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The nonpolynomial anisotropic tensor function theory is employed together
with the theorems of their representations. The temsor function approach
combines clarity with the necessary generality of the constitutive equations
to be formulated with the help of this type of description. As known, consti-
tutive relationships can be presented for virtually any deformable continnum
provided the necessary tensor generators are established together with the
minimal set of fundamental invariants, In this paper the constitutive equa-
tions are formulated for nonlinear elasticity and perfect plasticity of innately
anisotropic media. The isotropic matrix is reinforced with three families
of straight fibres. Within each family the fibres are evenly distributed and
made o? the same material. Thtee cases of reinforcement are considered: a)
nonorthogonal fibres, b) orthogonal fibres, ¢) orthogonal fibres, each family
being made of the same material. The introduction of reinforcement causes
the material symmetry group to be 2 finite one, which can be suitably charac-
terized by parametric tensors. General constitutive relations are formulated
to describe nonlinearly elastic behaviour. The flow rules and yield crite-
ria are derived from the condition that the constitutive equations must be
homogeneous zero order functions of strain rates. Derivation of those equ--
ations is based on the concept developed by Sawczuk, Stutz and Boehler.
Their linearization leads to the relatively simple expressions. The simplified
perfect plasticity models are proposed. The simplification consists in appli-
cation of an equivalent stress tensor which is a tensor transformed by using
a fourth~order symmetric tensor dependent of parametric tensors describing
the material symmetry group.

1. Introduction

The theory of tensor functions has turned out to be very useful in those situ-
ations in which no beforehand knowledge is available as to the type of functional
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dependence between the mechanical variables to enter the conmstitutive relation-
ships. It is, in particular, the theorems of representations that can reveal all the
necessary arguments and their mutual interdependence.

In the paper the nonpolynomial representations of tensor-valued functions are
assumed as firstly employed by Pipkin and Wineman [11,21]. Construction of a
representation of a scalar—valued function consists in the determination of a func-
tional basis for a given set of arguments and symmetry groups. I, for instance,
a second-order tensor-valued functior is considered, an irreducible set of genera-
tors must be found in addition. It was Wang [18 + 20], Smith [13] and Boehler
[2], who tackled the problem of determination of irreducible nonpolynomial re-
presentation of isotropic scalar- and vector—valued functions as well as symmetric
and antisymmetric second-order tensor—valued functions depending on the finite
number of vectors and second—order tensors, both symmetric and antisymmetric.
Nonpolynomial representations of anisotropic scalar-valued functions and symme-
tric second—order tensor-valued functions depending on symmetric second-order
tensors were dealt with by Boehler and Raclin [3], Boehler [4,5] and Basista [1].

It has been shown that nonpolynomial representations, as compared with po-
lynomial representations of the same tensor-valued function, contain fewer tensor
generators and invariants. Thus the former ones have two advantages: first- are
more general as to the type of functions admitted and secand- enable the obtained
constitutive equations to have more concise forms. :

By imposing certain additional constraints on the con&dmd repr&sentatlons of '
tensor-valued functioms, various types of constitutive relationships can be arrived
at. For example, it is an inherent feature of plastic behaviour that the stresses are’
time-independent, i.e. the material stays insensitive to the rate at which strains
develop in the mechanical process. In mathematical terms this means that the
corresponding constitutive relations have to remain zero degree homogeneous with
respect to the strain rates, see Sawczuk and Stutz [12]. This property was later
used for transversally isotropic material by Boehler [4], Boehler and Sawczuk [6,7],
and Murakami and Sawczuk [10] and for reiriforced concrete by Jemiolo et al. [8,9].

2. Formulation of the problem

An isotropic matrix, in which a system of reinforcing fibres is embedded be-
comes an innately anisotropic body, similarly as it is in the case of crystalline
materials. On the contrary, a deformation induced anisotropy is caused by irre-
versible strains or structural microdefects developing as the deformation process‘ -
proceeds. This is shown in Fig.1, in which three families of straight bars enforce
a defined macroscopic structure of a composite body. The symmetry group of it
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Fig. L.

strictly corresponds to a certain group of material symmetry of an equivalent mo-
nocrystal. Unit vectors e;, ¢ = 1,2,3 are the versors of the Cartesian coordinate
system z' fixed to the considered body. Vectors v; are directed along the fibres
and can be described as follows

v; = k1[1,0,0] 2 = kafc, s,0) 03 = k3cy, 2, 3] (2.1)

where ¢ = cosf}, s = sin §, ¢; = cosq;, k3 = 1 (direction 1 is taken as reference},
kq,k3 > 0 are coefficients of relative intensity of reinforcement in the directions
2 and 3, respectively. Product of symmetry groups of the versors v; does not,
in general, coincide with the material symmetry group S. The latter is clearly
dependent on both the locations of these vectors, i.e. angles o;, 8 and their
lengths ie. ks, k3. Our aim is to formulate for the described composite body
the nonlinear and linear constitutive relationships for elagtic and perfectly plastic
behaviour in generally anisotropic and orthotropic situations.

Composites with one and two families of fibres were considered by Spencer
[14,15] by means of polynomial representations. Nonpolynomial ones were em-
ployed by Basista [1] to describe nonlinear elastic behaviour of skew anisotropic
medium. ’

Constitutive relationships for a matrix with three families of straight fibres can

-be expressed as an isotropic second—order tensor—valued function

T=F(AP,) L tmel, L M (2.2)

which, according to the principle of physical (Euclidian) space isotropy, has to
satisfy the following relations

¥QeO  QTQT =F(QAQT,P,) (2.3)

where T is a symmetric stress tensor, A stands for a symmetric strain tensor E
for elasticity and denotes a symmetric strain rate tensor D for plasticity, Q is
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an orthogonal tensor QQ' = Q7Q = I belonging to the full group of orthogonal
transformations @, | denotes a unit tensor, P, are parametric tensors to describe .
reinforcement (in other words, a group of material symmetry S induced by the
fibres), P, stands for P, after the transformation Q. The structural tensors
satisfy the condition =
vQesSco Pm =Pn (24)

which yields
vQes  F(QAQT,P.)=QF(AP,)QT o (29)

Function F is thus invariant with respect to the transformation group &; it is an

anisotropic function with respect to the argument A, (Eq (2.5)), and, at the same
time, remains isotropic according to the condition (2.3).

The relationships (2.1) will describe plastic behaviour once A is replaced by

D and the condition of zero degree homogeneity with respect to the strain rates

(cf [13]) is insisted upon

L

g%D =0 if g'Tﬁ #0 (2.6)

where 0 and 0 are second-order and fourth—order zero tensors, respectively.

3. Three families of nonorthogonal fibres

When an isotropic matrix is supplied with three families of nonorthogonal fi-
bres, each having different mechanical properties, the product of symmetry groups
of vectors v; Eq (2.1) cairesponds to the material symmetry group and the resul-
ting composite body behiaves anisotropically.

3.1. Elasticity

Similarly as Eq (2.2), the constitutive relations for elastic behaviour of a com-
posite take the form of an isotropic second-order tensor—valued function

T =F(E,0,9,0) | - (33)
having in mind the condition

VQE 0 QTQT = F(QEQT7 Q”lva27w3)b . (3‘2) g
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Simultaneously, Eq (3.1) is anisdtropic with respect to E since
VQes={l-I} QTQ" = F(QEQ",v1,;,73) (3.3)

According to the thearems of Wang [18 + 20}, Smith [13] and Boehler [2], the
representation of Eq (3.1) is as follows

a1l + azF + oMy + a4My; + asMas + ac (9312 + 'mn) +

az (ﬂls + M31) + as (mza + ﬂsz) + as(ﬂnE + Eﬂu) +

eno(MzE + ENzp) + o (Mo + EM) + an2£7 + (3.4)
a3 (ﬂuﬁz + Ezmn) + oy (ﬂzzEz + Ezmzz) + a5 (ﬂaaE2 + E2A7i33) +
ars[(MiE + EMa ) — (Mn1E + Ny )| + ey [(WsoE + ENigy ) -

(M1 E + EWi3)| + 0s [ (MasE + EMls; ) — (Mg E + EMs) |

T

+ + + +

|

where M;; = 9, ® v;, 1,7 = 1,2,3, (no summation is perfomed when i = j),
oy are scalar—valued functions of invariants
ap = ak(trE,trEz,tr_Es,trﬂuE,trﬂnE,trﬂwE,tr&_ﬂuE,
tl’ﬂlsﬁ, trﬂggﬁ, tl‘ﬂu Ez, tl‘ﬂnEz, trﬂ;gE’, tl‘ﬂu Ez, (3.5)
trﬂlsE?, trﬂz_aEz) k= 1, ey 18 .
The obtained representation appears to be reducible. To make the process easier,
parametric tensors M;; can be rewritten in the form dependent on tensors M;; =
e; ® e;. Detailed analysis of interrelations between generators and invariants in

the Cartesian coordinates yields the irreducible representation of Eq (3.4) in the
form : :

T = o My + ;M + aiMss +af (ﬂu + ﬂzl) +
- ! (3.6)
T af., (ﬂls + “31) + ag (ﬂzs + ﬁsz)
: .where

0; = af (tl‘[‘n E, trﬂzg E, trﬂ;;;»,E, tl‘ﬂuE, trM 13E, tl‘ﬂgaE)
< ' - (3.7)

1=1,...6
The form of Eq (3.6).and (3.7) coincide with those arrived at by Boehler (cf [3

+ 5]) since the product of symmetry groups for vectors e; corresponds to the
symmetry group of vectors v;. :
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Egs (3.6) can be linearized by adopting functions a; as linear combinations of
mvariants in Eq (3.7) and assuming the existence of neutral state E=0=T =0.
Ther

af = a;trﬂnE + b/tl‘ﬂng + CltrﬂwE + dltrﬂmE_"' (3,8)

+ eitrMysE + fitrMasE

Eq (3.6) with scalar—valued function (3.8) contains as many as 36 independent ela-
sticity constants. It describes elastic material in the sense of Cauchy, i.e. material
capable of dissipating energy on a closed loading cycle. When elastic potential is
assumed to exist, the number of elastic constants reduces to 21.

Jemiolo et al. [8] took the relationships (3.4), (3.5) as a starting point to
formulate equations simpler than those in Egs (3.6) and (3.7). The following
simplifying assumptions were made: mutual influence of families of fibres were
disregarded by putting aj = 0 for k = 6,7,8,16,17, 18; invariants containing M;;,
i # j, were neglected; strain in the reinforcement of direction v; was described by
tensor depending solely on ;. Therefore -

E(1;) = £,i(v: ® 9;) = £,iMy;- (no summation) (3.9)
and
= trM"E ay = QpEyi = 6,,trﬁ,~.-E
i = k=3,913 (3.10)

i=2 k=4,10,14
i=3 k=5,11,15

The above set of assumptions appears to be equivalent to the application of the
functior (2.2) in the form

T= F(E, ﬂu,Mzz»ﬂsa) (3.11)
with the simultaneous condition _
VQeO  QTQ" =F(QEQ,QM,;QT,QM»QT,QMQ")  (3.12)

On using the theorems of representations [2,13,18 + 20}, the relations (3.11), (3. 12)
lead to the relations (3.4) with a; =0, k = 6,7,8,16,17, 18; the remaining ay’s
depend on the invariants trE', trM;E™, i = 1,2, 3, m=1,2

In the case of orthotropy (when pa.rametnc tensors jn Eq (3.11) are M;; instead
of M) Eq (3. 4) is simplified since, in addition, @i = 0 for &k =1,2,13, 14, 15;
invariants trE™, m = 1,2 are reducible.
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The s'u:ﬁplest linear equations for indepéhd'ent families of fibres and the as-
sumptions (3.9), (3.10) were given by Jemiolo et al. [8]. For different mechanical
preperties of fibres it becomes

= Q]|'+ ask + a3 (tl’ﬂn E)Mn + 0y (trﬂzgﬁ) ﬂzg + asg (tl’ﬂmE)ﬂ;ﬁ (313)

where

— VcEc' t E Q9 = -._E'_c_—..-
M EArd-20) 2= 0 +w)

(3.14)

a3 = Egm ag = Egua as = Ey3ps

v. and E,. denote Poisson’s ratio and Young’s modulus, both for matrix (subscript
. ¢ stands for concrete), E,; stand for Young moduli for reinforcing fibres (subscript
- 8 denotes steel), u; are the reinforcement intensities in the directions of ;.

Eqs (3.13), (3.14) were used to formulate linear constitutive relationships for
plane stress and to describe, after making elastic moduli dependent upon the
~ current strain state, the behaviour of reinforced concrete slab according to the
~ deformation theory of plasticity (cf [8]).

3.2, Perfect plasticity

Description adopted in the paper is based on the concept of Sawczuk and Stutz
[12] as used for transversal isotropy (cf [4,6,7]). The expression (2.2) together with
‘the homogeneity requirement (2.6) for parametric tensors M;; was discussed by
Jemiolo et al. ([8]). '

The equation

- Xide -ﬂi My, + Bty + 53“33 + /34 (ﬁtz + ﬁ?l) + ﬁs_(ﬂm + ﬂ31) +
+ ﬂs(ﬁm + ﬁ:n) :
_ (3.15)
ﬂ_l = ﬂ,(trﬁu D, trflggD, tl‘ﬂaaD, trﬂuD,trﬂiaD,trﬂnD)
: : l=1,..,6

with the condition (2.6) describes plastic behaviour of the considered anisotropic
composite. ! \

Let us follow the consequencies of zero degree homogeneity requirement (2.6)
as applied to the trace of equation (3.15). To this end, let the following new
kinematic variables be introduced
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E = trﬂuD i E = tIﬂnD
E3 = trﬂ;;aD E; = tl'ﬂuD (3.16)
Es = trﬂl;,D Eg = trﬂng

What results is the set of Euler’s equations

3ﬂk
=0 kyl=21,.:6 3.17
which, after adopting the subsitution for z and ym
' E
z = In |Eg| ¥m =ln| " .
(3.18)
Es#0 m=1,..5
can be solved to yield the functions
. En
b= Ax(F7) = Ax(pm) (3.19)

Allowing for (3.19) in (3.15) some auxiliary magnitudes such as MuT Mo T,
M3 T, Mo T, MysT, MysT are calculated together with their traces. Six relations
are thus obtained dependent on 5 kinematic variables which characterize plastic
flow. It follows that an additional scalar relation must exist among the stress
invariants, termed "a plasticity criterion”

F(trM T, by T, el T, exllly, T, trfllysT, rilysT) = 0 (3.20)

It can be readily seen that six independent functions enter the rule (3.15) and
Eq (3.19). Let us prove that additional five relations among A, take place once
the principle of maximum dissipation power (cf [12]) is employed. The dissipation
power d is calculated as

d = uTD= A;trM;D + A;trMyoD + AstrasD + 24,trM,D +
+ 2AstrM;3D + 246trMysD = A E; + A3 E; + AsEs + (3.21)
+ 2A4Eq+245Es + 246Es
Simple geometrical interpretation can be given.to the foregoing expression. N.ao

~ mely, consider the functions A,, Ay, As, 244, 245, 24¢ to represent generalized
stresses Z; and E, to stand for generalized strain rates 2z, all visualized in the
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six—dimensional space of invariants. Thus Eq (3.21) simply becomes the scalar
product Ziz; > 0, k= 1,..,6. Its maximum clearly takes place when the vectors
Z and z are coaxial and their senses are the same. The lengths of vectors satisfy

Ay _ Ay _ A 2 245 2 Lo (3.22)

Thus the number of independent functions in Eqs (3.15) and (3.21) is reduced to
one, for example, Ag. Inserting Eq (3.22) into Eq (3.21), we get

d = 24Ee(p} + p5 + P3 + P4 + 75 +1) = max (3.23)

The hypersurface d = const in the space of generalized strain rates is clearly a
sphere and serves as a potential to calculate generalized stresses.
Applying Eqgs (3.22) and (3.15), the following relationship arrives

= trE‘::sD [Q(trﬂu D)Mu + 2(tr5—4nD) ian + 2(trB:¢33i))i\]33 +

(3.24)
+ trﬂl‘zD(&l? + ﬂz:) + tfﬂmo(ﬂm + Ei:l:n)-+ tr@zsb(ﬂza + 5432)]
from which no unique strain rate tensor D can be obtained. Inverse of Eq (3.24)

is recognized as a flow law. The form of Eq (3.24) is clearly dependent on the way
in which Eq (3.18) is assumed.

4. Three families of orthogonal fibres

Let the mechanical properties of particular families of fibres differ but the
families be mutually perpendicular. The product of symmetry groups of tensors
M;; corresponds to the symmetry group of the considered composite which can be
now called orthotropic. .

4.1. Elasticity

General expression for nonlinearly elastic behaviour is an orthotropic second-
order tensor-valued function (cf [3 + 5])

T =F(E, My, M2z, M) (4.1)
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with the requirements
YQe®  QTQT = F(QEQT,QM1Q",QM»Q",QMxQ")  (42)
vQeS={L-15,5,5)  QTQ" = F(QEQ”, M1, Mz, Mg3) (4.3)

where S is a reflection with respect to the eg, e3 plane.
Representation of Eq (4.1) with the conditions (4.2), (4.3) can be shown to be

T = 01'\‘11 + O.'QM22 + 0’3M33 + a4 (MIIE + EMH). + ( )
(4.4

+ o5 (M + EMzz) + a6 (MsoE + EMss) + a7E”

where

I

o, 0, (trM1:E, trMagE, trMasE, trMy E?, trMp B, trMgE?, 6rE°) =

(4.5)
= O‘Uk) k ———.1, ...,7

The above description corresponds to the Cauchy material. For the Green material,
in which the existence of elastic potential is postulated, the constitutive law (Eqs
(4.4}, (4.5)) must be supplemented with the condition

dor Do

b M . | (4.6)

oI ol

e o 6W(Ev M11~ M??v M33)

. oI,

(4.7)

where W7 is an orthotropic scalar-valued function of the invariants Iy (cf [3 +
5]). Linearization of Eqs (4.4) + (4.7) leads to the following formulae for

oy = bittM 1 E + ¢1ttMgsE + dytrMasE

az = c1trMy1 E + coteMaoE + dotrM33E

a3 = ditrMy1 E + datrMo,E + dstrMasE (4.8)
ag=a a5 = a2

ag = a3 ar=10

N
2

ine elastic constants are here involved.
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4.2. Perfect plasticity

Using procedure similar to that of section 3.2, the relationship between the
stress tensor and the strain rate tensor is found to be

T = AiMu + AzM22 + A3M33 + éi'(Mu'D + DMu) +

E.
7 (4.9)
As Asy A7 .,
+ E(MzzD + DMzz) + E(MasD + DMss) + E_-?D
where
. 5
Ak = Ak(pg) i = -E: (E-[ 75 0 k= 1.,...,7 1= 1,...,6)
E; = trM;; D E; = ttM3;D E3 = trM33D
(4.10)

Ey = \/ trMy, D? Es = \/trM-nD2 Eg =/ trMa;D?
Er = \3/1;)—3

After calculating the magnitudes M;T™ +T™M;;, T3, m = 1,2, i = 1,2, 3, finding
their traces and eliminating parameters pj, the yield criterion is obtained in the
form

f(tl‘MuT, trM2o T, trMas T, trMnTz, tngsz, trM33T2, t]‘Ta) =90 (4.11)

It can be proved, as before, that a single independent function enters both the
relation (4.9) and the flow law. The latter can be obtained by inversion of Eq
(4.9) and has the form

D .
T\/-—D-; = f1M11 + B2May + BsMa3 + ﬂ4(M11T + TMu) +

+ﬂ5(M227 + TM2;) + Be(MasT + TMss) + B, T? (4.12)

Br = Be (M1 T, trMa, T, rMisg T, trMy; T2, 1My T2, trMs T2, 11 T2)

Conditions (4.11) must be borne in mind.
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5. Three families of orthogonal fibres showing the same mechanical
properties

X3
e I yis
& Wa’ . o 4123
ol32 o ] Q
._b‘}\/ Ar2
o ®
112 ‘21. "
l13 ez
e ' O
1 ~ 7
Ay
x1
Fig. 2.

The reinforcement tensor is, following Jemiolo et al. [9], defined as
R= Rl.el ® &1 + Re2®e2 + Rsez ® €3 , (5.1)

where R; are the intensities of reinforcement embedded in the directions z*, Fig.2,
Aﬂ'

(5.2)

and A,; denotes the cross—sectional area of reinforcing fibre in the direction z‘
whereas A, is the area of matrix, perpendicular to e; and belonging to the fibre
with area A,;. These areas can be calculated as :

Ami = halis Am2 = lnls Am3 = lailz; (5.3)

where (;; are shown consistently in Fig.2.

5.1. Elasticity

Representation of thé function (2.2) with parametric tensor R was discussed in
detail in by Jemiolo et al. [9] both for Cauchy and Green materials, respectively.
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Nonlinear elasticity relationship for the latter has the form
T = a1l + 02 + 03 (ER + RE) + auR + asE” + aR” + o7 (ER” + RE) (5.4)

ai = o (trE, trE?, trE®, trER, trER? trE’R, rEPR?, 17) = ou(Liy i)
(5.5)

The magnitudes r; = teR’, i = 1,2, 3 are treated here as the known ones since the
reinforcement is considered to be prescribed. Eq (5.14) satisfies similar relation-
ships as Egs (4.6) and (4.7), in which W is a function of invariants I; shown in
Eq (5.5). ‘

A linearized form of Eq (5.4) was derived elsewhere [9]

T (MrE + BrRE)! + 24E + 29(ER + RE) + (1rE)R (5.6)

where
.ECVC . Ec

C T -2w) H 0t

are Lame elastic constants for matrix and £, v should be found from well planned
tests on the composite material.

- In the standard matrix notation of Hooke’s law for orthotropic material we
have

A

T-(le) = C(sxs)'E('exl) (5.7)
where :
[e35 fz fo 0 0 017
ez fr 6 0 O
{ L es 0 0 0
c(oxe) = gs 0 0 (5.8)
sym. g2 0
L 91 ]

Nine elasticity constants e;, fi, gi, ¢ = 1,2,3 depend on the constants a, 4, 4, 7,
R; in the following manner

ei = A+2u+2(2y+ B)R;
f,' = A +,B(Rj + Ri)

, (5.9)
gi=p+7R; + Ri)

(i, k) = (1,2,3),(2,3,1),(3,1,2)
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It is worth roting that thé obtained representation (5.4) is identical with that
showr by Vakulenko and Markov cf [17]. They coasidered various cases of isotropic
scalar- and tensor—valued functions depending on two symmetric second—order

tensors.

5.2. Perfect plasticity

General nonlinear relationship for ideally plastic behaviour of the composite
body is found to have the form

e By, Bs Bs 2 2, B1(pp2 . g2 \
T=5Bl+ E20+E2(DR+RD)+B4R+E§D + BoR + 5 (DR +R D) (5.10)
where
B = Bi(p1) k=il 7 l=1,..6
(5.11)
_E _ B »
m=g m="g* E2#0 1=2,..,6
E; = D E; = yuD? Es = {/t:0°
Eq = tiDR Es = tDR? Ee=VuD®R (5.12)
E; = v trD?R?
Inverse of Eq (5.10) supplies the flow rule in the form
D = LR+ T+ (TR4RT) +wsR? +
VtrD? ; :
+ wT? +07(TR? + R?T) - (5.13)
vi = v (6T, uT?, uT%, TR, 6 TR?, tr TR, trT°R?) (5.18)
together with the yield criterion |
(6T, T2 4T3, erTR, ' TR?, trT2R, «T?R?) = 0 (5.15)

Detailed form of Eq (5.13) and its derivation under the constraints of quasilinearity
of Fq (5.10) and Bs = Bg = Bz = 0 was given in [9] where particular relations
between Bj and v were also provided.

When the maximum of dissipation power is assumed in Egs (5.10) and (5.13),
only one independent function B is present.
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8. Simplified perfect plasticity

It was Boehler and Sawczuk ([7]) who introduced instead of transversally iso-
tropic material in question, an equivalent isotropic body. The same procedura was

followed by Jemiolo et al. [9]. Equivalent stress tensor T is assumed

T=CT (6.1)

-
where C is a fourth—order tensor responsible for anisotropic properties.

Constructing the tensor Cin a manner suggested by Telega ([16]) and assuming
its linear dependence on R, we get in the index notation

Ciikt = Abijbpt + B(birb50 + b)) + B(6ij R + b Rij) +

(6.2)
+ F(6ukRji + 6 Rjk + 651 Rik + 655 Ryy)
where X, ji, B, 7 are material constants.
The equivalent stress tensor is expressed by
T= (AtrT + BURT)+ 23T + 27 (TR + RT) + F(trT)R (6.3)

Let us postulate a linear dependence of the equivalent stress tensor on the strain
rate tensor D

T= &l + &,D (6.4)
where
&= (trD, trDz,trDs) =12 (6.5)
On splitting up Eq (6.4) into its spherical and deviatoric parts, we get
tr T= 3a; + aytrD 5"—‘ a;F (6.6)
where & ) : i ‘
S=T —-§(tr Bl F=D- g(trD)l (6.7)

»
S, F stand for the deviators of equivalent stress tensor and strain tensor, respecti-
vely. .

On using the homogeneity requirement (2.6), we arrive at the flow law

*

x F S
tr T= g1(s,1) .= :
filet, trF?  g2(s,1)

(6.8)
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where

VirF? tD

t.=

8=
VirF? \rF?

The yield criterion takes the form

i ‘3 -
shact el S25 ) - (6.10)
Vir §?

Inserting Eq (6.3) into Eq (6.8)2, we obtain the flow rule in the form

(6.9)

F_ (AuT+puRT- 2)14 23T +27(TR+RT) + B(trT)R
VuF? %

The above equation is remarkably simpler thaa the quasilinear flow equation (5.13)
since it contains only four unknown constants and two unknown functions of ki-
nematic parameters s, {. Employing the postulate of maximum dissipation, an
additional relation between g¢; and g, is revealed, namely '

qi(s,2) = g2(s, )t (6.12)

Using Eqs (6.12), (6.8) and (6.11), we get the decomposed flow law for spherical -
and deviatoric parts as dependent on a single ynknown scalar—valued function of
kinematic arguments s, t or on three invariants of the equivalent stress tensor

(6.11)

tr T= gat . tr §%= g2 tr T= g34% - (6.13)

The yield criterion (6.10) must not be forgotten.
Let us, for example, generalize the well-known Drucker—Prager yield condition
to cover the case of an orthotropic composite material. Its standard form is

aly + V- k=0 (6.14)
For anisotropy it becomes ‘
atr'i'+.—1—.tr5..2 k=0 (6.15)
7 = 5

whereas for orthotropy it takes the form
tr T= (3I\ + 20+ ﬂ'trR) T + (35 * 47) trRT ' (6.16)

uS’=tr T* --fz-l (6.17)
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tr T?= [3','\2 + 403 + 20BuR + (B2 - 4‘72)trR2] tr2T +

+{2 [35\5 +4af + 405+ (B - 8-7’)trR] trT +
(6.18)

+(35% + 887 + 851)rRT heRT + (&2 + YR T? +
+45 [4;1trRT'2 +(B + 49)uTuRT — 27uR*T?)

Extended Cayley-Hamilton theorem, shown in [4,9], was used to get the expression
"

for tr T2. The constants a, k, A, i, B, 7 must be derived from appropriate tests.

< 7. Final remarks

The general flow rules (3.25), (4.12), (5.13), (6.8) derived in the paper are
not. associated with the yield criterion (3.20), (4.11), (5.15), (6.10) in the classical
sense. They come from the definition of plastic material (2.6). The principle of
maximum dissipation results in the fact that the flow rules contain one independent
unknown scalar-valued function.
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Réwnanie konstytutywne sprezystosci 1 plastyeznos$ei izotropowej matrycy

wzmocnionej trzema rodzinami prostoliniowego zbrojenia

Streszczenie

W pracy zastosowano teori¢ niewielomianowych anizotropowych funkcji tensorowych
oraz twierdzenia o ich reprezentacjach. Podejscie to zapewnilo zaréwno matematyczna
przejrzystos¢ jak i wymagana ogdlnosé formulowanych relacji konstytutywnych. Roz-
patrzono material skladajacy se z ‘izotropowej matrycy wzmocnionej trzema rodzi-
nami prostoliniowego zbrojenia. Rozwazono trzy przypadki struktury rodzin zbrojenia:
a) nieortogonalna, b) ortogonalna, c) ortogonalna z rodzinami pretéw o jednakowvch
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wlasnoéciach mechanicznych. Wprowadzenie wildkien powoduje, ze grupa symetrii ma-
terialnej jest grupa skonczona, ktéra scharakteryzowano odpowiednimi tensorzmmi para-
metrycznymi. Wyprowadzono rwnania konstytutywne nieliniowej sprezysiosci oraz ide-
alnej plastycznodci. Prawa plyniecia i waruuki plastycznoéci wyprowadzono z zaloZenia
o jednorodnosci stopnia zero relacji konstytutywnej wzgledem predkosci odksztalcenia.
Wykorzysiano koncepcje konstruowania réwnarn teoni plastycznosci zaproponowang przez
Sawczuka, Stutza i Boehlera. Podano takze zlinearyzowane zwiazki oraz sposéb formu-
lowania uproszczonej teorii idealnej plastycznoéci. Uproszczenie polega na wprowadzeniu
zastepczego tensora naprezen przetransformowanego za pomocy tensora czwartego rzedu
zaleZnego od tensordéw parametrycznych.
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