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1. Introduction

The dynamics of rotors suppored in journal bearings has been studied for
more than 60 years. Rich literature on the subject from the early paper by New-
kirk and Taylor (see [1]) through more advanced research done by Hori [2] and
Tondl [3] to the recent results obtained by Akkok and Ettles [4], Malik and Hori
[5] and Muszyiiska [6,7] gives a survey of methods and approaches to the - problem
of stability, critical rotational speed and postcritical whirling of shafts rotating
in journal bearings. A comprehensive study of transverse vibrations of an unloa-
ded flexible rotor/bearing system was presented in [6] and then developed in [7).
.There are, however, structures in which rotors work under significant transverse
loadings and their eccentric equilibrium stability and self excited vibration create
a research problem. Provided that an adequate journal bearing model is admitted,
a critical speed of rotation can be found by applying Hurwitz stability criterion
to the linearized system. That is often enough to design a reliable rotor/bearing
system operating far from the stability limit. One of the important problems of
a nonlinear approach is the behaviour of a rotating system in a neighbourhood of
criticality. On the one hand, sometimes rotors have to operate under conditions
close to criticality and a vibration of small amplitude is acceptable. On the other
hand, it is important to be able to exclude subcritical self-excited vibrations which
correspond to a catastrophic loss of stability and are much more dangerous than
usunally considered supercritical ones. ;

A satisfactory work of a rotor/bearing. system in an unstable region of equili-
brium determined on a linearized theory was experimentally confirmed by Akkok
and Ettles [4]. Malik and Hori [5] have recently obtained nonlinear trajectories in
an unstable region of a linearized system using an approximate nonlinear analysis.

The present paper offers a new approach to the above mentioned problem based
on the theory of Hopf bifurcation which has been developed by Hassard [8], Iooss .
and Joseph [9] and others. The Hopf bifurcation theory provided a mathematical
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tool for a nonlinear analysis and, moreover, it enabled us to discover some intere-
sting qualitative features of the system near critically. It is well known that rotors
supported in journal bearings exhibit critical speeds of rotation. However, their
near critical behaviour (super — as well as subcritical) is still 2 problem of question.
Self-excited vibrations which occur at criticality and develop- with further changes
in rotation speed correspond to the Hopf bifurcation in the differential equations of
motion. This paper gives an explanation to the phenomenon of self-excitation of a
rigid rotor vibration due to an oil-film action. First it is shown that the considered
system satisfies the assumptions of the Hopf theorem and the bifurcation theory
can be used. A theory formulated by Iooss and Joseph [9)] is applied which enables
one to construct a bifurcating periodic solution in a parametric form of a series
and to determine its stability. :

. 2. Equations of motion

The considered system is a rigid rotor of mass m supported in journal bearings
and statically loaded by a transverse force @ of constant direction. The system
is symmetric and its motion is assumed to be plane. Applying a plane journal

Fig. 1. Coordinate system

bearing model based on superposition of hydrodynamical forces corresponding to
the wedge and squeeze effects treated separately, we obtain the following equations
of motion in the polar coordinate system shown in fig.1 (see Appendix):

m(ﬁ - ﬂdz)el = Fﬁ(ﬂaaaﬂad;wao)) (2'1)
m(Bé + 2Ba)e’ = Ev(B, 0, B,6;w,Q),
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where:
Fg=Pg+Qsina, F,=PFP +Qcosa,
_ B*w ~ 24) [ B 2 1+8
Pg = 2CR{(1-—[32)(2+[32)+ﬂ 1_32+(1_ﬂ2)%arctg 1—[3]}’ (2.2)
_ Blw —24)
P, = HCR(l-ﬂ’)(2+ﬂ2)’
where in turn:
oo oul
T mé3

and p — oil viscosity, L — bearing total length, R — journal radius, ¢’ - bearing
clearance, § = ¢'/R - clearance ratio, w — angular speed of rotation, m — rotor
mass,  — transverse static load, (8,a) — polar coordinates of journal center.
Equations of motion (2.1) contain two parameters w and Q which are essential for
the bifurcation parameter.Puting § = & = 0 and § = @ = 0 in (2.1) leads to the
expressions:

2CF%w _ X
A=B2+) me ™
Cxpuw =9 csa, (2.3)

= c
(1-p)i(2+p7) me
which determine the set of equilibrium points (8p, ag):
260

tgao = —-;(l_—'?)g:. (2.4)

" For every fixed Q and w, equilibrium coordinates 8y and &g can be calculated
using relations (2.3), therefore By = fo(Q,w) and ap = ag(Q,w). Introducing new
variables: *

wp = B - Po,

w2 = g,

3 = a- ag, - (2.5)
ug = g,

we obtain the following matrix equation of motion:
%= f(w,% Q), (2:6)

where:
= {ug, uz, 83,4, f={ffaf3 A7,
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‘and

fl = u,
fa = (m1+fo)us+ #[Pﬁ(m + Bo, u3 + ap, uz,u4; Q) +

+Q sin(uz + ay)}, 2.7
f3 = 4,

o _2uat 1 -

fa = R g +,ﬁo)[P-r(u1 + Bo, u3 + ap, U2, 443w, Q) +

+Q cos(uz + ap))-

3. Stability of equilibrium

‘We shall determine the region of stability of the trivial solution of equation
(2.6) applying the Routh-Hurwitz criterion to the Iinearized equation of motion:

$=Aw,Q), - (3.1)
where
= 9%
A = B, o

The characteristic equation for a nondimensional eigen-value r can be written as
follows:

ritbsr b’ +hir+ b =0, (32)

where:
1
= F_(An/hs — AnAn),
1
= ;3-(A22A43 + Ay Ay — AsgAq),

1 .
E(—Aﬂ— A + AxppAy),

g ¥ F &
I

1
= ;(-A« — Ag).

Calculating derivatives A;; and introducing ¢ = —6%, we obtain the following
expressions for coefficients of equation (3.2): ,

bo = ——;?53 {8ﬂ3(2 + BY) + x?B(264 - B2 +_2)},



BIFURCATING SELF-EXCITED... 87

14442 5q
b 5 m( T+ W), | (33)
129

= Zipa 1P(6— B2+ 83) + 12x9W ),
12¢
B:D’
where:

1+/fo
1- 5

Since b; > 0 (i = 0,1,2,3), boundary of the stability region on the (8o, %) -
plane is described by the following equality (on the Routh-Hurwitz criterion):

bybabs — bob3 — b} = 0, (3.4)

which can be solved with respect to ¥:
, ¥ = h(Bo), (3.5)
where h(fo) is a monetonically decreasing function shown in fig.2. The region

B=1-4, D=2+8, W=D(ﬂ,,3%+2arag

. L§> 9> 0> 0>qj

i @ ™ g 0 B
Fig. 2. Boundary of the stability region and curves eon-espond to increase in rotation
speed under constan nondimensional 1

above the curve is the region of stability. Fig.2 also presents a set of curves
representing operating points for various journal loadings with increasing rotation
speed w. They form a family of curves derived from (2.3) and described as follows:
(463 + = B)E, (3.6)

¢—b—’BD
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where @’ = 6Q/(ms’C?) is the family parameter.

At points of intersection of curves (3.5) and (3.6) there always exists a pair of
imaginary eigen-values and that is one of the necessary conditions for the Hopf
bifurcation. A dominant. role is played by the first eigen-value (with maximum

real part):
Ty (U, QI) = 6(""’7 Q') + i")(‘v', QI)1
which becomes imaginary at the criticality, i.e:
r1(wer, Q) = i20(Q)-
It was examined by solving the eigen-problem that the trajectory of the first eigen-
value r; on the complex plane (£, ) intersected the imaginary axis for every @'.
It implies the following inequality:
s / %("’ﬂ' ’ Q,) > 0:

which expresses the second condition for the Hopf bifurcation.

‘4. Bifurcating solution

Bifurcating at the critically periodic solution of equation (2.6) is sought in the
following parametric form of a series due to looss and Joseph [9]: .

Wo,e) = S tee™e), 5= 20,
=1

w = wa.+§:(n!).‘1£"w,., (4.1)

n=1

2 = @+ ()",
n=1

i

where {2 is the periodic solution frequency, ¢ is a parameter interpreted as a di-
stance between periodic and constant solutions, cf")(s) are 2r — periodic functions
and wy,, £, are constants to be determined. '

Let P, denotes a space of continuous, differentiable 2r — periodic functions
with the scalar product:

2r 2%
[0(a), M) ¥ - [ < os),6(s) > ds = o | acbids. (42)
A e 0
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Then unknown functions #(")(s) belong to P,.
Introducing (4.1) into (2.6), expanding the right hand side of (2.6) into Mac-
laurin’s series and using the notion of the multilinear operator:

) af .. J(w,u0 + 6181 + ... + 6245 Q)
f&'ik;-_!(“”“°|“"""“*) Y 9%,...0%;

’

We obtain the following linear recurent system of equations:

Ioﬁ(l) = 0,
Iw™ = g .(s) for n>1, (4.3)

where: a0) )
Io(-) ¥ =007 + fu(wer,01()),
d‘u(l) 1)
gn(s) = gn(a + 21’) = ngﬂ—l ds - Mﬂ—llw(wcraolu ) - Rn—l
and R, _; contains terms of order lower than n.
Introduce harmonic functions:

z=(,6", 1 =§6°, (4.4)
where £, and £ are orthonormal eigen-vectors of A(w, Q) and AT (w, Q) correspon-
ding to the first eigen-value at criticality. Assume also the following condition:

[v,27] =, (4.5)

which implies that the first harmonic is contained in %) and functions %™ for
n > 1 do not contain it.

It is easy to examine that Iox = Iy = 0. As z and 2 are linearly independent,
they can be superposed to form the steady solution for ¥(1) satysfying condition
[u®, 2*] = 1, which yields from (4.5).

Therefore:

u =z43 (4.6)

The n-th equation of (4.3) has a 2r — periodic solution when the following
orthogonality condition (Fredholm alternative) is satisfied:

E",Z.] =0. (47)

It enables to eliminate secular terms from solutions for n > 1 and it can be
transformed to two real equations for unknown coeflicients wy,,—; and 2, _;:

Wn—l&d(wcr) + Re[Rn—I, Z‘] = 0,
n_1 + n_1M(we) + Im[R,_y,2*] = 0. (4.8)
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For #n = 2 we have B = fyu(wer, 0/u™|u®). Using (4:6) and (4.4) we can show
that [R;,s*] = 0 and then w; = 2; = 0. Moreover, applying the mathematical
induction, one can prove that wy;_; = 291 =0for ke N.

Putting »n = 3, we obtain wy and £2; from (4.8):

i _Re[Rz,I']
% 3£w(“’cr) ’
1
2; = 3w2flw(wcr)+‘§Im[R2vz‘]v (49)
where: 3
By = 5fsu(@er 08V u®) + £ (wer, OuV uDu@). (420

Periodic function ﬂ_(z)(s) is described by equation of type (4.3). Its right hand side
has the following form after applying the Fredholm alternative:

-

g2(3) = 8 + P 4 Pe~i2* (4.11)

where:

P=- uu(wcr,olf(llfo) and §= _2fuu(wcﬂol£0|20)'
Solving (4.3) and using (4.11), we obtain:

W =K+Y+Y, ' (4.12)
where:
Y = L%,
K = {A'wrQ)} 5,
L = {A(we,Q)— 220} P

and i is'the unit 4 x 4 matrix.
Regquired in (4.9) scalar product of R; and #* after some algebra can be expres-
sed as follows:

[R2, 2] = 5 (Fuaer, Ol ) + frnier 0ol ), £5) +
+ 3<!wu(wcnol'€0|£0|£0)v£6)' (4‘13)

Now we have determined everything which is necessary to build the periodic solu-
tion of the second order approximation:
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u(s,€) = e(€ge” + €oe™) + %EZ(K + Lei® 4 Le™i2),
1 5
W = Wer + SW2E", (4.14)

2 =0+ %9252,

where i) = ry(wer),€, is the normal eigen-vector described by the equation
{A(wer, @) — i1201}€; = 0 and ¢ is proportional to the norm of u in P;,.

5. Stability of the bifurcating solution

As the equilibrium is unstable in postcritical situations, one could expect that
the bifurcating periodic solution corresponding to the self-excited vibration of the
rotor is alvays stable. However, looking at expressins (4.14). we can suspect that
things can be different. In some cases the subcritical bifurcation is possible in
which the bifurcating solution exists for w < wg . So, stability of the periodic
solution is not a trivial problem.

Let U(s,€) denotes the bifurcating solution, so that:

U= f(,U;Q).
Consider the linearized equation in the neighbourhood of U:
b= fu(waU(aaE)I")a (5.1)

wherev =u - U.

Stability of the trivial solution of (5.1) depends on the Floquet exponents of
this equation. It can be shown that periodic function U satisfies equation (5.1),
so one of the Floquet exponents is equal to 0.

On the factorization theorem (after Iooss and Joseph [9]) the second real Flo-
quet exponent determining orbital stability of the bifurcating solution can be
expressed in the following form:

o(e) = a(é)%, (5.2)

where (¢) is a smooth function in a neighbourhood of £ = 0, such that 4.(0) =
~£.(wer) and 15(¢) is an even function. Since 42 = ew; + 0(¢?) and 4(c) =
—&u(wer )€ + 0(e?) then:

o(€) = —€u(wer Jwne® + 0(€°). (5.3)
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Therefore, the condition for the asymptotic orbital stability of the bifurcating

periodic solution is:
Eu(wcr)“’? > 0. (5.4)

We shall examine this condition for different transverse loadings @ in the next
part of the paper.

6. Exemplary numerical results

‘In the numerical calculations the transverse loading was represented by the
nondimensional force Q'. _
For every Q' selected from a set corresponding to a wide loading range the
fo]lcrwmg qna.ntxtles were calculated:
Wer critical rotation speed,

Bocry Yer — critical eccentricity and dynamic journal parameter,
§o(Wer )y Nu(wer) — w - derivative of the first eigenvalue at criticality,
20 — initial flutter frequency,
wa, 22 - first coefficients in w(e) and 2(¢) series,
K - vector of the constant component in the second appro-
ximation solution, '

L — second harmonic vector,
I T - orthonormal eigen-vectors at criticality.

&)

e: :

\\u._
g_’
o
5 @z e 05 08 W QT

- Fig. 3. Initial frequency of flutter vs. nondimensional static load

Fig.2 shows the curve ¥ = h{f) separating the regions of stability (above) and
instability (below) of the equilibrium on the (f8p,%) — plane. When w increases,
the representing point moves down the curve corresponding to the selected static
loading Q’. It enters the instability region for w = w. It can be seen that self-
excited vibration may occur in relatively large range of eccentricities. Relation
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Fig. 4. Regions of sub-and supercritical Hopf bifurcation and corresponding graphs of
flutter frequency vs. rotation speed

between the initial frequency of vibration and the static loading is presented in
fig.3.

One of the most important results can be observed in fig.4 exhibiting existence
of two loading domains. For small static forces Q’, say @ < Q7 we deal with the
subcritical bifurcation in which unstable vibration exists for w < w,,. For Q' > @}
the Hopf bifurcation is supercritical. Fig.4 shows also small fragments of 2 — w
relation which is linear at the present approximation {2 = 2 + %(w - Wer )

Two limit cycles projected on the plane of displacements — one unstable corre-
sponding to a small nondimensional load @’ and the other stable for much greater
@’ are shown in fig.5. Both limit cycles were obtained for the same relative distance
from the criticality.

7. Final remarks and conclusions

The main results of the present paper are as follows

1. An approximate periodic solution describing small self-excited vibration of
a journal bearing rotor has been constructed in a parametric form based
on the Hopf bifurcation theory. Formulae derived in the paper enable one
to determine amplitudes, frequency and phase displacements for both radial
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Fig. 5. Stable and unstable limit cycles projected on the plane of displacements

and circumferential components of a rotor motion as well as to determine its
orbital stability.

Self-excited vibrations may occurs in large range of static loadings and re-
spectively in large range of eccentricities. There is no characteristic eccen-
tricity as mentioned in some previous works.

. In case of small static loads we deal with a subcritical bifurcation to an

unstable limit cycle for w < w., and this corresponds to a catastrophic loss
of equilibrium stability. When the static force is sufficiently great, a stable
vibration bifurcates from the equilibrium that becomes unstable itself. This
theoretical result coincides with some experimental data obtained by Tondl
[3] and graphically presented without theoretical explanation.

The initial frequency of the self-excited vibration (flutter) considerably de-
pends on the nondimensional static load. Devided by w,, it gives a fraction
which is found to be much smaller than usually reported 0.5 (in the region
of supercritical bifurcation it can be even smaller than 0.3).

. The second order solution u{?)(s) contains a constant component which de-

pends on loading. It means that the center of vibration is slightly displaced
from the initial equilibrium position.

. The coefficient of inclination of the linear function f2(w) also depends on

loading. In the subcritical bifurcation domain it is positive. In the region of
supercritical bifurcation it increases with the nondimensional loading from
negative to positive.
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7. The method of analysis applied is general and efficient enough to be used in
variety of problems of elastic and viscoelastic rotor/bearing systems.
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Appendix

The hydrodynamical pressure in a transverse journal bearing corresponding to
a plane journal motion can be described by the well known Reynolds equation (see
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[10] for the assumptions and deriva.tion):

381: BE o
where p* = p/(616%) — dimensionless pressure, H = 1 — f cos & — normalized film
thickness, t — time, ¢, @ — angular coordinates (6 = ¢ — a).

The bearing is assumed to be sealed which means that the pressure is uni-
formly distributed along the bearing. The problem is how to determine boundary
conditions for the pressure function. It can be shown that Gimbel’s approach (so
called 0 — r model, [2]) is not valid in cases when squeeze has to be taken into
account [11]. The idea of superposition of the wedge and squeeze effects treated
separately consists in decomposition of the combined journal motion into three
elementary motions — pure rotation (w), circumferential motion (a) and radial
motion (4) [11]. The rotation of the journal and its circumferential motion create
the wedge effect and the corresponding pressure function is equal to zero at the
points of minimum and maximum oil film thickness. In the case of pure squeeze
(radial journal motion) points at which the pressure equals zero belong to the dia-
meter perpendicular to the radial velocity. Thus, the pressure distribution can be
expressed as follows:

2(6) = (1"’_" ,f::g)z {ﬂ(;‘i)z;‘_” o +Bc089} =g+ (02)

Expression (0.2) differs from that used by Hori [2] and by Brindley et al. [12]
(see [11] for the comparison). The radial and circumferential components’ of the
hydrodynamical force are determined as follows:

| x 3 °
Pl = <RL / Pu(6)c0s8dB, ~ Ps, = —RL / ps(6)cos 8d0,  (0.3)
1

. ;
P = —-RL / Po(6)sin€d6, . Pr, = —RL / 2.(6)5in 646 = 0.
o 3
Calculating the integrals in (0.3) and superposing the effects of wedge and
squeeze, we obtain expressions (0.2).
Streszczenie

) Praca poéwi¢cona jest analizie malych drgai samowzbudnych sztywnego, poprzecs-

nie obciazonego wirnika lozyskowanego slizgowo. W analizie zastosowano teorie bifurkacji
Hopfa. Zalozono, ze wirnik jest ukladem o dwoéch stopniach swobody. Réwnania ruchu
wynikaja z plaskiego medelu loiyska élizgowego, w ktérym superponowane sa sily hy-
drodynamiczne odpowiadajace efektom klina smarnego i wyciskania smaru. Rozwiazanie
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okresowe powstajace z nietrywialnego polozenia réwpowagi poszukiwane jest, wedlug te-
orii Joossa i Josepha, w postaci parametryczne). Wyprowadzono rozwiazania pierwszego
i drugiego przyblizenia. Rozwazania teoretyczne zilustrowano obliczeniami liczbowymi,
ktore wskazuja, ze obcigzenie poprzeczne moze znacznie zmienié zachowanie sie ukladu w
sasiedztwie punktu krytycznego.

Peswone

B pabore mpoBofHTCA AHANHS3 MAJLIX ABTOKOJeGaHRE :XECTKOro poTOpa Bpaularo-
merocsd B NOAIUMOEAKAX CXANbXeHWA B OPBCYTCTBER NONEPeYHOR HArpyskd. B ama-
Ju3e npuMenRdgeTcy Teopud budypxanuy poxaenzy naxaa. Ilpeamonaraercd, YTo Ko-
nebatTepEas cEcTeMa 06nafaeT ABYMA cTeNeBRAMHA cBOGonnl. YpaRHeHHs AOHKeHUI
CHAEAYIOT H3 IUIOCKOH MOZeNH HOAIIMIHWKA, B KOTOPOR OTAeAbHhIe 3QPeKTH cMa304-
BOT'0O KJIAHA ¥ BLINAB/IEPARHESA CM23KH HOABepramTcd cio:xxenmw. [lepmopuyeckoe pe-
IHIeHWe BOSAHMKAION[AE H3 HETPHBHANLHOIO COCTOSHEA PABHOBECHS NA3ZLICKMBAETCA B
BAjie NapaMeTpH4Yeckoro psapa mo TeopdE HMocca u [Dioseda. BriBenennl pelnéHHEL
OepBOro ® BTOPOro OpubnmxeHus. Teoperdveckwe PACCYX[CHHES HIUIIOCTPUPYIOTCS
YHCHEeHHRIMH OPAMEPAMHE, KOTOPRE YKASYIOT, YTO HOIePevHAR HAIPYRKE MOXKET 3HA-
YHTeN5HO H3MEHMTh NOBefleAne CHCTeMbI BOIA3H KPHTHYECKOR TOUKH.
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