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The viscous incompressible fluid flow past a given airfoil is considered. The
vorticity field is noticed as random process. It is formed by the large number
of randomicaly walking and advecting small vortices. The vortices are created
on the boundary of the airfoil. The boundary integral equation determines
their intensity. The asymptotic consistency of velocity field to the potential
field allows to control the stability of process

1. Introduction

The problem of determination of a turbulent motion is one of the most difficult
task in fluid dynamics. The understanding of the essence of this motion has not
been complete so far ~ the way in which relatively well-ordered macro-structures of
such flow results from the micro-structural stochasticity is still unknown. Also the
mechanism of the appearance of almost periodical phenomena at moderate and,
possibly, very high Reynolds numbers has not yet been explained with satisfaction.

Classical formulations of the problem of viscous fluid flows are difficult to
solve and always need some severe simplifications and restrictions concerning the
geometry and flow parameters.

All these circumstances imply that there are no universal and computationally
cheap methods of solving turbulent flows. However, there is a large number of
methods based on various simplifying assumptions. Since Reynolds’s works, ave-
raging procedures have been introduced. Unfortunately, they need applications of
so called closure models. These models allow to solve some particular problems
(even quite complicated), but they are usually based on some empirical data.

When the Reynolds number is high, it is possible to decouple a flow field into
parts of strong and weak influence of viscosity. In this approach, known since the
times of Ludwig Prandtl, the flow field is divided into the boundary layer and the
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outer flow. Providing that the former is thin, many quite efficient methods have
been elaborated. ,

However, these methods usually fail when the separation of flow appears.
The boundary layer cannot be assumed to be thin and some feed-back with the
upstream flow must be taken into account. To deal with these problems, some
methods have been invented, for example the method proposed by Jacob (1969).
This method is, however, derived on the basis on some additional hypothesis which
are not in any way implied by the fundamental laws of fluid dynamics.

Probably, many of the difficulties mentioned above will be overcome as soon
as the computational power of the available computers is increased. According to
certain estimations (Jameson, 1983; Kutler, 1985) it would require devices with
computational efficiency several orders higher than such supercomputers as CRAY-
3. At that time, the discretization of Navier-Stokes equation could be done on a
fine grid that allows to calculate the fully turbulent structures of the flow. This
conjecture is based on the general belief that the Navier-Stokes equations are
the proper mathematical model for real-flow turbulence. Some examples of the
calculated flows in simple geometries seem to confirm it.

All the above mentioned problems account for more research. It seems that
certain simulation techniques have prove to be quite efficient in the numerical
analysis of flow with high Reynolds numbers. Such algorithms are relatively simple
and do not require very big computational power. One of these methods is based
on the numerical simulation of diffusive processes. The theory of such processes
was developed in the beginning of this century by Einstein and Smoluchowski (see
Gardiner, 1985). Its essence is to apply the random motion of particles to the
model on a microscopic level, while the macroscopic description of the model is
the diffusion equation. The characteristic feature of methods utilizing this idea is
the lack of wave effects. Therefore, methods based on "diffusive simulation” are
evidently not proper for hyperbolic problems. However, in most cases of stationary,
incompressible flows around bodies, wave effects can be neglected.

The two-dimensional motion of viscous liquids can be described by the Hel-
mholtz equation

Ow  Ow  Ow
3—t+u5;+v6_y—VAw (1.1)

which is in fact the equation of transport of the vorticity w in the velocity field
given by its cartesian components u and v. Now, following the idea of Chorin
(1973) and (1978), we introduce elementary "vorticity particles”, which movement
is composed of the advection determined by the velocity field and the random
motion according to the diffusion coefficient » (viscosity). On the microscopic
level "vorticity particles” are analogues of particles of diffunding substance. In the
macroscepic scale, vorticity w is a density of this substance. In other words, the
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motion of hypothetical particles, determined by the equations
dz = udt + dR; dy = vdt + dR, (1.2)

where dR; and dR, are infinitesimal random displacements (of proper kind),
constitutes the microscopic description of the phenomenon modeled in macroscale
by Eq (1.1). The existence of vortical particles influences the velocity field through
induction 3_u . ?—2 o @ _ a_u . w3
o0z = Oy 0z 0y )
When the number of vortical particles is high, one can expect the velocity field
obtained to be an approximation of the field resulting from the macroscopic de-
scription.

Paragraph a similar approach has being used by Spalart (1981). The num-
ber of vortical particles used was not very great (~ 1000) and strict boundary
conditions for the normal component of velocity was not incorporated. The impro-
vement of the latter requires the explicit form of the connection between normal
and tangential velocity components for potential flow. Thus, the Neumann boun-
dary problem should be solved. Suitable integral operators can be found explicitly
(Styczek, 1987) which allows to reduce the problem to boundary integral equa-
tion with the vorticity distribution on the contour as an unknown function. The
solution in the sense of local averages can be calculated numerically.

However, the set of vortical particles determined in that way is not stable (pro-
bably due to random effects). It seems that introducing a stabilizing component
is possible. If one assumes the asymptotic consistence of viscous and inviscid ve-
locity fields far away from the body, then an additional condition concerning the
total circulation of vortical particles in the flow and the circulation of the potential
body-connected vortices can be imposed. As a result, the global circulation of the
flow does not increase indefinitely with time. The comprehensive survey of vor-
tex methods (Sarpakaya, 1989) does not mention any methods of such circulation
control.

On the other hand, Bielocerkovskii (1988), in his book on vortex methods
for ideal fluid, introduced some control of these quantities. It can be viewed as
a natural way of generalizing the Kutta-Joukovsky condition. Obviously, this
requirement does not apply to viscous fluid flows. It turns out, however, that the
introduction of its analogue is necessary.

The aim of this paper is to describe the stochastic simulation in application to
the flow around an airfoil. The description contains the following elements:

o relations between stochastic modeling (It6 equation) and diffusion modeling
(Fokker-Planck equation),

e adaptation of the stochastic simulation to flow problems,
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e algorithm of to determine the velocity and vorticity fields.

2. Selected elements of the theory of stochastic processes

In this section, we present some useful results to be used later in this paper.
Details on these results can be found by Gardiner (1985).

2.1. The Wiener process

The stochastic process with the transition probability-density function

{ (z~ Io)z} (2.1)

p(zvt':tOvtO) 2(t _ tO)

t - to
is called the Wiener process denoted by W; or W(2).

It means the probability that the trajectory starting at (to, zo) will drop inside
the A C R at t > tpis given by

1 z - z0)?
P(4, t|z0,t0) = A/ me’“’{ (2(t _z:o)) oz

The above definition implies that the random variable W, — Wy has a Gaussian
(normal) distribution with average zo and variance (t — ty). Moreover, it can be
proved that W; is a Markovian process.. This means that the function p(z,t|zo,to)
and the initial probability distribution p(z¢,to) are sufficient to determine any
characteristic of the process. Another important feature of W; is the statistical
independence of the increments, which means that random variables
W(t) - W(to), W(t2) — W(t;) for to < t; <ty < ... are independent.

The trajectories of a Wiener process are continuous function of time. However,
since the following formula can be calculated

(o] 1 ) 2
P{W(t+h)-W(t)|/h >k} =2 e~frdg 291
{ } Z\/27rh
(k> 0)

t:hey are no-where differentiable.
The Wiener process plays significant role in the theory of diffusive Markovian
processes closely connected with the stocl'astic simulation of viscous flows. The



THE STOCHASTIC SIMULATION... 179

diffusive Markov process satisfies the following conditions (X(t) ~ n-dimensjonal
process)

/ p(z,to + At‘:o, to)dz =0

|z—zg|>e

1)

im —
At—0 At

uniformly with respect to z, zo, t; this condition assures the continuity of trajec-
tories almost certainly,

) 1
2) Ahtx_x.)o i / (zi — zoi)p(z,t0 + At|:co,to)d:c = Ai(zo,20) + o(¢)
Jz—zp|<e
) 1
3) Alix-lzo i / (zi — zoi)(z; — zoj)p(z,t0 + Atla:o,to)d:c =
lz—zg|<e

= Bij(%o,%0) + o(¢)

In 2) and 3) the uniférm convergence with respect to zo, € and ¢ is required. The
vector A is called the convective vector, while the matrix B is called the matrix
of diffusion.

2.2. Stochastic integration with respect to the Wiener process

The aim of the strict formulation of stochastic differential equation theory lead
to the determination of the stochastic integral with respect to the increments of
Wiener process.

The starting point is the following sum

n
Sn = 3 G(m)|[W(t) - W(tinn)] (2.2)
i=1
for o <t <t3 £ ... <tqmy < 8, Ty €E<Lytic1 >, where G(7) means integrated
processes.
If one assumes that the following limit § exists

Jim ({s - Zn: G [Wit) - W)}y = 0
1=1

then S is called stochastic integral of G. This construction has been so far iden-
tical to classical Riemann-Stieltjes integrals. It turns out, however, that the limit
S, if it exists, depends on the choice of the points ;. One of the possible ones,



180 J.BLAZEWICZ, A.STYCZEK

the choice made by Ité: 7; = t;_y leads to reasonable and fruitful mathematical
theory. In that way one obtains It6 integral given by the limit

in ({ [ 6naw) - 3 6t Wit - Wity =0
i 1=1

determined for the particular class of processes which satisfy the so called nonan-
tycypation condition: G(s) is independent on the W(ts)—W(t;) for t2 > t; > s.
The alternative choice is the definition given by Stratonovich

G(r) = 2 (G(t-1) + G(1))

The detailed analysis shows that the Stratonovich-integral is computationally si-
milar to the ordinary integral, while It6 integral is not. The classical example
yields '

— It6 integral

[ weawe) = 3 W) - wito) - (¢ - )]

— Stratonovich integral

/ Ww () = 5[ - wiw)]

2.3. Stochastic differential equation§

The following equation is called the It6 equation
dX(t) = a(t, X (t))dt + b(t, X (t))dW(t) (2.3)

Since the trajectories of a Wiener process are nondifferentiable, Eq (2.3) cannot be
integrated as an ordinary differential equations for trajectories parameterized by
random elements. The solution of (2.3) is defined in the integral sense as presented
in the following.

The solution of (2.3) satisfying the initial condition X (#p) = Xj is the stocha-
stic process which fulfills the integral equation of the form

t
X(0)= Xo+ [a(r, X()r + [ br, X ()W (r)
o to
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It is proven that when the conditions are satisfied
I(l(t, 22) - (l(t, y)l + Ib(tv .’B) - b(ta y)l < K1|3 - y'

and

la(t, z)|% + 1b(t, z))? < K2(1+ |z|?)

for certain K3, K2 > 0 then this initial value problem has a unique solution which
is the diffusive Markov process. One of the fundamental result of the theory of
such processes is the equation governing the time-space evolution of the transition
probability distribution

P(:c,t|:co,to) + %[A(z,t)p(z,t'zo,to)] = »

20 ) [B(Z t)p(:c tl.’co,to)]

called Fokker-Planck equation. Functions A and B are the coeflicients of convec-
tion and diffusion, respectively.

Thus there must be some connection between the functions a and b in Eq
(2.3) and A and B in Eq (2.4). Actually, it turn out that a(z,t) = A(z,t) and
B(z,t) = b*(z,t). It is the crucial result which allows to construct the Ité equation
corresponding to the diffusion of the vorticity in viscous flows.

To prove the above equalities some auxiliary formulas are necessary

1.

0 for N>0
N+2 *

/ G(nax(n)] , :
fG('r)d'r for N=0

where these integrals are defined by the limit
t
. N+2  OL N+2y2
Jn { [ o axm]™ - Sew-n[xea - xw-] }) =0
to o=
The formal meaning of this limit is that
2
[ax]"=dt  and  [dx] for  N>0

2. The formula for the change of variables (so called It formula)
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Let Y = »(X,,t), then the following

dY (1)

dvo( Xy t) = [a,v(x,, t) + a(Xs, t)00( X, 1) +
+ -;-lﬂ(X,, 0)0:20(Xe,1)]dt + b( X, )00( X, )W,

holds for a function v sufficiently regular and a process X satisfying the
equation

ng = a(X,, t)dt + b(Xg, t)de

3. Let {Yi(w)= fG,(w)dW,(w) I {f E{G?*}ds < o0 for t € R then
E{Yt} -0 t) 1

Now, let’s consider a function v of variables z and t with bounded support,
ie. v(z,t)=0if

(z,t) & [z1,22] X [t1,12] for some z,,z, and t,t1 >t

then one can construct another stochastic process due to the formula Y; = v(X4,1).
On the basis of the Ité formula, we have

&Y, = [atv(X,,t)+a(X,,t)3,v(X¢,t)+%bz(X,,t)('),,v(X,,t)]dt+

+ b(Xg, t)a:U(Xg, t)th
The equivalent integral form is

(X, t) — v( X0, t0) =

= /[atv(x‘ra )+ a(Xn )0 v( X, T)+ %bz(va T)azzv(x‘r; T)]dt + (2'5)

tot
+ [8Xe, )0 X,, )W,
to
Since supp v(z,t) is bounded then
1)  v(z,t) =0
2)  v(z,0)=0

3 JE{b(X,. 100X, 7)P}dr < oo
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The last condition together with 3. yields

t
E{ / b(Xr,7)0z0(X 7, 7)dW, } = 0
to
Taking the limit. ¢ — oo and calculating the expectation of both sides of {2.5) we

obtain
o0

/ E{[0:0(X+,7) + a( X7, 7)0c0( Xz, 7) + %b?(x,,r)a,,v(x,, )] }dt = 0
0
or

/dt/da: p(z,t xo,to)[a,v(X,,t) + a( Xy, 1)0.v( Xy, t) +
R

0
458X D0een(Xey )] = 0

Integration by parts results in

o0

/dt/d:cv(a:,t) [—3¢p(a:,t zo,t) — Ora(z, t)p(a:,t’a:o,to) +
o R

+ 50202, 0)p(, t]z0,10)] = 0

Components including the boundary values vanished because sup pv is bo-
unded. Since v is an arbitrary (but sufficiently regular) function with compact
support, the last equality implies that p(z,t|zg,ts) must satisfy the following
equation

3gp(a:, t

Zg, t()) + 3,a(:z, t)p(I, tl.‘l)o, to) =

= %arrbz(zv t)p(z,t

To, to)

i.e. the Fokker-Planck equation with coefficients a(z,t) and b%(z,t). This ends -
the proof.

The generalization to multidimensional case is easy. We define the n-
dimensional Wiener process

W = {W,(t), Wa(t),..., Wa(t)}

with transition probability given by

- Xo)(x = xo)T}

Pt t) = [2r(t = )] F exp{ - XTI~
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The set of It6 equations
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has the form

dX, = A(t,X¢)dt + B(t, X;)dW,

while the corresponding Fokker-Planck equation is the following

7] LA,
=p(z,t|zo,to) + ) m—Ai(t,2)p(2, |20, %0) =
ot | =1 Oz; I

n 62
W(BBT)ijP(x,t|xo,to)
i0T;

3. The stochastic simulation of the motion of incompressible viscous

J.1.

fluids

The problem of a low around a contour

The two-dimensional motion of incompressible viscous fluid around a given,
fixed contour is described by the set consisting of the continuity equation and the

Navier-Stokes equations

ou, o0
0z ' Oy

du Ju ou _ 0 /p
E+u&-+v%——'a—z(;)+ué‘u
ov ov ov 0 (p
m'l'ua—z'l"va—y-— ay(p)-l—l/Av

together with the following boundary conditions, imposed on the contour

V| =0

w

an asymptotic condition describing the motion at infinity

lim V=V,

|r|—o0

(3.1)

(3:2)

(3.3)

and an initial condition. In addition, uniformity of the pressure field at infinity

should be postulated.

The velocity field can be divided into a potential V,,, and a vorticity - induced

component V.. Thus

V= Vpo! + Vcir

(3.4)
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while the vorticity is defined as follows

(9‘0 au _ 31)‘,,',- 6“(:1'1' (3.5)

The Navier-Stokes equations can be transformed into the Helmholtz equation
for a vorticity field

Ow 8

5" o

which is in the form of the Fokker-Planck equation.
Now the stream function 4 can be introduced

__ oy oy
ucnr—a_y vctr'——a"z"

(ww) + -(,%(vw) = vAw (3.6)

Ap = ~w (3.7)

Providing that the function w vanishes at infinity, the following asymptotic for-
mula can be obtained

o 1 __TIs
P _—2—rlnr//w(3)da:3dy3+..._ 21rlnr+...

o0

which comes from the formal inversion of the Laplace operator. As a result, the
induced velocity field is asymptotically represented in the following way

I,y
Ueir| gy = " ya t

I, z
Veir| = Zx 3 T

where

r,= //wda:_dy = //krotdedy = dea :

Tt is very convenient to use complex notations in presenting the potential ve-
locity. Let’s denote by V,(2), (z = = + iy) the complex velocity corresponding to
V pot, which is an analytical function in the flow domain. Then, using Laurent’s
expansion, we have :

—iri t
Q 1__+cons _

Vi = Vio + oz 2 + ...
where
Vioo — complex velocity at infinity,
Q - total flux of sources located inside a contour,
r - circulation of the contour - connected vortex.

We represent Vo as a sum of the following components
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Vp - the velocity of the flow of an ideal fluid past the contour which
is equal to Vo, at infinity
Vr - the velocity field one to the potential vortex, V' vanishes at
infinity and V .- n = 0 on the contour
V4 - auxiliary, irrotational velocity field vanishing at infinity.
Thus
Vpot =Vp+ VI" + VA (38)

and the total velocity field is in the form
V=Vp+Vr+Va+Vs (3.9)

If one calculates the circulation I of (3.9) along the closed line containing the
contour and infinitely distant from it, then

'=Iy+TI.+ 1, . (3.10)
where .

I, - circulation of a contour-connected vortex which is selected due

to the Kutta-Joukovsky condition at the trailing edge (in the

case when there is no trailing edge this condition is imposed at

the rear point with the maximal curvature)
I, - circulation of the purely vortical potential flow
I, - total vorticity flux in the flow domain

n://wmy' 3 (3.11)

The velocity field Vp is a good approximation of the real flow outside the
boundary layer and the wake behind the body. This observation is in fact the asis
of the Prandtl scheme of a flow with a boundary layer. According to this scheme,
when the Reynolds number is high, the fluid motion outside the boundary layer
and outside the wake is close to the potential motion. Thus, it seems that the
asymptotic expression for the velocity in viscous flows should have the form (r -
very large)

(3.12)
Iz
i

Assuming that at large distances from the body, the velocity field can be writ-
ten as follows '
V=ilen+U'
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and, assuming that U’ is determined by Oseen’s approximation, we can find the
rate of decay of U’. The vanishing of U’ instifies the hypothesis that higher order
terms of the expansion (3.12) can be neglected.

For three-dimensional motion, this term diminishes very fast as r — oo. For
two-dimensional motion, the convergence of U’ — 0 is weaker. On the symmetry
line of the wake it is determined by

1
V- Ul = O(z-)
Beyond this line the convergence is very fast, which is reducted from Oseen’s
equation
v’ _ V32U’_

9z 0y?
which fundamental solution is
1 Uso?
7 [» <]
U % exp ( —)
Thus the wake is symmetric and vanishes very fast as soon as the distance from

its symmetry line increases.
We introduce an additional hypothesis

o The asymptotic circulation of the velocity fields in a two-dimensional viscous
flow past a given contour is identical to the one determined by the Kutta-
Joukovsky condition for ideal flow.

In terms of the notation introduced previously we have

I+ //wdzdy =0 ) (3.13)

It can be added here, that in flows around three-dimensional bodies there is no
ambiguity connected with the circulation mentioned above. On the other hand,
this andiguity is typical for elliptic problems stated in multi-connected domains.

3.2. The Vortex Blobs method

We are going to solve the Helmholtz equation (3.6) by constructing the families
of stochastic processes satisfying the following It equations

dz = udt + V2wdX dy = vdt + V2vdY )
(3.14

zl =Zp 3/| Yo

t=0 -
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with g, yo being arbitrary point inside the fixed domain of the flow, and satisfying
the following second set of 1t6 equations

dz = udt + V2udX dy = vdt + V2vdY (3.15)

t=71
with =z, yuw being arbitrary points on the contour of the airfoil for every r €
[0,t]. In other words, the first family of the stochastic processes concerns the
evolution of an initial state, while the second one describes the effects arising on
the boundary. If one assumes that the infinitesimal circulation dI’ can be related
to each processes of the families, the following formula can be obtained

w(t,z,y) = | [ p(z,9,t|zo, Y0, 0)dI (2o, y0) +
// l v 0 i (3.16)

+ '/ot fp(z’ Y, tlz(sj’ y(._s), T)‘a—lg‘:_,—r)'dsdT

The first integration (carried on the whole flow domain) assumes that the initial
condition is determined by dI" = wo(:c y)da:dy “The second integral introduces the
boundary distribution of vorticity d (t z,y)ds connected with an airfoil.
This distribution should have a lmear densnty

2ty ) = Sl z(s),4(s)) (317)

so that the velocity on the boundary resulting from the total vorticity field fulfills
(3.2). .
The expression for the boundary component

wp(z,9,1) —/ fP(Z, y,tlz(s),y(s),,-)ar(s T)

can be viewed as a generalization of Duhamel’s formula. Indeed, due to the uni-
formity of the function p

P(% Y, tlzo, Yo, T) =n (.’t, ¥,t— 1,20, yO)

we have
op _ _Op
ot~ or

when the derivatives exist.
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Providing that functions p and I are sufficiently regular, one can write

t
Wy = f/a%{p(z,y,tlz(s),y(s),r)P(s,r)}drds—
0

—fjg—gl‘(s,r)drds

lim p(z,y, t|z’,y’, 1) = §(z,y,2',¥)
T
and the following formula can be derived

wp = §6a3,2()UNT(s, s = f 5(z,,8,2(6), 3(5), 0 (5,0)ds +

t
+ b/%]{P(z,y,tlz(s),y(_.s),r)l‘(s,-,-)dsdr

Let’s introduce discrete equivalents for the stochastic families constructed
above. If at an initial moment there is no vorticity in the domain, only the second
family is sufficient

dz;; = u(t, 2, ¥%;)dt + V2vdY

dyi; = (1, i j, %i,5)dt + V2vdY (3.18)
Tiy t=r, = Ty y'.’j|¢=1-_’- = Ywi

The processes z;j, y;,; start on the boundary at T;. )

The starting points for the process indexed by (¢,j) are z.4, ¥.: independent
of the initial time. To simplify the calculations they are fixed. For each process,
a fixed and constant circulation is selected and is obtained from the discretization
of the distribution of vorticity on the boundary

L= / w(rj, z(8), y(s))ds
AS;

The question is: how do we determine I3; or equivalently to choose the
vorticity distribution? This problem can be solved as follows: the vortical velocity
field is divided into the field induced by the set of vortices previously created and
existing in the flow and the field induces by new vortices currently created on the
boundary. We denote these fields by Vo and Vyy, respectively. Thus

V=Vp4+Vs+Vr+Vw+Vo ’ (3.19)
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On the boundary of an airfoil, V vanishes. Taking the tangent and normal
components for every point on the boundary we can write

VE+Vi+VE+V +Vs =0
ptVat+r 0 (3.20)

0+VI+0+VH+Vr=0

Let’s notice that V§, V¢ and V§ are known. The first one describes the boundary
velocity of the inviscid fluid flow, while the others result from the known vorticity
distribution in.the flow domain. This distribution is determined from the location
and circulation of vortices created previously. The function V} is determined
from the total circulation of all vortices. Furthermore V} and V} are boundary
values of the potential velocity field. This field, vanishing at infinity, is completely
determined by the normal component V. Thus

Vi=LV} , (3.21)

where L is a linear integral operator with Cauchy-type kernel which will be

calculated later.
The use of (3.21) and (3.20) yields the following integral equation

VE+VE+VE-LVP + Vi =LV =0 (3.22)

with unknown vorticity on the boundary. Chorin (1967) replaced this distribution
by a function which is constant on small segments of the contour. He then con-
nected the corresponding circulation to very small circular vortices in comparison
with the flow domain dimensions, which he called ”vortex blobs”. These blobs
move with accordance to the Ité equations (3.18).

The blobs are created in the vicinity of boundaries, so that w # 0 on the
contour line (see Fig.1). The way the blobs are created, determinated by (3.22),
assures that the total tangential velocity at any point on the contour vanishes. At
the same time, the potential velocity V4 satisfies the second equation of (3.20);
thus the total normal velocity also vanishes. (In the original work of Chorin, and
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also from other authors, condition (3.22) assuring the strict fulfilling of (3.20) does
not exist.)

It should be added that besides circular blobs, in some work (Chorin, 1978),
linear vortical structure (vortex sheet) were used. In other words, the vorticity field
in the vicinity of the boundary was approximated by a constant function on straight
segments parallel to the local tangential direction. However, such modification is
not essential. Accordingly to diffusive interpretation, the vortex sheets should be
small compared to the scale of dimensions of the velocity field, while their shape
and internal structure is not important. Moreover the self-induction of a radially
symmetric vortex does not change its shape which is not true in case of linear
structure. Finally, the induction field of a circular vortex is particularly simple.

Let’s assume that the vorticity field connected to a simple blob is radially
symmetric and equal to w(r). Then

1d d¢dr _
;E;T dr = w(r) (3.23)
The components of the velocity field are easy to calculate

_ e _ _Ordy__y ]
we,y)= - = - = E o/ w(€)ede

(3.24)

OYeir _ Ordy _z f
Lo o s ;;O/w(f)fds

For r 2 o, where o is the radius of the given blob we obtain

Ly v= L2
2 12 T 27 r2
‘The circulation I is determined by the integral

v(z, y) =-

(3.25)

2r o o

r= [ [w(epdede = 2r [w(epeds (3.26)
00 (1]

Next, for 7 < o the velocity depends on the vorticity distribution w(r). If
w(r) = const = wp = L7 then

_ r
2r02Y V= Zrot”
The expressions (3.25) and (3.27) yield the induction formula. Let’s assume that
the center of a blob is located at (zo,byo). Then

—21%1%53& for r?<o?
“QI%L-;—ZEQ for r?> g2

u=— (3.27)

w(z,y) =
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I" -
Le=p <

v(z,y) = Fe-z (3.28)
I

12 = (2 - 20)’ + (¥ - %)?

In should be pointed out that (3.28) is only one of many possible choices (see
Chorin, 1973; Spalart and Leonard, 1981). Other distributions of vorticity inside
a blob can be admitted, including the case when supp w(r) is unbounded, for
example w ~ exp(—pAr?) with S being a constant.

Actually the vorticity field is approximated by the combination of local di-
stributions resulting from replacing the continuous family of stochastic processes
with a finite family. It seems that the approximation of vorticity with constant
functions of bounded support covering the whole domain is appropriate. The ap-
proximation erroy (in the sense of Lp norm) diminishes in proportion with the
diameter of the largest blob. Also, the induction formula is particularly simple.

We now apply the above concepts to the flowfield around an airfoil. First,
assume that the contour of an airfoil is divided into N arcs located between nodes
such that

0 = 80, 31,82, ..., SNy = periphery

where s denotes the arc — length coordinates. Next, one vortex blob is located
above the center of the cord of each arc. The tangential and normal components
of the induced velocity by the blob located near (3x, sk+1) at the contour point s
can be expressed as .

Viv(s,k) = I\ T(s,k) Viv(s,k) = TN (s, k)

The functions T(s,k) and N(s,k) are completely determined by the geometry of
the contour.

In application to all the vortex blobs, the induced velocity at the contour points
is obtained by taking the sum or all the influences and thus yields

N N
Viv(s) = > IiT(s,k) Vi(s) =3 TuN(s,k) (3.29)
k=1 k=1
Then, by substitution in (3.22)

N
V() + VH(s) + V§(s) = LV () = 3 Te{ LN (s, k) - T(s,k)}
k=1
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The component Vj} depends on the sum of all the vortex blobs existing in the
flow field, including these being created on the boundary. Thus

N .
Vi(s) = Vf(S){— > I.- Fo} (3.30)
k=1
where
I — total circulation of the blobs previously created,
V#(s) - tangential velocity induced by the unitary, airfoil — connec-
ted vortex.

As a resultwe have the equation

VE(s) + Vo(s) — LVG(s) — ToVi(s) = (3:31)

N
= Y D{LN (s, k) = T(s, k) + Vi(s)}
k=1

We require that (3.31) is satisfied in the mean sense on each arc — segment s;_;,
sj. This averaging is a consequence of the discretization of a continuous vorticity
distribution. After introducing (3.29) one is not able to fulfill (3.31) "every-where”.
Hence, as a solution of (3.31) in the mean sense, we regard such set of circulations
n, I, ..., I'ny, which satisfies the equation

m; .
/ {Vf;(s) + Vg (s) — LV§(s) — I‘on'(s)}ds =
Mjy.) 3
(3.32)
N m; m; my
=3y I‘k{ / LN(s,k)ds— / T(s,k)ds + / Vl'(s)ds}
kx1 mj_ mjey mj-1
i=12,..,N
It can be written shortly
RI'=8 (3.33)

where R is a fixed matrix. The right — hand side vector B depends on the current
values of V{, VJ* and the total value of circulation of all previously ereated blobs.
The determination of V{§ and V' is possible ~ the location and circulation. of each
"old” blob are known. Also, calculating the integrals from V§ and V{ is easy.
However, to use equation (3.32) one must determine explicitly the operator L.
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3.3. Operator £

Let F.(¢) be an analytic function of the variable ( = £ + in defined in the
exterior of the unit circle. Let |<Ilim F.(¢) = 0 and F.({) has a limit where
~00

¢ — exp(if) and denoted by F.(8) = a(f) + ib(6).

&

Fig. 2.

On the basis of Cauchy theorem F.({) can be expressed as the following
integral
1 F.(r)dr
F'(C) - -2? f T — (
where the contour of integration is presented on Fig.2. Since F. vanishes for
[{] = oo the following estimation is valid

|/ F(’)d’|<|r()4|f | =20l Rl = 0

outher
line

Hence
2 .
F.(r)dr 1 [ F.(7)e¥dy
RO= 2,“0/ e (3.54)

Next, for ¢ — (o € {contour of integration} Plemeliy’s formula yields

FulGo) = 3FalGo) + 5V P _“_)C‘f)
or
F.(r)dr

F.(¢) = VP f (3.35)

"'"Co
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where the integral is taken in the sense of principal values. For (o = exp(if) and
after elimination of superfluous elements of the integration path we obtain

2x
. -1 . . 0 ¢
(0) +15(0) = S2VP / [a() + ib(p)[1 +icot(3 ~ £)]do
0
or after detaching the real and imaginary parts

2= 27
1 1 9
o 0

2z 2
1 1 0
b(6) = -E;/b(‘p)d‘p_ Er-VP/a(w) cot(-é- - %)&p
0 0

Integration eliminates constants (singular integrals with respect to ¢ are integrable
functions of the variable §). As a result we have Hilbert transformations

2
1 9
a(0) = 5-VP O/ bp)cot(5 - £)dp
(3.36)

2
1 o
b(6) = ~5-VP / a(p)cot(3 - £)dy
[+]

Let’s assume that the normal component of the velocity field, which is potential
outside the unit circle and vanishes at infinity is given on the boundary of this
circle. The aim is to determine the velocity outside and on the boundary.

The potential velocity field is determined by the equations

u+v,=0 ve—-uy =10
Thus V(¢) = u — iv is an analytic function of the variable (. For |{| > 1, and
considering that V;(oo) = 0, we have the following Laurent expansion
_ Q-1 B
Vi({) = - e

@ denotes the flux flowing through the contour of the circle while I is the circula-
tion of the circle — connected vortex. Now we introduce another analytic function

of ¢

+ ...

F({) = ¢Vx(() (3.37)

On the boundary we have

F(8) = &'(u — iv) = V() - iVj(0) (3.38)
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The function F(¢) vanishes at infinity only when @ — il = 0, i.e. when for the
parameters

2% 27
Q= / V,(6)d6 Lot = / Vi(8)d8
) 0
the following equalities arise: @ = 0 and Ipo = 0. Otherwise we can write

(v (6) - %) ~i(Va(8) - %1) = F.() (3.39)

where F,(8) is a boundary value of F.({), which is analytic outside the circle
and vanishes at infinity. Using Hilbert transformation (with consideration that
the transformation of constants is equal to zero) we have

2x
1 [} r
Ve(8) = gvpfvr(so) Cot(i - g)dso + 2L7‘:‘
0 .
(3.40)

2x
1
W(0) = ~5=V P [Valg)eot(3 - ) do+
o

For V,() given, the function Vp(8) is determined up to a constant. This constant
is defined by the arbitrary circulation Ipe. In particular I, can be zero.

. Thus for a given V,(8) we determine Vj(8), or, which is the same, the boundary
value of F.. Next, using (3.34), we calculate F.({) and finally, on the basis of
(3.37), we calculate the complex velocity V;(¢).

Let’s now assume, that the contour of an airfoil is given.by the boundary values
of z.(f) where z = z(() is an analytic (conformal) transformation of the exterior
of the unit circle into the exterior of the airfoil. The function 2z({) satisfies the
condition J

z

dC

The derivative dz/d( is different from zero for |{| > 1, while on the boundary of
the circle it vanishes for ( = 1

=1

[{]-—o0

dz
== =0
dC (=1

The image of this point is the trailing edge of the airfoil. The potential velocity
field around the airfoil can be obtained from the velocity field around the circle by
using the following transformation (Prosnak, 1970)

Vi) = VO(E)”
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Let’s assume that the normal component of the potential velocity field, which is
noncirculative and vanishes at infinity, is given on the airfoil. We want to find the
velocity on the contour and on the exterior domain of the.

Fig. 3.

The following formulas hold (see Fig.3)

v' = ucosf + vsin B

v" = —usin B+ vcosfB

vt —iv" = (u—iv)e

Moreover
; dz ¢ . .
i _ %~ ok S, Hj
M P a9 = ¢
V; —iVy = Vi(()e?
Simple calculations allow to determine V, — iV
Ve =iV = (Ve ~iVy)el? = (u —- iv)z—zeio =
. sdz | d
= (vt - w")e"‘ﬁd—ze‘o = (vt - iv")(—id—;) = —v"j—; - iv‘-j—;
Hence d d
3 3
Vo= -V"— =Vt= .
o=V Vo=v'e (341)

9
Having V™(s) and considering that s = s(8) = [|z(¢)|dp we find V,(9).
0

Next, with use of (3.40), we determine Vj(6). Finally, after the calculation of
V:((), we find V;(2).
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All formulas derived here allow to define the operator £. According to (3.21)
we can write
=Lv"

80

vt(o)=-($ E‘V / yn(p) 23 (“’) (2 #)dp (3.42)

The angle @ is function of the arc - length coordinates 6 = 6(s).
The kernel of £ has a Cauchy-type singularity. Thus the boundary equation

(3.22) is substantially singular.
Now we can employ the transformation connected with the averaging on the

segments of the airfoil (see [3.22]). Using (3.41) and (3.40) for I"' = 0 we obtain

8! 2] 'Y
[ visas= | VH(s(6)) 50 = [ vitorae =

s1=1 01'-1 §s-1

/{2 VP/V((p)cot ———)d<p}d0

8s=1

and next with accordance to the integral in the V.P. sense

0—c¢
V'(s)d—— li Ve( )ct——-—d+
J o=, ]l vt
f—e’
+/V(<p)cot ———) ]}dO-— / }1_.0 2—/V(<p)ln sm ;‘P|d<p—
e v (3.43)

2x
€ d . 0-0 €
-2V, - — a - - =
2 (0)1n2+2d00+/ V((p)ln‘sm —E|di + 2V,(6)1n £}t

Vid
=;r1.[/v,(¢)h\|sin S’|d w_, /V( )n| sm,,-x de
(V]

The sign of V.P. disappeared since the kernel of the loga.nthm is weakly singular
and the considered is singular in ordinary sense. The above formula can also be
written as

P ] periphery sin 8( )=
/ = —; / V"(s)ln i__ﬂ‘z‘_ ds (3.44)
o=l 0 )

where (3.41) and the fact that ¢ = ¢(s) were taken into consideration.
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4. The algorithm of the numerical simulation

The simulated motion is a free-stream flow around a fixed airfoil. The locations
and radii of the blobs created on the boundary are also fixed. Thus the matrix
R in (3.32) doesn’t change during the simulation process. This allows to invert it
only once and to calculate the new circulations from the formula

T'=R"'B (4.1)

Starting from the moment of their creation, blobs with such circulations remain
in the flow field and move according to It6 equations (3.18).

The right-hand side B depends on V) induced on the boundary by all blobs
previously created and still remaining within the flow domain. Thus B is not
fixed and should be evaluated in each two-step of the simulation. The It6 equation
governing the blobs’ movement have the following form

dz; = u(t,zi,y;)dt + vV2vdX
(4.2)

dy; = v(t, zi, ¥i)dt + V2udY

The components of the advective velocity u« and v are determined by the
velocity field V at (z;,¥;), where

V=Vp+Vr+V4s+Var (4.3)

Vp and Vi are potential velocity fields and can be found easily using classical
methods ([} is taken according to the hypothesis stated in (3.13)). V., is the
velocity induced by all blobs within the flow domain and can be calculated with
the use of (3.28). V4 is the additional potential field. Its hormal component on
the boundary is known from(3.20). It is sufficient to find its tangential component
and then to reconstruct the field in any point of the flow domain. dX and dY
are stochastic differentials of two independent Wiener processes.

The calculated velocity V allows to determine the time evolution of the vor-
ticity field due to the It equations. It also yxe]ds the instant velocity field (which
is unsteady).

Due to the conditions imposed on the boundary, the normal component of V
vanishes on it. Thus, none of the blobs can penetrate the airfoil during its purely
advectional motion. However, it is possible due to the existence of a random motion
that simulates diffusion. Thee blobs that difuse inside the airfoil are eliminated.
It is admissible since the boundary condition is stated for the velocity, not for the
vorticity. If the disappearanig of any blob violates the boundary condition, then
in the beginning' of the next time-step, corresponding cn'cula.txon will be created
in the next generahon of blobs on the boundary.
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time

Fig. 4. The large vortex structure shedding on the NACA 0012 airfoil. The
instantaneous locations of the vortex blobs centers
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Fig. 5. The large vortex structure shedding on-the NACA 0012 airfoil. Velocity field
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Fig. 6. The locations of vortex blobs and the velocity field at later time
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In summary the simulation of the fluid motion starting from some initial state
(it can be even purely potential flow) consists of two cyclical processes. At the first
stage the circulations of the new generation of blobs (created near the boundary)
are found. This mean that the velocity field satisfies the condition (3.2): VI = 0.
Having u(t,zi,1:) and o(t,z;,9:) and the set of independent displaceme;l‘;;s dX
and dY obtained from the random number generator with a A/(0,v/At) distri-
bution, we determine increments Az; and Ay;. After elimination of the blobs
penetrating the contour and, possibly, the blobs that are far from it we obtain the
new vorticity and velocity fields. The later violates the boundary condition, so a
new set of boundary blobs (modeling the boundary distribution of the vorticity)
should be found. This ends the full cycle of numerical simulation in one time-step.

The method described in this paper has been applied to computing the unste-
ady flow past an airfoil. The computations showed to be quite successful, produ-
cing patterns of the velocity field with a great resemblance, at least qualitatively,
to those observed in a real flow. The sample results obtained for a given Reynolds
number and an arbitrary angle of incidence are presented in Fig.4 + 6. The details
of the numerical implementation of the random-vortex algorithm will be presented
in the next part of the paper.

This paper was partially supported by the KBN GRANT no. 333149203 and the MEN
-”SMALL GRANT”
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Symulacja stochastyczna oplywu profilu ptynem lepkim

Streszczenie

Rozwaza si¢ oplyw profilu plynem lepkim’niescisliwym. Pole wirowodci okresla sig
w sposéb losowy. Tworzy go zbiér poruszajgcych si¢ ruchem losowym i unoszonych nie-
wielkich wir6w. Wiry te tworza sig na brzegu oplywanego profilu. Rozklad wirowosci
okreslajacy ich intensywnos¢ jest rozwiazaniem brzegowego réwnania calkowego. Waru-
nek asymptotycznej zgodnosci pola prqdaicoscx z polem potencjalnym pozwala stabilizowad
proces.
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