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STRESSES IN A NON—-—HOMOG.ENEOUS AELOTROPIC SOLID
WITH SPHERICAL INCLUSION HAVING A RIGID SPHERICAL
CORE AT THE CENTRE

SHARJABAN ALI MOLLAR
St.Paul’s C.M. College, Caleutte

The object of this paper is to consider the problem of the stress distribution
in an infinite, non-homogeneous spherically isotropic solid due to a nucleus in
the form of a centre of rotation. It also aims at the consideration of influence
of a spherical inclusion having a rigid spherical core of non—homogeneous
material of different kinds at the centre on the stress distributions, while the
-elastic constants are considered to be functions of position.

1. Introduction

The introduction of non-homogeneity in aelotropic materials has recently been
one of the main pursuits in mechanics of solids. During the process of manufactu-
ring and due to various technological processes, the elastic solid bodies sometimes
not only occur to be anisotropic but also display a non-homogeneity of various
types. It was pointed out by Lekhnitskii [5] that anisotropies appear not only
in the manufacturing and technological processes but also in the natural course
of growth of bodies, like natural wood which is transversely isotropic in nature.
Moreover, non—-homogeneity is also exhibited in the problems of stress concentra-
tion around holes, cavitles, fillets, grooves and inclusions. These problems were
throughly discussed by Savin [8] in his monograph.

The stresses iuv an infinite isotropic solid due to nucleus in the form of a centre
of rotation have been discussed by Love [6]. The influence of an isotropic spherical
inclusion of a different material in the foregoing case have been considered by
Chatterjee and Dutta [2], Das [3] has also determined the stresses due to a nucleus
in the form of a centre of rotation in an elastic sphere embeded in an infinite
elastic solid of another material. Chatterjee and Bose [1] have investigated the
deformations and stresses in an earth model with a rigid core. Das [4] has obtained
the stresses due to a nucleus in the form of a centre of rotation in an elastic sphere
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embedded in an infinite elastic sohd of another material. Subramanium and Das
19] have obtained the stresses due to nucleus in the form of a centre of rotation
in an aelotropic solid with spherical inclusion, the nucleus being taken outside of
the inclusion. Maity [7] has obtained the stresses due to nucleus in the form of a
centre of rotation in the interior of a spherical shell of aeolotropic material.

The author has discussed the problem of the stress distribution in an infinite,
non-homogeneous spherically isotropic solid due to a nucleus in the form of a
zentre of rotation., The problem of influence of a spherical inclusion having a
rigid spherical core of a different non—homogeneous material at the centre on the
stress distributions, when the elastic constants are considered to be functions of
position has also been discussed by the author. The displacements and stresses
ior some interesting particular cases have been discussed and are compared with
the results obtained by previous researches for homogeneous cases. Finally, the
author shows graphically the variations of stresses and compares them with those
for the homogeneous cases.

2. Formulation and solution of the problem

We take the axis of rotation for the z—axis with the origin at the centre of the
spherical inclusion of radius a.

The centre of rotation is located at a distance ¢ from the pole, where ¢ < a.

The stress—strain relations for a spherically isotropic material in spherical polar
coordinates (r,6,¢) are given by Love [6]

Orr = C33€rr + C13€49 + C13€44
Cog = C13€rr + Cr1€99 + €12€44

Ogp = C13€rr + C12€99 + C11€44

Or¢ = C44€r¢ (2.1)
094 = Co6€04

Org = C4q€py

where
c11 = 266 + 13 (2.2)

and ¢;; (4,7 = 1,2,3,...,6) are the elastic constants which are in general functions
of the location of the point.
We assume the displacement components as

t,=u =0 8y = w(r,0)
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So the components of strain are given by Love [6]

€rr = €09 = Spp = €rg = 0

Ow
€4y = ;(W — wcot 0) {2.3)
o, 2w _w
A T
For non-homogeneity of the material we assume
Caq = Agqr™ Ceg = AesT " (m < 0) (24)

where A44, Ags are constants being the values of c4q and cgs, respectively in the

homogeneous case m = 0.
Using Eqgs (2.3) and (2.4) we get the followidg form of Eq (2.1)

Orr = 0gg = Opp = Org = 0

O9s = AggT™ ! (%—;— — wcot 8) (2.5)
Org = AgqT” (%‘; - %)

Two equations of equilibrium are identically satisfied and the third takes the

form .
0
or

Substituting Eq (2.5) into (2.6) one obta.ines

(0rs) + (Ugd,) + [30,'.4, + 2094 cot 8] = 0 (2.6)

A‘“[r? = +(m +2)r——(m+2)w]

(2.7)
+[% + cotB%—;- +(1- cot20)w] =1
Let us seek a solution to this equation in the form
' w = R(r)8(8) (2:8)

where R is a function of r alone and @ is a funcnon of 0 alone. Substituting
Eq (2.8) into (2.7), we have

Aar?rd®R m+2dR m+2 0 de 3
des R [dr2 r dr 12 } 5{7’)7;’2' +cotf— + (1 — cot 9)9}
Assuming that each side of the above equation is a constant and is equal to
n(n+ 1) — 2, we get

ﬂ_{_ m+2dR
dr? r dr

- ri?[(m+2) + :\\—:(n— Da+2)]R=0 " (29)
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and

%522.+ ot 00 4 [a(n +1) (1 + ot )6 = 0 (2.10)
As a solution to Eq (2.2), we take
Rn=-An(£)a"-+ Bn(g)an+l+'m (2.11)
where
ay = _-"i] 45 ‘/(m +12 +4f(m+2) + —(n ~1)(n+2)| (2.12)
and -1-2a, < m < 0. Solution Eq (2.10) suitable for our problem is
0= —[P (cos e)] (2.13)

where P,(cos#) is the Legendre function of the first kind and of nth degree.

Thus
EPRCIAREE IO NS F{LCL IS

where A, and B,,_ are constants.

-2.1. Solution in the case of nucleus in the form of a centre of rotation

When n =1, we have a, = 1 and we may take

sin §
w= Arm-H (2.15)
Which obvicusly satisfies Eq (2.7).
This gives rise to the stress distribution given by
sin @
0re = —Adgg(m + 3)—“—
(2.16)

094,:0

The foregoing ctress distribution has a singularity at r = 0 that is, at the
centre of the sphere, but the traction on a sphere of small radius € gives rise to a
couple of moment

/ / [0r4] .6 sin? 040d¢ (2.17)
=0
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about z-axis.

The value of the integral (2.17) is —57AMy(m +3) and remains unaffected
as € — oco. Hence this can be taken as the moment of the nucleus in the form of
a centre of rotation about the z-axis situated at the pole.

Thus Eqgs (2.15) and (2.16) give respectively the displacement and stresses in
an infinite spherically isotropic solid due to a nucleus situated at the centre, in the
form of a centre of rotation, respectively.

If 2P represents the moment of the stress couple about z—axis, then

__3F
81?(1" + 3)A44

I the nucleus is situated at the point (0,0,c) then the only non—vanishing
component is given by

A=-— (218)

3P 1™ sin @

" 8x(m + 3)Au (r? — 2rccosf + c2)3/2 (2.19)

.2.2. Solution in the case of inclusion

Let the spherical mclnsmn have at the centre a small sphencal rigid core having
radius r =€ (e — 0). .
We assume

¢ = Ar™ dij = pijr™ (m’ < 0) (2.20)
as the elastic constants inside and outside the spherical inclusion of the infinite
solid respectively; here pu;; are constants and represent the values of d;; in the
homogeneous case. m’ = 0. :

Thus, as a solution suitable to this problem we may take

W 3P r1=™ 5in @ 4
g, 4r(m + 3)Ag (12 — 2rccos b + ¢2)3/2 (2:21)
-21)
- A T\O0n d rP 0
+ 3 (3)" gl Puleont)]
inside the sphere r = a, and
Bn+1+m' d
wy = }: B, ( =) i [P,,(coso)] (=1 =28, <m’'<0) (2.22)

Outside the sphere r = a where S, is given by Eq (2.12) with ), m being
replaced by u;;, m’, respectively.
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Thus
3P msin 6 3rsin (r — ccos ) ]
ré1 = Ga(m + 3) [(r2 2rccos b + ¢2)3/2 % (r? — 2rccos 8 + c2)5/2 (223)
+Au 2 ——(a,. - 1™ ( )a" b/ [P,,(cos 0)]
n=1
" 9P s crsin® g +
01 = I~ 0 2\5/2
¥ 4x(m+ 3) Age (12 — 2rccosf + ¢2) (2.24)
= ry\an . a&? d
+Xes n{:} An (-) -1 {-‘Ez- [P,,(cos 0)] — cos ad_ﬂ [P,,(cos 9)] }
= Bn n m’ d
Ors = —tiss 3 27 (r)" e = [Falcos0)] (2.25)
n=1
ci Bn m' [ Bnt+24m’
AT R
25 - (2.26)

- cot 0% [Pn(cos 0)} }

where the lower indices 1 and 2 denote the displacements and stresses inside and
outside of the inclusion, respectively.
The boundary conditions to be fulfilled in this case are
Wy = Wy gy =i on r=a (2.27)

Now the formulae for displacements and stresses in Eqs (2.21) + (2.26) on the
surface on inclusion r = @ can b2 written as

] e 3P 1 o1 od
[wljmu = In(m + 3 o™ ?:1 T [Pn(cos 0)]
.4
+ An— Pn Coso)
> 29| Palcos9)]
3P u—l d
{aréx}r=, = _4—7r(m+ ) "Z_;(n +2- m) povo i) [ n(cosa)}
+X446™ Z - ])a—o [P,.(COS 0)] (2.28)
n=1
9P  )es casin?é

[a“‘]r—c i 47r(m +3) E-:(a2 2accosf + 02)5/2 ¥

+A662A,.a - {d92 o (cosﬂ)] cotado [P"(cosﬂ)]}

=1
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| =3 Bal[P(cosd)]
=8 se=l da
[orea],_, = -#«a’“'_g 22 (6n + 2.4 m') 5 [Pa(cos )] (2:29)
™ > Bﬂa""-‘{% [a(cos 8)] — cot adﬁé [Pa(cos )] }
n=1
Using Eq (2.27), we have

3P 1
4x(m + 3) amtmi+2tn

Ay =

(2.30)
Au(n + 2 -m)a™ ™ — py(Bn +2+m')

Aai [0 haa(en — 1) + praaa™ (B + 2+ )|

: 3P -1 a™ ™ (a, + n+1~m)
— - - 2.
B, 4r(m + 3) a™toH Ay(an — 1)a™™" + pga(fn + 2+ m') (231)

The displacements and stresses on the boundary r = a one can obtain from
Eqs (2.28) or after substituting for the values of the constants, A, and B, from
Eqs (2.30) and (2.31) into Eqs (2.29).

3. Some particular cases

Case 1. For the homogeneous material spherically isotropic, we have
m=m'=0.
Thus
_ Pt (a4 2)ens— (B +2)dus
dmantl o, [-(Gln = 1)eqa + daa(Bn + 2).1l
o e an+n+1
4w o™+ (ap — D)es + daa(Ba + 2)

. An

F

(3.1)

,,=--+—\/9+4——~ ~1)(n+2
=5+t (r-1)n+2)
11} des
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Thean the displacement and stresses on the boundary of the inclusion r = @
are obtained from (2.29) as

w= i Bné%[Pn(cos 19)]
ors = —dus }: Be (on +2) 5 [ Putcast)] (3:2)

il ; Pf{zﬂ [Pu(cos)] - maﬁ [Putcost)]}

where B,, a,, B, are given by Egs (3.1).

Case Il. We consider the case of homogeneous 1satropac incusion within a
homogeneous isotropic solid. In this case

SR S c«'=cea=G1 . dy = deg = G2
where Gy, G; are the proper material shear moduli.
Thaen
=f,=n

P 1 (ﬂ+2)(Gl-G1)

A = o nH o
*a™ G |Gi(=— 1) + Galm + 2}]

B, = P -1 2m+1

T Gia—1)+Can+2)

Then the displacement and stresses on the snrface of the inclusion r = a are
obtained by Egs (2.29) as

e Z;% i! L‘nM,,Edb- [Pa(cos )]

p = 2 5° % |
B g(n + 2)L, M,,Eg- [P,.(cos 9)] 3.3)
L A -4_’;.; ﬁ‘%’i{;"g [Pa(cos )] - cot 97:'9“ [Pa(cos 6]}
where
s : G2(2n +1)

Ly=— X
ar+! My = Gi(n—1)+ Ga(n +2)
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‘These results agree withthose of Das [4].

Case IIL In the case when the material cutside the inclusion is rigid,
H44 = peg — 00, then

3P b |
n(m + 3) a o g

The displacement and stresses on the surface of inclusion r = a are obtained
using Eqs (2.28) as

w =0
3P el
7 T Thmy3) & Z(a" Frtl-mien [P'(m o)
(3.4)
i 3P @[ 3acsin’® 8 _
% = 4x(m + 3) Agq L(a? — 2accos @ + c2)5/2

o

n—1
- ;-_1 5‘;;5{5‘:3[?7;((:08 0)] — cot 9——[P (cos 6‘)] }J

Case IV. In case when the material outside the inclusion is absent, then

Haa'= pes = 0
A, = DE,.M
an, —1
B, =DE"OL,.+u+1-m
7 a, — 1
where 4
3P : -
“AHE T LAY En=——0x
4r(m + 3)Ay gntm

The displacement and stresses on the boundary r = a are given by

w=D E Enf'_“.'*'a_’:tll__ [Rn(cos 0)]

oe=0 | (3.5)
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3acsin? @
(a? — 2accosd + c?)5/2

+ i ;w—:'yﬂ—m 377 | Palcos )] — cot 9(19 [Putce]}]

a, — 1

Tpgp = )\egD{

+

All the infinite series occuring in this problem are obviously convergent.

For all the other possible cases namely

(i) if the material of inclusion is homogeneous isotrapic ar spherically isotropic
and the material outside the inclusion is non-homogeneous isotropic ar sphenca]]y
isotropic,

(ii) if the material of the inclusion is non-homogeneous isotropic ar spherically
anisotropic and that of outside the inclusion is homogeneous motropnc or spherically
isotropic,
the stresses and displacement on the surface of the xnclnswn can be easﬂy found
out by simple substituting the suitable values for m a.nd m’'.

4. Numerical results and discuwssion
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Fig. 1.
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In the adjoining Fig.1 we exhibit the variations of @ (Q = %-0,4) on
the surface of the non—homogeneous anisotropicspherical inclusion within non-
homogeneous anisotropic solid assuming m = m’ = —1 and = =1 (in particular)
for different values of 6 (0 < 6 < 7/2). Qy shows the variations of Q in the
- associated homogeneous case where c4q = A4, o6 = Ags, g = g and des = pes.
It is observed in Fig.1 that for all values of 6 (0 < 8 < x/2), Q are greater than
those in homogeneous cases.

STRESBES

Fuarther in Fig.2 for an interesting case, we exhibit the variations of S and R
(5=%06,y, R= XA:'%';'UM ) on the surface of the non—homogeneous. spherical
inclusion when the material outside the inclusion is rigid assuming m = —-1,n =1
(in particular) and e/a = 0.5 for different values of § (0 <0 < 7). Sy and Ry
show the variations of § and R in the associated homogeneous cases, respectively.

It is observed at a glance that there are some peculiarities in Fig.2, R, Ry
both in homogeneous and non-homogeneous cases within (50° < 6 < 60°) and
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(150° < @ < 160°). In the first interval (50° < # < 60°) we observed a rapid
change of R & Ry but not in a systematic patern. While in (150° < 6 < 160°)
ualikely of the expectation both of them have some peculiar elevation.
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‘Naprezenia w niejednorodnym ciele alotropowym ze sferycznymi
wirgceniami z kulistym sztywnym rdzeniem w Srodkn

Streszczenie

Celem pracy jest rozwaienie problemn rozklzdn naprezen spowodowanych jadrem w
postaci srodka obrotu w nieskoriczonym, niejednorodnym, sferycznie izotropowym cisle.
Rozwazany jest rowniez wplyw sferycznego wtracenia ze sztywnym rdzeniern w srodkn
na rozklady naprezen w rézmych materialach niejednorodnych w przypadkm gdy stale
sprezyste przyjmowane sa w postaci funkeji polozenia.
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