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INTERNAL POINT TORQUE IN A TWO-PHASE MATERIAL.
INTERFACE CRACK AND INCLUSION PROBLEMS

BoGDAN ROGOWSKI
Technical University of Léds

The Green’s function for two perfectly-bonded elastic, orthotropic, homoge-
neous half spaces with different elastic constants under concentrated internal
torque on the interface parallel to the two-phase boundary is obtained by
means of the Hankel transform.

Use is made of the obtained solution to the analysis of the interface crack and
inclusion problems. The dual-integral equations of both problems are solved
exactly to generate results of engineering interest: the stress intensity factor
of Mode III at the crack tip and the rotation of a rigid disk inclusion.
Numerical calculations are carried out and presented graphically to illustrate
results of engineering interest.

1. Introduction

The aim of this paper is to show a fundamental, exact solution to axisymme-
tric torsional problems of dissimilar elastic, orthotropic solids. The fundamental
solution may be called the Green’s function for axisymmetric body force problem
of dissimilar elastic solids. The application of obtained solution to the interface
crack and inclusion problems is presented.

Various numerical methods of solution were recently developed for engineering
problems. Most of these methods, such as boundary element methods, charge
simulation methods, eigenstrain methods, body force methods and so on, apply
fundamental solutions to formulate integral equations for a problem. In order to
obtain more accurate results efficiently, Green’s functions are used by many inve-
stigators, because the Green’s functions completely satisfy ‘part of the boundary
conditions of the problem. _

Interfaces between materials are ubiquitous both in nature and in technological
applications. This, coupled with the fact that the overall performance of a given
component frequently is governed by the behaviour of such interfaces, has caused
researchers to devote a great deal of attention to the study of interface failure
mechanics.
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‘Solutions to specific problems of cracks lying along bimaterial interfaces of
isotropic media have been given by Cherepanov (1962), England (1965), Erdogan
(1965), Rice and Sih (1965). More recently, Ting (1986) has presented a framework
of determining the degree of singularity and the nature of the asymptotic fields
for the general interfacial crack between two elastic anisotropic materials. Park
and Earmme (1986), Hutchinson, Mear, and Rice (1987), and Suo and Hutchinson
(1988) have obtained solutions for several elastic interfacial crack problems, and
Rice (1988) has reexamined elastic fracture mechanics concepts for interface cracks.
The linear elasticity solution to the displacement jumps across crack faces problem
predicts that overlapping of crack faces always occurs. To redress this physically
objectionable behaviour, investigators have proposed various models and appro-
aches. Comninou (1977a,b) and Comninou and Schmueser (1978) reformulated
the linear elasticity boundary value problem to allow a zone of contact to develop
at the crack tip. Achenbach et al. (1979) introduced a Dugdale-Barenblatt strip
yield zone at the crack tip which eliminated crack face OVerlappmg as well as stress
singularities altogether.

In the theory of micromechanics of materials presented by Mura (1982), when
an eigenstrain was prescribed in a finite region in a homogeneous material, the
finite region was called an inclusion. The elastic moduli of the inclusion are assu-
med to be the same as the matrix. If the finite region has elastic moduli different
from those of the matrix, the region is called an inhomogeneity.

Defects raise stress concentrations. The theory of inclusions has been succes-
sfully applied to composite materials including fiber, precipitate, and martensite
problems. A review of inclusion problems has been given by Mura (1982) and
(1988). However, many results are not expressed in explicit form but are in the
form of numerical solutions.

In this paper exact solutions are presented in closed forms for the stress inten-
sity factor of Mode III around the cragk contour and for relationship among the
couple and rotation of an inclusion.

2. ‘Basic equations

In this paper we use cylindrical coordinates and denote them by (r,4,z).
The stress-displacement relations for axisymmetric torsion problem are

v v
Ors = G (_ - _)
or r
; (2.1)
P Oy = Gt Ov

9z
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where 0,9 and oy, are the stress components, v is the displacement, G, and G,

denote the shear moduli of the material where the subscripts r, z correspond to

the directions chosen to coincide with the axes of materials orthotropy.
Substituting Eqs (2.1) into the equation of equilibrium

80,9 Oogy 2
_81‘ + oz + "'_'ard =0 (2'2)
one obtains 52 18 L o2
v v v v
mtier = p2oz? (2:3)
where u? represents the ratio of elastic constants
G
2 r
e 24
K= (2.4)

and p = 1 corresponds to an isotropic elastic solid.

3. The problem formulation

Two perfectly-bonded half-spaces 1 and 2: 0 < r < o0, (~1)'2 <0 (i = 1,2)
are loaded by means of a concentrated point torque, which acts on the internal
surface z=2'2>0.

The continuity and discontinuity conditions are

v!(r,0) - v*}(r,0)=0

ols(r,0) - 025(r,0) =0

3.1)
vl(r,2 +0) = v!(r,2 - 0) =0
. Té(r—a)
1 ol ' 0) = — 1o0{r—a)
a,o(r,z'+0) an’(r’z 0) 2-1__?6 2712
where §(r — a) is the Dirac delta function and o(r, z) = v¥(r, 2),
0:9(r,z) = 0l y(r,2) (i = 1,2).
4. Application of integral transform
We use the Hankel transform defined as follows
(>} .
v, z) = /v(r,z)rJ,(rf)dr (4.1)

0
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where £ is the Hankel parameter (7 — f)‘ and Jy(7€) is the Bessel function of the
first kind and order one. Applymg the foregoing transform to Eq (2.3) and Eqgs
(3.1) we obtain

N, . )
-7 KT = = < (4.2
922 B =0 _ 1=1,2 (4.2)
'_’1(61 0) - '-’2(61:0) =0 (43)
av! 2002
: /
G' 0z lz"o l Oz L—-o 4.4)
o€, 2 +0) ~ 7€, 7 = 0) =0 (4.5)
0! dv! T
1YY _mYv =X )
C: 0z le=z'40 ? 9z lz=21=0 4,6 (4.6)

with i = 1,2 referring to bodies 1 and 2, respectively.

Applying the transform (4.1) to Egs (2.1) we have

iy = —Gigv"
4.7)

. 0%
9z '
where the symbol ~ over the stress o, denotes the second-order Hankel transform
associated with J(r€) function.

The elastic constants and other quantities of body i are denoted by correspon-
ding superscripts 1 =1or ¢ = 2.

The solutions of Eq (4.2) which satisfy the regularity conditions at infinity are

U"l—G'

91(€, 2) = A(£)et#1* 4 B(£)etm* 027
(€, 2) = C(E)e™tm* 2> 2 (4.8)
92(€, z) = D(§)efH3* z2<0
The conditions (4.3) + (4.6) yield
—_ T =§uy 2’ _
A = g B(&) = rA(E) |
(4.9}
C(€) = (s +eXm7) A®f) D(£) = (1 + K)A(¢)
where : ,
e _ G (4.10)

1+, 92= Gim



POINT TORQUE IN A TWO-PHASE MATERIAL

109

Here g, represents the ratio of geometric mean of elastic constants of materials 2

and 1.
The corresponding transforms of displacement and stress are

1 — -£ ~-§z
v (6,2) - 8 Glﬂl (e = +Ke ,)

G4,(6,2) = -%f(ae"flx + K'e—fzz)

- = T (e —¢n
aro(f,z)———sw—f(e ! 4 ke ) 220
T 1
=2 ~§zy
76 2) = 47rG1p1 1 +g2e
—_ S J2 o€z
I(f’ ) 4”1 +g fe
~ T/‘2 g2 -£33
afo(f’ z) 41 1+ nge S 0
where

a=1 for z>7 and a=-1 for
72 = |z -7 z23=m(z+7)
73 = uyz — ysz (—1)‘2 <0

5. Determination of Green’s functions

The Hankel transform is its own inverse \

o(r,2) = [ 36 De(reg
0
Applying the integrals

[eenrerie = o3

0

[ et nreds = 22

° k

[eemnoou=1
W= %z

0

11’.2=.z,":+r2 k=1,2,3

(4.11)

z<?
(4.12)

(5.1)

(5.2)
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to invert Eq (4.11) give the original solutions

1 1
o 24 e
(r2) = 81rG1;1 (R:{ + KR‘%)

+ K

3T (z-z’ z-{-z’)

aéz(rv z) == 8T r R? Rg
3Tu 1 1
ols(r,2)=— swlrz(-k-?+nfg-) 220 .
5.3
v¥(r,2) = T 1 _r

4xGlui 1+ 92 RS
3T g2 7 -z

0‘32(’.72): El +92r Rg

where

=pl(z-2) + 1 . Ri=pi(z+2) 41 220

R? = (4,7 - paz)? + 72 z<0

In the special cases we observe the following significant results.
(i) Two-phase interface torque (z' = 0)

r _1 r
4xGlu, 1 + g, R}
3T, 1 rz

.. e —— ———————— ————
o9:(r,7) = 4x 1+ g\ R}

v‘(r,z) =

(5.5)

; 3Tu; 1 r? : )
(4 - — I =1z < =
o,4(r,2) I 1T P (-1)'2<0 i=1,2

R} = pl® + 1 g1 =g;"

(ii) Half-space with a free surface (g2 = 0)

T 1 1
1 o ——— — —
v (T,Z)— SWGL#IT(R:IS + Rg)

3T z-2 247
7ha(r,2) = =g B 1T )

; 3T 1 1
ore(ry2) = = 8:1 2(R5 +R,) 220

(5.6)
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(iii) Half-space with a rigidly fixed surface (g2 — o0)

T 1 1
1 - e - —
vin2)= axcgylr(ﬂg Rg)

T, z~2 z+7
ohu(r,2) = ——Ehr( T ) (5.7)
e o L
Green’s function for a homogeneous orthotropic elastic solid is obtained for g; =1

(x=0).
The isotropic counterpart of the solution is obtained for p; = 1.

6. Penny-shaped interface crack

Appropriate representations of the displacement vc and stress og,¢ for crac-
ked solid body can be given as

vh(r,2) = Gl')'._ /E(E) (-1’ “'e’Jl(Er)dE-i-v'(r z)

(6.1)
Thc(r,2) = = [ EB(E)lI M gy (er)de + oy (r,2)
0

(-1)'z2<0

with ¢ = 1,2 referring to bodies 1 and 2, respectively, and known displacement v’
and stress o ; they are found from the uncracked solutions (5.3). The function
E(§) remains to be determined from the boundary condition associated with the
two-phase interface z = 0, where the penny-shaped crack of radius a exists. The
integral representations (6.1) are obtained by means of a well-known technique of
a Hankel transform and by superposition, Sneddon and Lowengrub (1969).

Considering perfect bonding, matching of the displacement and the traction at
the interface requires (Fig.1)

v&(r,0) = v&(r,0) r Zl a (6.2)

U:gc(r, 0) = Ufgc(r, 0) r>a (6-3)
while over the crack domain

0lsc(r,0)=0 r<a i=1,2 (6.4)
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Egs (6.1) and (5.3) show now that the boundary condition (6.3) is identically
satisfied and that the boundary conditions (6.2) and (6.4) will be satisfied if

[ E@xnterde =0 r2a (65)
0
/ EE(E)J1(Er)dE = (r) r<a (6.6)
0

where
r(r)= 39 pmzr 6.7)

T 4r 1+ gg (32?4 r2)52

is known traction for z = 0 corresponding to the concentrated point torque on
the plane z=2'>0and r=0.

The dual integral equations (6.5), (6.6) are converted to the Abel integral
equation by employing the following integral representation for E(&)

E(§) = €' [ 229(2)Jsofat)de (68)

0

In this representation, the auxiliary function (z) is assumed to be continuous
over the interval [0, a] and is required to satisfy the condition

; 1/2 —
Jlim E ¢(:)] =0 : (6.9)
Using the Weber-Schaftheitlin integral,"Watson (1966)

0 ‘ 0<z<r

/ €/20,(€) Jy(r€)dE = (6.10)
0

2 T
\/;m z>r
it is shown that the representation (6.8) of E(£) identically satisfies Eq (6.5).
Using trigonometric representation of the Bessel function .J3/5(z€), integrating

Eq (6.8) by parts and then substituting the resulting expression into Eq (6.6)
leads to the following Abel integral equation

F dlz(z T .
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Substituting the expression for 7(r) and applying Abel’s solution method to Eq
(6.11) results in the solution for (z)

¥(z) = \/71 r2r(r) () 4. \/7T 92 z?
Vzz-r2 21 14 g2 (22 + piz'?)?

Z>0 z € (0,4

(6.12)

The crack shape after deformation is obtained from the following expression

() %)

v5(r,0) = vo(r) + \/, = r/z\/IZ — dr =
_T__ r

" 47 Glu + Gl (2 + p32)

[+ 2(-py-1Geba

_ r2 4+ pu2z’? (r2 + u?2'?)(a2? - r2)
(eort | s O ETNE
a* + piz a‘ 4+ pyz

r<a 1=1,2
The jump of the displacement wvc(r,0) on the crack surface z = 0, r < a is

expressed by

T 1 r
272 Gluy (r2 + p222)3/2

v&(r,0) ~ v3(r,0) =

(6.14)
2,42
-(COs—l r2 + pdz’? + \/("2 + pi2'*)(a? - "2))
a? + ”¥zl2 a? + ”¥212
The stress at z = 0 outside of the crack region is given by
a
21 ay(a) dlzy(z)] dr
£ 0 \/r "'/
ao c(r,0) = /s / dz oo 1_2] + 7(r
(6.15)
r>a 1=1,2
Defining the mode III stress intensity factor as follows, Sneddon and Lowengrub
(1969)
K = rl_i.1£1+ V2(r = a)[ah,c(r,0)] r>a (6.16)
we obtain

G2uy . 1

Glp + G2, (a2 + p? 212)2 (6.17)

K= —1—2Ta3/2
g
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Kyni/Kyi7(0)
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Fig. 1. Variation of the stress intensity factors ratio with 2z’/a for various values of
#m = +/Gl/G;
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Fig. 2. Variation of dimensionless stress intensity factor K};,(0) = x2a%/2K;;;(0)/T
with g2 = G2u3/Glm
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If the face of a penny-shaped crack is subjected to point torque (z' — 0%) the
stress intensity factor reduces to the limiting value

Glpa

Gl + G (6.18)

1 -
Kr(0) = -7r—2-Ta 5/2

The intermediate results presented earlier are valid for u;z’ > 0. For example the
condition (6.9) is violated in the case of pyz’ — 0, since ¥(z) ~ z~2 in this case.
However, the basic parameter of fracture mechanics, K7rr(0), may be calculated
exactly from the formula (6.18). The intermediate results for the case of loading
of a crack surface may be calculated for g2’ =¢ (e — 0t).

Fig.1 shows the variations of Kj(2')/K111(0) with 2’/a for various values of
p1 = /GT/GL. Fig.2 shows the variations of dimensionless quantity
K31,(0) = 72a5/2K777(0)/T with g2 = G2u2/Glu,. From the figures, we can cal-
culate the stress intensity factor Ky for given values of 2’/a, p;, the bimaterial
constant g, and the crack radius a, respectively.

7. Interface inclusion

We consider the problem of a rigid penny-shaped inclusion which is embedded
in an elastic two-phase infinite medium and located on a plane of joint (Fig.3).
Appropriate representations of the displacement vy and the stress oy,r for solid
body with inclusion can be given as

vi(r,2) = / F(E)el=V'8i€ 1, (£r)dE + v'(r, 2)
1] N

(7.1)
That(2) = (~1/Gigu [ EF(E M sy (€r)de + 0d,(r,2)
0

(-1)z2<0

with ¢ = 1,2 referring to bodies 1 and 2, respectively, and known displacement
v* and stress o%,, which are given by Egs (5.3). Function F(£) remains to be
determined from the boundary conditions on the interface z = 0, where the rigid
penny-shaped inclusion with radius a exists. The integral representations (7.1) are
obtained by means of a superposition and of a well-known technique of a Hankel
transform. Considering perfect bonding at the interface, the continuity conditions
at the plane of the inclusions are (Fig.3)

olsr(r,0) = a2y4(r,0) r>a (7.2)
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vi(r,0) = v}{r.0) r>a (7.3)
while over the inclusion domain
vi(r,0) = or r<a i=1,2 (7.4)

where ¢ is an unknown constant twist angle of a rigid inclusion.
Egs (7.1) and (5.3) now show that the boundary condition (7.3) is identically
sadsfied and that the boundary conditions (7.2) and (7.4) will be satisfied if

/ EF(€)Jy(€r)dE = 0 r>a (7.5)

0

[ F@(er)de = or = wolr) r<a (76)
where T . ' ’

vo(r) = . (7.7)

dr Glpt + G2pa (12 + pd2/?)3/2
is known displacement corresponding to the concentrated point torque on the plane

z=7z>0and r=0.
Let us now use Noble reduction (Noble (1963))

F(&)=2 / 9(z) sin(€x)dz (7.8)
0

and reduce Egs (7.5) and (7.6) to the Abel integral equation for auxiliary function
9(z)

‘/r'z _32

The solution of this equation, for vo(r) given by Eq (7.7), is

2 1 ,ulz’.'z:
2r Gl + Glpz (2% + pf2?)?

%/—z—t’(idz = r? — rug(r) r<a (7.9)
0

¥(z) = 20z — z € [0, q] (7.10)
Apart from the displacement and stress there is one parameter which characterise
the inclusion problem, namely the induced rigid rotation ¢ of the disc inclusion
embedded in elastic medium.

Considering the equilibrium condition of the inclusion

M, = —ZW/arZ[al,,(r, 0) — ay(r, 0)]dr =0 (7.11)
0
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and using Eqgs (7.1) and (7.8), it can be shown that Eq (7.11) is equivalent tc

a

/zt?(z)d:z: =0 (7.12)

0

Substitution of the solution (7.10) into Eq (7.12) and then integration yields the
relationship between the induced rigid rotation ¢ of the disc inclusion and the
internal torque T

3T ~1f{ @ mz'a
= t - 7.1
¢ 87(Glu + G3#2)03( an (#12') a? +#fz’2) (7.13)
For the case of homogeneous medium, the results (7.13) agree with the results
given by Selvadurai (1982). If 2/ — 0, then the solution (7.13) reduces to the
classical result for a problem of Reissner-Sagoci type, Rogowski(1992), for two-
phase infinite medium

3r
Gim + Gipg)a®

¢~ 0= 1o (7.14)

6 0.8 1.0

4 0.
/¥,

Fig. 3. Variation of the ratio ¢/pq with z’/a for various of py = \/G1/G!

Substituting the expression for ¢, Eq (7.13), into the formula (7.10) results in
the final solution for auxiliary function 9(z).
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The stress and displacement fields in two-phase medium with interface inclu-
sion may be easily obtained from Egs (7.1) and (7.8), since the function 9(z) is
determined analytically. The isotropic counterpart of the solution is obtained for
pi=1,i=1,2.

Fig.3 shows the variations of the ratio ¢/@o with 2z'/a for various values of

= J/GI/GL.
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Skupiony moment skrecajacy wewnatrz dwufazowego materialu. Zagadnienia
szczeliny i inkluzji na powierzchni polaczenia

Streszczenie

Otrzymano, za pomoca transformacji Hankela, funkcje Green’a dla dwéch idealnie
polaczonych sprezystych, ortotropowych, jednorodnych pélprzestrzeni z réznymi spre-
zystymi stalymi poddanych dzialaniu skupionego wewnetrznego momentu skrecajacego na
plaszezyZnie rownoleglej do plaszczyzny polaczenia materialéw. Wykorzystano otrzymane
rozwiazanie do analizy zagadnien szczeliny 1 inkluzji na powierzchni polaczenia materia-
16w. Dualne réwnania calkowe rozwigzano dokladnie. Rozwiazania te doprowadzily do
przedstawienia w postaci prostych wzoréw analitycznych interesujacych, z punktu widze-
nia inzynierskiego, wielkosci fizycznych. Sa to: wspdlezynnik intensywno§el naprezenia w
wierzcholku szczeliny typu Mode I11 i obrét sztywnej, dyskowej inkluzji.
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