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The constitutive relationships proposed elsewhere Jemiolo et al. (1990) are
here generalized and discussed in more detail. Nonlinear elasticity equa-
tions are considered and modified in such a manner as to suitably describe a
composite consisting of an isotropic matrix reinforced with three orthogonal
curvilinear families of fibres, each having different mechanical properties. As
an alternative, a canonical form of the equations is also formulated. Isotropy,
transversal isotropy and local orthotropy are considered as three important
practical situations. In each case the reinforcement is described by a positive-
valued second order tensor. In addition, the constitutive relationships are
derived for such specific situations as plane stress, plane strain and antiplane
stress. Two variants of simplified physical relations for linear elasticity are
given and compared against the standard Hooke’s law. Relations are given
enabling material constants to be found with the use of standard tests for
.orthotropic material.

1. Introduction

The present paper is a sequel to a number of earlier papers Jemiolo (1991a,b),
Jemiolo et al. (1990), Jemiolo and Kwiecifiski (1991), Jemiolo, Kwiecifiski and Wo-
jewddzki (1990) and (1992), in which the elasticity and plasticity problems were
dealt with by using the theory of nonpolynomial representations of tensor-valued
functions to formulate appropriate constitutive equations for fibre-reinforced ma-
terials. Polynomial representations were used by Spencer (1972) and (1984) for
formulation of the constitutive relationships for materials equipped with either one
or two families of fibres. .

Primary aim of this paper is to generalize and discuss in detail one of the
physical relations proposed elsewhere Jemiolo et al. (1990). The generalization
consists in a different definition of the reinforcement tensor from that introduced
in previous papers Jemiolo et al. (1990) and (1992). It was in Jemiolo et al. (1990)
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that the general — in the framework of tensor representation theory, constitutive
relationships were formulated for matrices reinforced in three orthogonal direc-
tions with rectilinear families of fibres each having exactly the same mechanical
properties. Now, three orthogonal curvilinear families of fibres are dealt with, each
having different mechanical characteristics.

The description is confined to nonlinearly elastic materials under small strains
and to the materials of Green’s type.

Depending on the type of a symmetric second-order reinforcement tensor, three
cases of local orthotropy, transversal isotropy and full isotropy are considered. For
each particular situation an irreducible set of invariants and generators is deter-
mined to enter the constitutive relationships. Since the obtained sets of invariants
constitute so-called functional basis Boehler (1987) and, at the same time, a po-
lynomial basis (the integrity basis), a straightforward linearization of the general
equations readily leads to suitable linear relationships between the stress and the
strain tensors. Next, these equations can be also linearized with respect to the re-
inforcement tensor to obtain the simplest expression possible. On comparing these
equations with Hooke’s law for orthotropic and transverselly isotropic situations,
the number of independent material constants to be necessarily found by tests
turns out to be smaller. It is also pointed out that under certain restrictions the
proposed equations reduce to these known for a composite with averaged material
constants (cf, for instance, Dabrowski, 1989).

Relations among material constants are also established enabling the standard
procedures for determining material parameters to be employed both in the case
of equations linear in the strain tensor and in the case of equations bilinear in the
strain and in the reinforcement tensor. ’

2. Description of reinforcement

An isotropic material of a matrix is assumed to be reinforced with three families
of curvilinear, orthogonal and evenly spaced fibres. On the macroscale level a
representative spatial element can be distinguished as a particle of the considered
body. Macroscale-wise the composite is a locally orthotropic material. Full bond
between fibres and the surrounding matrix is assumed to be present. Microscale
description of reinforcement is made by means of a symmetric second-order tensor,
Jemiolo et al. (1990) and (1992), as follows

R =kiRie; ® €1 + kaRze2 ® €2 + k3Rze; @ €3 (2.1)

where Rj, i = 1,2, 3 are the intensities of reinforcement embedded in the directions
e; (R; = AR;i/A;, A; = Api + ARi, AR; denotes the cross-sectional area of reinfor-
cing fibres in the direction e; whereas Apy; is the area of matrix, perpendicular
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to e; and belonging to the fibre of area Ag;), k; are the ratios of corresponding
anisotropy of the families of fibres (for example, k1 = 1, ks = E3/Ey, k3 = E3/E,
where E; denotes Young modulus of the ith family, compare a remark in subsec-
tion 5.3), e; are base vectors of a local, orthogonal frame of reference.

When the tensor R is formally treated as a parametric tensor to describe a
group of material symmetry, then R (since R; > 0) characterizes a cristal of a
dipyramidal class from the rhombic system, Lokhin and Sedov (1963). According
to Schoenflies’ designation, Penkala (1977) the cristal belongs to the class Dg.
It is worth noting that, for the considered function, I-Shih Liu (1982) maintains
that the dipyramidal class can be described with the use of the same parametric
tensor as in the case of non-crystallic orthotropic material.

When kjR; = k2R, = k3R3, the composite under consideration has certain
additional symmetries that escape to be described by any second-order tensor.
The equivalent monocrystal belongs to the 48-faced crystal from regular system
(according to Schoenflies it belongs to the class Op). The material symmetry
group is in this case completely characterized by a parametric tensor having the
form, Lokhin and Sedov (1963) or Zhang and Rychlewski (1990)

Oh=e1®e:Q0e10e;+e,0e;,0e20e2+e30e3Be3Qe3 (2.2)

3. Nonlinear elasticity

Nonlinear constitutive equations for elasticity in Green’s sense will now be
established for the composite described above. As mentioned before, orthotropy,
transversal isotropy and perfect isotropy will be dealt with. Suitable constraints
will also be imposed to obtain relationships appropriate for plane stress, plane
strain and antiplane stress states. '

As well known, elastic models derived via energy formulation are insensitive
to the loading path and the whole deformation process is reversible. Geometrical
interpretation of a specific elastic energy W and a specific complementary energy
2 is shown in Fig.1 whereas

UTE=W + 2 >0 W(O,R) =0 . 2(0,R)=0 (3.1)

Fig.1 clearly shows that two equivé.lent descriptions of the constitutive relation-
ships are possible, namely

ow an
T—W or E-—E‘f

where T is the Cauchy stress tensor and E is a small strain tensor.

(3.2)
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Fig. 1.

3.1. Orthotropy

When kyR; # kaRg # k3Ra, a constitutive equation of the type (3.2), derived
by Jemiolo et al. (1990), has the form

T = oyl + aaR + asR? + 204E + as(ER + RE) + ag(ER? + R%E) + 3a7E (3.3

where | is a unit tensor

am = 8_W and —aa'" = za_,,
™= oI, oI, ~ OIm

and, in turn
W = f(trE, trER, trER?, trE2, trE®R, trE?R?, trE3, trR’) = f(I,,)

n=1,..,10 . 1=1,2,3

m,p=1,...,7

In the above expression for a specific elastic energy we recognize 7 variables (in-
variants E), 3 parameters trR* (or k;R;) as well as other dimensional material
constants which cannot be seen in (3.3); explicitly. It should be emphasized that
the invariants I,, constitute a polynomial basis for the function (3.3)3 as well as
its functional basis, Boehler (1979) and (1987) in which an alternative system of
invariants was employed to describe a scalar-valued orthotropic function.

Eq (3.3) can be expressed in the canonical form (after Betten, cf Boehler, 1987)

T = CO) + CE 4+ CPIE? : (3.4)

where C9), ¢ = 0,1,2 are some fourth-order tensors depending on a,, and R
and having the forms

1 1
C(o) = 011 + Eagcg) + §ascg)
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cM = 2041 + ascg) + ascg)
C® = 3a1
In (3.4); the following notation is used
=lol cl¥) = 1oR* + R% 01 (3.5)

The operation ¢ for two arbitrary symmetric second-order tensors A, B (introdu-
ced by Sadegh et al. (1991)), means the following

1
(AoB)iju = Z(AiIBjk + Ajx By + Aj1Bi + AicBji) (3.6)

Derivation of Eq (3.2); is similar and will not be shown here for brevity.

3.2. Transversal isotropy

When kyRy = kaR2 = R > 0 and R3 > 0, e3 being a preferred direction,
the composite in question has locally transversal isotropy. Eq (3.3) becomes much
simpler since among invariants and generators the following identities apply, re-
spectively

trR' = 2R + kiRY

(3.7)
trE*RP = RAtrE® + (kSRS — RP)trE°M
where M=e3®e3, a,=1,2 \
R® = R°l + (k§R§ — R*)M
(3.8)
ER* + R°E = 2R*E + (k§ R§ — R*)(EM + ME)
It results in Eq (3.3) having the form
T = 1l + $2M + 263E + B4(EM + ME) + 33;E? (3.9)
where o 93 93
Bn = 57 = =k n,p=1,..5
oI, o, oI,
and, in turn

W = f(trE, tEM, trE?, trE?M, trE3, B, k3R3) = f(Im) m=1,..,7
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The canonical equation (3.4) contains the following tensors c

CO = fi1 + 34:CY)

C) = 2631 + BCY
C(z) = 3ﬂ51

where 4
C)=1loM+ Mol

From Boehler’s papers (1979) and (1987) it follows that, for Cauchy’s material,
the constitutive equation (3.9) contains an extra generator E2M + ME? supplied
with an additional scalar-valued function (¢ whose arguments are the invariants
shown in (3.9)3. Expressions (3.9); are no longer satisfied. The conclusion is that
for transversally isotropic Cauchy’s material the energy dissipated over a closed
cycle results from the fact that the relationship (3.9); is violated and tha,t there
exists an extra generator in the constitutive equations.

-3.3. Isotropy

As pointed out in section 2, kR, = kgRy = kzR3 > 0 means that the
composite under consideration has the same local symmetries as in monocrystals of
the 48-faced class belonging to the regular system. Suitable constitutive equation
for such a material with the parametric tensor (2.2) was derived by Basista (1985).

If the principal magnitudes of the parametric tensor R in Eq (3.3) are equal,
the description fits an isotropic material whose matrix is provided with very short
segments of fibres scattered in random directions (e.g. ferroconcrete).

When ki R; = k;R; = k3R3 = R, the identities among invariants and genera-

tors are, respectively

trR* = 3R’ trE°R® = RPtrE~ (3.10)
R* = R°l ER™ + R°E = 2R°E (3.11)

Eq (3.3) simply becomes

T = 11l + 273E + 37;E? (3.12)
where '
W 0% _ 9
L'y aI; ~ al;
and, in turn

W = f(trE, trE%, trE3, R) = f(I;)
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The tensors C(?) entering the canonical form of (3.4) are also very simple

CO =41 C) = 2451 C® = 3451

4. Plane problem in nonlinear elasticity

Let us specify the constitutive equation (3.3) for two-dimensional situations.
Eq (3.9) and (3.12) can be transformed in a very similar way so none of those
results will be shown here.

For simplicity and with no loss of generality the local Cartesian coordinate
system will be used to express relevant tensor components.

4.1. Plane strain
The plane strain state can be neatly shown as

E
0 0

E= (4.1)

OO O

where a bar above E indicates that E is a plane strain tensor. Under the notation
(4.1) it follows from Eq (3.3) that T3 = T3 = 0. The constitutive equation (3.3)
assumes the form

T = &yl + @R + 2a3E

(4.2)
T33 = &y + azk3R3
The functions &; satisfy Eq (3.3); and the elastic energy is
W = f(trE, trER, trE°, R:) (4.3)
4.2. Plane stress
The stress tensor has now-the form
= 0
S L (4.4)
0 0 90
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and from Eq (3.3) it follows that E;3 = E;3 = 0. Eq (3.3) can be readily shown
to have the form
T = o)l + 4R + a4R? + 24}E (4.5)

where o/, m = 1,...,4 are defined as in Eq (3.3). The specific energy has the
form
W = f(trE, trER, trER?, trE2, R;) (4.6)

Since Ta3 = 0, Eq (4.5) provides an equation in Eg3 in the form
o} + a4k R + a3k3R3 + 204 F33 = 0 (4.7)

Using Eq (4.7) in Eq (4.5) and employing the Cayley-Hamilton principle for plane
tensors, we eventually obtain

.i-

[o/l - %ag(tr’ﬁ - trR’)]i + (o + a4trR)R + 204E =
(4.8)
= all+ &R+ 2a4€

From Eq (4.7) it follows that the Ea3 component of the strain tensor is a function
of the invariants tr€, trER and trE®. Therefore the specific elastic energy (4.6)
depends on the very same invariants as for the plane strain (see Eq (4.3)).

4.3. Antiplane stress state

This state is characterized by the absence of the diagonal components T3, T2z,
Ts3 and, additionaly, T}2. This type of stress state takes place when the displa-
cement functions, according, to the known kinematic de Saint-Venant assumption
(cf e.g. Hearmon (1961)) are as follows

Uy = —92323
Uy = —91,23 (4.9)
u3z = —1950(21,22)

Then the strain tensor components Eyy, E2, E33, Eyg vanish and the only nonzero
strain invariants (3.3); are trE? and trE’R®. The constitutive equation (3.3)
reduces to the form

T = 2&,E + @s(ER + RE) + &6(ER? + R*E) (4.10)
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5. Linear elasticity

Particular cases of the constitutive equation (3.3), linear with respect to the
strain tensor E, will be now dealt with.

5.1. Physical relationships linear in strain tensor

Linearization of Eq (3.3) under W(0,R) = 0 = T = 0 leads to the equations
with the following functions ay,

a a1 812 613 trR
a | = a2 a3 trER (5.1 )
" ag sym. aszs trER?
a4 = a8y as = agg ag = agg ar=0

Nine coefficients a;, a44, 655, ags (their number coincides with the number of
material constants for a standard orthotropic Hooke’s material) may by functions
of k;R;. The specific elastic energy is expressible by the formula

W = uTE= }(autrE + aztr?ER + astr?ER?) + agptrELrER +
2 2 (5.2)

+ a13trEtrER? + astrERtrER? + aqqtrE? + asstrE?R + aggtrE2R?

~ Allowing for the identities (3.7), (3.8) in Eq (3.3) and Eq (5.1) or linearizing Eq
(3.9) with respect to E yields a linear equation for a locally transversa.l isotropic
material with the functions 8, as follows

B | _| b b trE
HEERIE 63)
B3 = bss Ba = byy Bs=0

Five different k;R; — dependent coefficients are present in Eq (5.3), similarly as
for the transversally isotropic Hooke’s material.
Full isotropy takes place when in Eq (3.12) the following functions are inserted:

7 = extrE T2 =6 73=0 (5-4)

Using above functions in suitable tensors C{9), canonical equations can be
arrived at for a given type of material symmetry.



54 S.JEMIOLO0, M. KWIECINSKI

5.2. Bilinear physical relationships with respect ta the strain and the rein-
forcement tensors

Linearizing Eq (3.3) with the help of the functions (5.1) of R, we get

ay = ajttE + aotrER
ay = ajqatrE a3 =0 ay = G4y (5.5)
as = ass ag =10 ar=0

Very simple equation (3.3) with the functions (5.5) was also derived by Jemiolo
et al. (1990) in a different manner. It was a fourth-order tensor-valued function
linear in the tensor R. Constants a;; and a4 (see Jemiolo et al. (1990)) were
interpreted as the Lame’s constants A, u,, for the matrix. It should be stressed
here that such an interpretation is true only in the specific case when mechanical
properties of the matrix suffer no changes during the formation of the composite.

Under the previous assumption pius a similar assumption of constancy of the
mechanical properties of fibres, the values of constants in Eq (5.5) can be predicted.
In the case of R =0, Eq (3.3) with the functions (5.5) leads to the Hooke’s law
for a matrix characterized by the constants

al] = AM Qg4 = iy, (5.6)

When R = |, Eq (3.3) together with Eq (5.5) results in Hooke’s law for the
reiforcing material provided
ap +2a12 = A, a44 + G55 = pig (5.7)
Accounting Eq (5.6) and (5.7) in Eq (5.5) yields a specific form of Eq (3.3), namely
T = (€4 '\"_T'\”trER)I +
' (5.8)
Ap = Ay
+ SR ZMGEIR + 2up E + iy — o )(ER + RE)
It is worth emphasizing that the physical equation (3.3) with functions (5.5) as well
as a simplified relation (5.8) have been derived under very restrictive assumptions
and can only be treated within the framework of linear elasticity as an approxi-
mation of Eq (3.3) with functions (5.1). The above reasoning clearly shows the
physical sense of the constants entering Eq (5.5).

On allowing in the constitutive equation (5.8) the assumptions made in the
subsection (3.3), i.e. R = Rl = Agl/A = Vgl/V, the following equation is
obtained _

T = Aqo(trE) + 204, E (5.9)
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where

 —_— AV +AnVa _ BuYa +83Va
v = T Bav = %

and, in turn, V = Vjr + VR, Var and Vg being the volumes of the matrix and
the reinforcement, respectively. The constants (5.9); are identical with those that
would be obtained from the law of mixtures by using Voight’s averaging process
(cf for example Dabrowski, 1989) for an isotropic matrix with spheroidal isotropic
inclusjons.

5.3. Comparison with standard Hooke’s law

A matrix form of Hooke’s law for orthotropic material is the following

Tle = C6x6E6x1 (5-10)
where
[ e1 fs fo 0 0 0] [ T1 ] [ Eyp ]
e2 1 0 0 O T2 E,q
_ €3 0 0 0 - T33 _ E33
CGXB - g3 0 0 Texl - le EGXI -~ 2E12
g2 0 T3 2E2;
| sym. o | | T13 | | 2E;3 |

Nine elasticity constants e;, fi, gi depend on the constants a;j, as4, ass, aes and
kiR; in the following maner
ei = (a1 + 2a4)+ 2k;Ri(ar2 + ass) + k2 R? [azz + 2(a13 + aes)] +
+ 2a23k3R3 + azakiRA

fi = on+aua(k;R; + kiRi) + kjRjkiRafazs + azs(kjR; + ki Ri) +
+ osskjRikeRy)| + ars(K2R? + kERD) (5.11)

1 1
g = au+ i—)ass(k,-R,' + ki Ri) + Eass(k,z'Rf + ki R})

(no summation over i,j,k = 1,2,3), (1;5,k) = (1,2,3);(2,3,1); (3,1,2).

The constants e;, f;, g; can be determined from standard tests for an ortho-
tropic material (cf, for instance, Hearmon, 1961). Since the constants a;; and a4y
are not modified by the expressions k;R;, it seems reasonable to interpret them
as the Lame’s constants for the matrix. Formally, the constants k;, { = 2,3 and
the rema.injng a;;, ass, ags are calculated from nine equations. Thus the obtained
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results for k; can confirm that their definition in Eq (2.1) is correct. It is evident
that it is the experimental verification only that can supply an answer how rational
the simplification of the function (5.1) to become (5.5) — or a neglect of certain
expression in (5.11) - really is.

In the case of the function (5.5), although nine different constants appear in
the standard Hooke’s law, they actually depend on only four constants ay;, a2,
@44, ass. Similar relationship is valid for transversally isotropic material. It is
now five magnitudes of standard Hooke’s law that depend on the constants listed
above. Substituting Eq (5.5) into Eq (5.11) and making use of Eq (3.7), we obtain

e1 = €2 = (@11 + 2a44) + 2R(a12 + ass)
e3 = (a1 + 2a44) + 2k3R3(a12 + ass)
fi=fa=a1 4+ a2(R+ k3R3)

fs =an +e2R (5.12)
91 = g2 = aqq + ass(R + k3R3) -

e -—
g3 = —1—2—fg=a«+¢1553

For the perfect isotropy it is obviously only two constants that enter the picture

e1 = ez = e3 = (ay + 2a44) + 2R(ay2 + ass)

h=fr=fs=an+2a3R (5.13)
e —
N=ga=gs= = 2f' = a4q + assR

The above survey makes it possible to select, for the considered composite, the
known solutions of boundary value problems for orthotropic, transversally isotropic
and perfectly isotropic bodies. ‘

As far as practical applications are concerned, an inverse of Eq (5.10) is neces-

sary

Esx1 = CoeeTexa (5.14)
where
[ 71 r3a r2 0 0 07
p2n 0 0 O
-1 _ 3 0 0 O
x6 = s3 0 0
82 0
| sym. s |

and, in turn

dp; = eje — f? dri = fifr — € f; (no summation over i)
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1
p d=ejeses+ fifofa—erfi —eafi —eafs
1

"(1,4,k) = (1,2,3); (2,3,1); (3,1,2)

Substituting Eq (5.11) into Eq (5.14); we obtain relationships between the con-
stants in the inverted Hooke’s law and the constants a;;, aq4, ass and aes.

R .9"=

5.4. Relationships among material constants

The constants entering Eq (5.14); can be determined with the use of standart
tests on uniaxial and biaxial compression and on pure torsion. Following Hayes’
paper (1972), the following relations can be established

— generalized Young moduli for an arbitrary direction

1 .
Em) pinf + pand + panf + 2(r1 + 2s3)n3n +
(5.15)
+ 2(r2+ 2s)nind + 2(rs + 251)nind
where n is an arbitrary versor with the componets n;,
— generalized Poisson ratios for an arbitrary plane
vim,n) = —E(n)(pm}+pym} + psmd + 2rimim3 + 2rymim3 + (516)

<+ 2r3mfm§ + 43y mymgning + 4s3mymanng + 4s3memanang)

where m is a versor with the components m;,
— generalized Kirchhoff moduli for an arbitrary plane

1

— = 4 [plngmg + pgngmg + pgn?,mg + 2rymamanans + 2raomyman ns +
p(m,n)

4+ 2ramymaning + 81(n2m3 + mgn;';) + 32(1&11’13 + mms) + (5.17)

+ s3(nima + mxﬂz)]

Next procedure to follow is simple enough: by proper choice of the directions n as
well as ® and m we consecutively determine from standard tests E(n), v(m,n),
p#(m,n) and, making use of Eqs (5.15) -+ (5.17), calculate the constants (5.14),.
Use of Eqs (5.14)3 and (5.11) leads to the constants of Eq (5.1) - or even simpler
by using the inverted equation (3.2);. For example, performing an uniaxial tensile
test in the direction n we calculate E(n) and v(m,n), since T = Tn ® n, where
T stands for the tensile stress

T

E(m) = y(m,n) = — HEm B m)

% (5.18)
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where
E=tr(En®n)

Simple torsion test suplies u(m,n)
p(m,n) = %tr(En ® m) (5.19)

where S is a shearing stress and T=S(n@m+m@®n), n-m=0. _

The above procedure makes it possible to assess quantitatively an influence
of a nonlinear reinforcement tensor R in the expression (5.11). In addition, an
answer will be given on the applicability of the simplified constitutive equations
with functions (5.5).

8. Unconstraint torsion of an elliptic bar

Fig. 2.

This type of test is frequently used to establish Kirchhofl modulus for a ma-
terial under investigation. Consider a free torsion of a prismatic bar with an
elliptical cross-section (Fig.2). Let the longitudinal z3-axis coincide with one of
the reinforcement families. M, a, b denote a twisting moment, major and minor
semiaxes of the elliptical cross-section, respectively. Solution to this problem for
an orthotropic bar can be found in Hearmon (1961). Remembering Eq (3.3) with
_ the functions (5.1) and assuming the displacement function in the form (4.9), the
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constitutive equation (4.10) takes the form 4
T = 2a44E + ass(ER + RE) + agg(ER? + R?E) (6.1)

Adopting the commonly known results, we arrive at the following expressions for
a unit angle of twist ¥ and a deplanation function

agy + bg, b%g, — a%gy .
- =29 -%% 6.2
v 27a3b3g, 9, ¥= Rgy + b2gy (6:2)

where g¢; and g, denote material constants defined by Eq (5.11)3. The cross-
section of the bar remains plane only if its shape is circular, a = b, and the material
is transverselly isotropic with a preferred direction e3, k3 R; = ko R;. Using Eq
(6.2) in Eq (4.9), remembering Eq (6.1) and standard elasticity relationships for
strain, we finally arrive at the strains

M M
= — Fo3 = ———— .
Exs rabdg, 72 B 7ra3bgga:1 (6.3)
and the stresses
_ 2Mg2 _ 2M91
T = 1rab3g1 T = 7ra3bggzl (6.4)

Constants ass and agg can be calculated from the expressions (6.3) and
(5.11)3. Assuming, for instance, a = b, 2, = 29 = @, aqq = p,,, We obtain

%2 M f 5 2p2 _ g2
085 = G, [7ra3(E° + E° ) + py (kiR — k3R )]

_ 2 M ™
= i x50, ¥ B) At - kaBe)](69)
7o = k¥RS + kSRS 5o = SRS + kSRS

where EY; and Ef, are the deformations on the generators of a bar, known form
the test.

7. Concluding remarks

Since the reinforcement tensor R, Eq (2.1), is a positive definite second-order
tensor, other interpretations of the derived constitutive equations are also possible.
For instance, an internal structure of bones can be represented by a symmetric se-
cond rank tensor (the so-called fabric tensor), Cowin (1986). Compact (cortical)
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and cancellous (spongy or trabecular) bones can be treated in a number of pro-
blems, excluding bone fracture mechanics; as linearly elastic transverselly isotropic
materials and orthotropic materials, respectively, Uklejewski (1992). Assuming,
instead of Eq (2.1), different definitions of the structural (fabric) tensor such as
proposed by Cowin (1986), Kubik (1981), Litewka (1985), the constitutive rela-
tions for other materials are obtained such as bones, porous media and bodies with
regular system of cracks. Once again, in all the above mentioned situations the
structural tensors are positive definite symmetric tensors of the second order.

It is worth emphasizing that the simplest equations (bilinear with respect to
the strain tensor and the structural (reinforcement) tensor contain fewer indepen-
dent material constants (provided the structural tensor is specified) than those
corresponding to an anisotropic Hooke’s material (isotropic situation excluded).

Appendix

Representations of generators and invariants in the Cartesian frame of reference
whose axes coincide with the local directions of orthotropy are as follows

Hp Bl £
E® = EQ E) a=1,2
sym. E:‘,g)
EN) = Eyy etc
Eﬁ) =EL +EL+ El
E,‘i’ = EnEy2+ Ey2Ep + E3E23
El(g) = EnEvs+ EnaEa3 + Ei3Ess
E'g) = Ely+ El +
E%’ = Ey2E13+ E22E23 + E23E3;3
Eg) = El3+ E}s + B}
trE = Eyy + Egp + Exg
tr€? = E} + E}, + E3 + 2(E}, + E}y + EX)
trE® = B}, + Ej + ERZ + 3[511(532 + E}) + Ey(EYL + EL) +
+E3(El; + Egs)] + 6E12E3E3
kZR; 0 0
Ro = KRS 0
sym. kSRS
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trR’ = k{ R} + k5 R} + k3RS i=1,2,3 (no summation over i)
2kfRYEn (KYRY + k§RS)E1 (kY RY + kS RS)Ers
ER® + R?E = 2kgRgE22 (kgRg + kg’Rg)Ezs
sym. 2kg R§ Eas
trtER® = ki’R?Eu + k'gRgEZZ + kg’RgEg;;
trE’R® = K{R§E} + K§R§ED + KSRSES, + (K RS + k3 RS)ED, +
+(k§ R} + k§R$)Es + (k5 RS + kS RS ) EZs

References

. BasisTa M., 1985, Constitutive equations and assessmenl of limil load for bodies

with initial anisotropy, (in Polish), IFTR Reports, 41, Warszawa

BoEHLER J.P., 1979, A simple derivation of representations for non-polynomial
conslitulive equations in some cases of anisotropy, ZAMM, 59, 157-167

BOEHLER J.P., ED., 1987, Applications of tensor functions in solid mechanics,
CISM Courses and Lectures, 292, Springer-Verlag, Wien-New York

CowiN S.C., 1986, Wolff’s law of trabecular architecture at remodeling equiltbrium,
Journal of Biomechanical Enginieering, 108, 83-88

Dasrowskl H., 1989, Introduction to the mechanics of composite materials, (in
Polish), Wydawnictwo Politechniki Wroclawskiej, Wroclaw

. HAYEs M., 1972, Connezions belween the moduli for anisotropic elastic materials,

Journal of Elasticity, 2, 2, 135-141

. HEarMoON R.F.S., 1961, An infroduction to applied anisotropic elasticity, Claren-

don Press, Oxford

. I-SHin Liu, 1982, On representations of anisotropic invariants, Int.J.Engng.Sci.,

20, 10, 1099-1109

. JEMIOLO S., 1991a, Nonlinear constitulive equations of elasticily and perfect pla-

sticity for reinforced isotropic matriz in plane stress, (in Polish), Prace Naukowe
Politechniki Warszawskiej, 113, Budownictwo, 89-105

JEMIoro S., 1991b, Constitutive equations for fibre-reinforced material, in Brit-
tle Matrix Composites, ed. A.M.Brand and I.H.Marshal, Elsevier Applied Science
Publishers, London and New York, 429-438

JEMIoto S., LEwiNskl P., KwiecCIiNsK1 M., WoJEwdéDzkl W., 1990, Tensor
and vector-valued constitutive models for nonlinear. analysis of reinforced concrete

struclures, in Inelastic Solids and Structures, Antoni Sawezuk Memorial Volume,
ed. M.Kleiber and J.A.Konig, Pineridge Press, Swansea, UK, 197-209

JEMioro S., KWIECINSKI M., 1991, On irreducible number of invariants and ge-
nerators in the constitutive relationships, Enging. Trans., 39, 2, 241-253

JEMIoro S., KwieCINskKl M., WoJEwWADzZKI W., 1990, Constitutive 3D model
for elastic and plastic behaviour of reinforced concrete, in Computer Aided Analysis
and Design of Councrete Structures, Pineridge Press, Swansea, UK, 2, 1017-1028



62

14.

15.

16.

17.

18.
18.

20.

21.

22.

23.

S.JEMioto, M.KWIECINSKI

JEMIOLo S., KWIECINSKI M., WoJEWODZKI W., Constitutive relationships for
elastic and plastic behaviour of isotropic matriz reinforced with three families of
fibres, Journal of Theoretical and Applied Mechanics, 3, 30, 587-605

KuBIK J., 1981, Mechanics of highly deformable media with anisotropic permcabi:
lity, (in Polish), IFTR Reports, Warszawa

LITEWKA A., 1985, Effective material constanis for orthotropically damaged elastic
solid, Arch.Mech., 37, 6, 631-642

LoxkHIN W.W., SEDov L.1., 1963, Nonlinear tensor functions of certain iensorial
arguments, (in Russian), Prikladnaya Matematika i Mekhanika, 27, 393-417

PENKALA T., 1977, Introduction to crystallography, (in Polish), PWN Warszawa

SADEGH A.M., CowiN S.C., Luo G.M., 1991, Inversions rclated to the siress-
strain-fabric relationship, Mechanics of Materials, 11, 323-335

SPENCER A.J.M., 1972, Deformations of fibre-reinforced materials, Clarendon
Press, Oxford

SPENCER A.J.M., ED., 1984, Continuum theory of the mechanics of fibre-reinforced
composites, CISM Courses and Lectures, 282, Springer-Verlag, Wien-New York

UKLEJEWSKI R., 1992, Bone as a twophase porous medium filled with fluid, (in
Polish), IFTR Reports,16, Warszawa

ZuaNGg J.M., RycHLEwsKI J., 1990, Structural temsors for anisotropic solids,
Arch.Mech., 42, 3, 267-277

Nieliniowy opis sprezystych materialéw wzmocnionych widknami

Streszczenie

W pracy szczegblowo przedyskutowano i uogélnions réwnania konstytutywne zapro-
ponowane w artykule Jemiolo 1 inni (1990). Rozpatrzono zwiazki fizyczne nieliniowej
sprezystosci kompozytu skladajacego si¢ z izotropowej matrycy zbrojonej trzema orto-
gonainymi krzywoliniowymi rodzinami wlékien o réznych wlasnosciach mechanicznych.
Sformulowano alternatywne réwnania w tzw. postaci kanonicznej. Przedyskutowano
przypadki lokalnej ortotropii, transwersalnej izotropii i izotropii. Zbrojenie w kazdym
przypadku opisano dodatnio okreslonym symetrycznym tensorem drugiego rzedu. Wypro-
wadzono odpowiednie réwnania konstytutywne przy dodatkowych zalozeniach: plaskiego
stanu naprezenia, plaskiego stanu odksztalcenia i antyplaskiego stanu naprezenia. Zapro-
ponowano dwa warianty uproszczonych zwiazkéw fizycznych liniowej sprezystosci. Pordw-
nano otrzymane réwnania z klasycznym prawem Hooke’a. Podano zaleznosci pozwalajace
wyznaczy¢ stale materialowe z klasycznych testéw dla materialu ortotropowego.
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