition prediction — eV method

Along with efforts to understand the physical processes governing the transi-
tion from laminar to turbulent flow, numerous attempts have been undertaken to
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predict the point of occurrence of transition. Because our knowledge of transition
is not complete, the prediction methods to a great extent have to be based on
empirical data.

The state-of-the-art method for predicting transition is the eV method ba-
sed on the linear stability theory. It was noted by comparing a large number of
experimental data that the transition Reynolds number (based on the freestream
speed and the distance from the leading edge) could be satisfactorily correlated
with fixed value of N

T
-:—0 = exp(/ —a.-dz) = exp(N) (9.1)
Io
It was shown that transition occurs when N approaches 10. That is, the amplitude
of the disturbance at transition is e!© times larger than the amplitude at the lower
branch of neutral stability curve. The eV method was originally proposed by
Smith and Gamberoni (1956), Van Ingen (1956) and recently reviewed by Bushnell
et al. (1988). Malik and Orszag (1980) in their paper compared different versions
of eV method and they concluded that the so-called envelope method was the

most efficient one.

Fig. 27. Blasius boundary layer - In(A4/Ap) as function of Re for several frequencies,
plus envelope curve

" For 2D incompressible flows in the envelope procedure, the solution of Orr-
Sommerfeld begins at a Reynolds number slightly the greater than critical Rey-
nolds number crRe and frequency from the lower branch of neutral stability curve
(Fig.3). As a result of this calculation the wave number « is obtained. Such
calculations are made for the subsequent Reynolds numbers (keeping frequency
constant). This leads to one of the amplification lines shown in Fig.27. The pro-
cess is repeated to obtain amplification curves for different values of frequency. As
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can be seen from Fig.27 the envelope of the resulting curves corresponds to the
maximum amplification factors. From envelope curve the transition point can be
obtained by assuming a value of N.

This envelope procedure is useful and convenient for 2D flows. The envelope
procedure for the 3D incompressible flow can be found in Srokowski and Orszag
(1977) (SALLY code). Srokowski and Orszag calculated maximum temporal am-
plification rate for given frequency from the incompressible stability equations.
They used real part of the group velocity (Eq (3.20)) to convert the temporal
amplification rate into spatial one. Then they calculated N by integrating spa-
tial amplification rate along the trajectory defined by the real part of the group
velocity.

In, 1982 the computer code COSAL (compressible version of SALLY) was de-
veloped by Malik et al. (1982). Work on developing more fundamental methods
of stability analysis for swept wing boundary layer were carried out by Cebeci and
Stewartson (1980a,b), Nayfeh (1980), Lekoudis (1979) and (1980).

The eV method is well adapted to design studies. The design of modern
laminar-flow-control aircrafts depends on the prediction of the growth of the di-
sturbances in the boundary layer. These designs are carried out with use of ad-
vanced computer codes (Campbell, 1987). In the basic LFC technique (suction)
the physical parameters are changed so that N would be kept within reasonable
limits in order to prevent transition. Aslong as laminar flow is maintained and the
disturbances remain linear, the eV technique can accurately predict disturbance
behavior and can be used to calculate the effectiveness of a particular LFC device.
The eV method is acceptable for design studies as long as different amplified di-
sturbances do not occur simultaneously. At present there is no suitable criterion
for establishing transition when both crossflow and T-S waves are present.

As a transition prediction devise, the eV technique has been the subject of cri-
ticism. A major difficulty in the prediction of transition is that transition depends
very strongly on environment. Transition is a result of external disturbances which
interact with the boundary layer to cause transition either through instability wa-
ves or in a more direct manner (bypass). Since in the eV method no account
can be made of the initial disturbances, this method will always be suspected of
causing large errors and should be used with the extreme care. The success of eV
correlation is partly due to the fact that the experimental results, on which the
method is based, were obtained in wind tunnels where the disturbances of free-
stream are similar (particularly the free-stream turbulence level was rather low).
In flight conditions the free-stream disturbances can vary in a random manner
with no statistical uniformity. When bypasses occurs (high level of the free-stream
turbulence) this method does not work at all. The method could be made more
realistic by relating the factor N directly to the disturbance level of the source
responsible for transition (Mack, 1977). However, transition prediction methods
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will remain conditional until the receptivity problem is solved and bypass mecha-
nisms are cleared up. Receptivity problem is still not well understood because of
formidable theoretical and experimental difficulties but to achieve real progress in
transition prediction a way must be found to deal with the instability waves in

terms of the disturbances that cause them.

Appendix 1

The coefficient matrix of compressible stability equations, Mack (1984)

a3 =1
a1 = &(0U+ﬂW—w)+az+ﬂ2

d
az = —;‘-d;DT
a3 = —-—-(aDU + BDW) - i(a? +ﬂ2)—d# DT -
—iz (1+2d)( 2+ﬁ2)DT

0 = T(a +4%) - §(1 +2d)(a® + B2 )yMal(al + W -
aU+pW-w 1du

(A1)
(A.2)

(A.3)

(A.4)

(A.5)

eas = 501+ 24)(a? + P =L - L (aD?U + D) -

T
1d%
——FDT(aDU + BDW)

Qg = -———(aDU +ﬂDW)

‘131=—l
0 = 2T
®TT

a3y = —iyMa(alU + W - w).
ass = i(aU + W - w)

2d
au———[-—"DT+ (2+d)
e = -
42 = E
DT?
‘143——[ —(a?+8%) + 2 (2+d) 1d”+ (2+d) T-—

pdT

(A.6)
(A7)
(A.8)
(A.9)
(A.10)
(A.11)

(A.12)

(A.13)
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—‘R—e( U+ BW - w)]

1d
Gaq = ‘Eﬁ(z + dyyMa;[(aU + AW ~ W)y " DT +
+aDU + BDW + Qz(au + W - w)]

G5 = — { (DU+ﬂDW)+ (2+d)

1 d/l DT aDU + fDW
dT (U + W —w) + =———1}
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asg = 1
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Qgy = —20(7 - l)M Z_T-IT
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DT dx DT? d*x
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(A.14)

(A.15)

(A.16)

(A7)
(A.18)

(A.19)
(A.20)

(A.21)

(A.22)

(A.23)

(A.24)
(A.25)
(A.26)

(A.27)
(A.28)
(A.29)
(A.30)

(A.31)
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In these equations, the ratio of the second to the first viscosity coefficient

i=2 (A.32)

b

is taken by Mack (1984) to be constant and equal to 1.2 (Stokes’ assumption
corresponds to A = 0). In the numerical computations Mack used

1.4587..{gr5tﬁ T* > 110.4K o
: 3

0.0693873T* T* < 1104K

#-105 =

for the viscosity coefficient in cgs units, and

-1
K* = 0.6325VT* [1 + 24—554—1071- (A.34)

for the thermal conductivity coefficient in cgs units. The Prandt] number is defined

o= 28 (A.35)
KI

where ¢, is a specific heat.
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Niestabilnoéé tréjwymiarowej warstwy przysciennej

Streszczenie

Konstrukcje nowoczesnych samolotdw o kontrolowanej warsthe przyscxennej zaleza od
poznania zjawisk prowadzacych do powstania turbulentnej warstwy przysciennej. Jednak
pomimo ogromnego wysilku badawczego zaréwno zrédla turbulencji jak i sam proces prze-
Jécia laminarno-turbulentnego pozosta)j ciggle jednymiz najwazniejszych nierozwiazanych
probleméw aerodynamiki. W artykule przedstawiono przeglad prac eksperymentalnych i
teoretycznych dotyczacych niestabilnosci tréjwymiarowe) warstwy przysciennej. Anali-
zowane s3 cztery rodzaje niestabilnosci: skazenie krawedzi natarcia, niestabilnogé lepka,
niestabilnosé crossflow oraz niestabilnosé odérodkowa. Omawiana jest metoda e” prze-
widywania punktu wystapienia przejscia laminarno-turbulentnego.
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