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1. General remarks

Plastic properties of materials are associated with permanent (pla-
stic) deformations, i.e. such deformations which do not disappear in spi-
te of vanishing of loading (exertion) factors which initiated the defor-
mation process. Plastic deformations are analysed in the frames of the
theory of plasticitythat deals with idealized models of materials which
have twomalin features:

(1) The deformation process is irreversible, history- dependent, as-
sociated with plastic strains and dissipation of energy; :

{2) The deformation prdcess is time-independent and rate- insensitive.
The first feature distinguishes the theory of plasticity from the theory
of elasticity and in the case if the latter one does not appear the ma-
terial (deformation process) is called viscoplastic. If the deformation
process iurns out to be partially reversible the material is elastopla-
stic. ' ;

We have started with the basic definitions which are at the beginning
of a distinguish monograph by ZYCZKOWSKI (1981) where the theory of pla-
sticlt& is originally presented. We mention here only that the classical
theory of ﬁlastlcltyrefers to the phenomenological formulation on the
basis of continuum mechanics. Such a theory was realy developed in 40-

50-ies and it was explored in various approaches and approximate methods,



codes and instructions for design of engineering structures. Despite of
that the elastic-plastic analysis turned out to be difficult and limited
to simple problems and ﬁnconplicated structures or only to their ele-
ments. . S

Appearance of éomputers and development of numerical methods opened
the door to wider analysis of problems of the theory of plasticity and
its applications. It is evident that the Finite Element Method (FEM) was
used guite early. The first paper in this field was published byGALLAGHER
et al.asearly as 1962. Since the end of 60-les big computer codes and sy-
stems have been 1mp1eﬁented in the field of plastic analysis,cf.ARMEN and
PIFKO (1982), and have been successfully used to the analysis of various
aerospace and naval structures, in reactor technology, in civil and me-
chanical englineering as well. The progress in this field is reported on
.various symposia, seminars and conferences. From among a great number of
conference proceedings it is worth to turn attention to the latest ones,
devoted to the computational plasticity, Eds. OWEN et al. (1987,19839),
and also to the theoretical background, Eds. SAWCZUK and BIANCHI (1985),
Eds. KHAN and TOKUDA (1989). ‘

A characteristic feature of coﬁputational methods for the analysis of
problems, founded on the theory of plasticity, is a wide utilization of
numerical methods and the software which have been developed for the ana-
lysis of elastic and geometrically nonlinear problems. The needed modifi-
cations and supplements concern the constitutive eguations and considera-
tion of the history-dependence of the plastic deformation process.

The comparison of precomputer and recent approaches -points out a pre-
ference of elastic-plastic models over simpler rigid perfect plastic mo-
dels and the common use of the incrementél, plastic flow theory instead
of the total strain deformation théory. It is also evident that.the inte-
rest in the limit state analysis decreases in favour of the analysis of
the full deformation process -— starting from the first ylelding up the
limit state. Such a reorientation corresponds, of course, also to the
common application at incremental techniques to the analysis of‘nonlinear
problems. _

The presented paper 1s based on the lecture-notes by the author which
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were printed in 1989 as a report of the Delft University of Technology.
In the paper only selected problems of the elastoplastic analysis of
structures are pointed out.

The main differences between the elastic and elastoplastic FE analyses
are discussed. Levels of the analysis are defined. At the point level ?
the assumptions of the classical theory ot plasticity are assumed. Qua-
drature formulae are used to compute the generalized stresses on the
cross-section level ¥. The consistent approach, dependet the implicit in-
_tegration scheme on the level P, is especially efficient when it is as-
sociated with the Newton-Raphson method on the structural level B. Compa-
rison of varions methods are made on an example of the perforated tension

strip to confirm the above conclusion.

2. Levels of the analysis

The distinction of the analysis levels, introduced by 2ZYCZXOWSKI
(1981), enables us to discuss precisely various problems under considera-
tion. Similarly as in the mentioned book by 2YCZKOWSKI we introduce the
following levels:. i

Point level ?.is the basic level, related to any or selected points of
material continuum or to a model of structure. Tensorial notation and
calculus are preferred on the level ? in order to describe objects and
their relations in the spaces, well known from the continuum mechanics.

Cross-section level ¥ corresponds to such structures as bars, plates
and shells in which one dimension , e.g. thickness, s much smaller than
other dimensions. Generalized variables, e.g Iintegral quantities, are
used on this level and they are related to each other through energy or
work functionals (generalized displacements versus g.loads, g.strains
versus g.stresses). On the level ¥ both thé tensors (e.g. in shell equa-
tions) and matrices are used.

Element level & is introduced for a separate part of the structure
(members, substructures) or for an individual finite element. In order to

analyse different fields approximated functions used to be applied (e.g.
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shape or basic functions), The matrices are commonly used on the level &.

Body (structure) level 38 1is also called global. level contrary to
local, lower IeVe_ls ?, .‘f,. € . On the level B algebraic relations are pre-
ferred because of the use of computers, numerical methods of algebra and
matrix calculus. .

Methods of the analysis have to correspond to vcha.racteristic features
of the levels. In plasticity the level ? is especially difficult for ana-
lysis because of nonlinearity and time-type dependence of relations. That
is why the transition from one to another level is not straiéhtforward.
especially with the fra.nsformations P o . In general the analysis of
elastic-plastic problems needs more operations and additional computer
memory than elastic analysis. )

In order to describe more precisely the deformation process the defi-
nitions of active and passive processes are introduced against loading
and unloading. The actlive proéess is related to the increase of plastic
strains on the level ? or to the development of ylelding zones on the
level & . From the viewpoint of such a definition the passive process
is related to the lack of increment of plastic strains or to a fixed zone
of y}elding as well as to the elastic behaviour of material. As a coun-
terpart to the active and passive processes loading and unloading can be
considered, associated with the increase or decrease of 5. load-type para-:
meter. It ls/ quite possible that for a loading of strugtures the passive

processes can take place on the levels # and vice versa,

3, Incremental equations

3.1. Constitutive relations on the level $. The strains are assumed to

d

be small so their increments can be split into the elastic and plastic

parts:
de = de®+ ae®, (3.1)

and instead of increments df:_ the rates E can be used, calculated with
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respect to a conventional time of plasticity <t (any, but monotonically
increasing parameter of the problem under analysis):

'+ & . ' - (3.2)

19
[ ]
218

In the above formulae and in what follows the one-column matrices (vec-
tors) are used instead of appropriate tensors, e. g the strain and stress
vectors €, o are introduced.

A subsequent yield surface is defined by the follqwlng equation:

F (o, @, k) =0, s ; (3.3)
which also contains the Invltlal yield surface
_Fo s F (o, O, ko) =0. : (3.4)

The associated flow' rule and the hardening rule are postulated ac-
cording to the following relations:

‘p _ OF : . i

E-@*“J} . {(3.5)

a=Glg o & o ) S L)
U e

k = H(e ) where € =[2(cp) c"] ; : , 3.7

Using the above relatlons and satisfying the consistency condltlén. i.e.
F=0 for the active deformation process, the plastic parameter can be de-

termined:

A= 1 E c, : (3.8)
8 -— —
where the hardening function g 1is in the form:

da

€5y : < oF 8F8k
g= E°n +h, h--[——— n. (3.9)
Bz 5" oa % |

corresponding to a special case of the evolution law a = [(5’). Owing to



260 2. Waszczyszyn

the above relations the increment of stress vector dor can be expresed
as: ,

i = - o £V, a0

where .the modular, plastic stiffness matrix is:

(3.11)

p B e T
=2 E n, nE°

. The zero-one parameter 8 depends on the type of the deformation process:

B=1 for F=0 A nT E e >0 i active or neutral
-+ - = = process,
. (3.12)
B =0 for F=0An-‘-E“e<0, I tve
F<O -F = = processes.

In the case of passive processes the constitutive relation (3.10) is sim-
plified to the form:

= Ee (3.13)

Q-
Ly

where the symmetric, moduler elastic stiffness matrix E° isused.

3.2. Generalized variables on the level ?. Applyiné the appropriate
hypotheses and definitions for integfal quantities the following transi-

tion from the point level ? to the cross-section level ¥ can be deduced:
P ¥ (3.14)
m n

Such a trensition was considered in the book by ZYCZKOWSKI {1981). Num-
bers m and n correspond there to the number of basic exertion factors
on the, ? and ¥ levels respectively. In comparison with ZYCZKOWSKI
additional members k and 1 def‘ine the number of independent displace-
ments. The above numbers are used to define the size of vectors (one-

column matrices) on the levels ? and ¥ . All vectors are listed below;
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the names of variables for ? and generalized variables for ¥ are the
same:

; . Levels
Variables ’ ? 4
displacement vector Yt Aersi1)
load vector Lexn) Piix1)
strain vector ' € axt) € nx1) (3.15)
stress vector % ax1) Siax1)
stiffness matrix Evm 2(“",

As an example we can consider a bar model under Bernoulli-Euler hypo-
theses which lead to the 'transition ?f—-) .‘f: for the plane bending/ten-
sion and 79" in the spatial state. In the case of Kirchhoff-Love

1 T4 ”
theory of thin shells the transition is TZ—-LV: , and ?5—).9’3 for the
Reissner — ~Mindlin theory. Let us consider the Kirchhoff-Love theory of

thin plates. In such a case the g. strain and stress vectors

are:
e =1{¢2 ¢° 70 K. o A e e
IR 1. 2% e’ liangtsfad -2 5 ¢
(8x1) (3.16)
s ={n,n,n _,m, m, m_}.

- 1 2 12 1 2 12
(8x1)

Thé g. stiffnes matrix can be written in the following form:

[ h/2 h/2 3 ]
I E°Pdz I E°P zdz
5 =h72 -h72
D°? = ; (3.17)
S h/72 h/72
(8x86) J' Eepzdz l’ g"’zzdz
-h72 -h72
L E

The modular stiffness matrix EF of size (3x3) depends both on constitu-
tive equat.ion that was used as well as on the type of deformation pro-
cess. If the passive process takes place then the elastic plane strain
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matrix Ee should be substituted into (3.17) since pB=0 1in (3.11).
In general case of nonlinear stress-strain relation and local unloa-
ding the integrals over the cross section (along the plate thickness) can

be computed numer;cally:

J 3 :
= [f‘(i)u . ZAJ £(z,) . : ' (3.18)

(1) 1=

The number of integrgtion pointsAJ. their coordinates zJ and the weight
parameters-Aj influence the accuracy of the approximation (3.18).

Multilayer substitutive cross-sections are commonly used for computing
the integrals (3.18) but also trapezoidal rule, Simpson, Gauss or Lobat-
to’'s formulae are used as well - cf. WASZCZYSZYN (1989), pp.77-79.

The s&application of quadrature formulae is time consuming since the
analysis on the level ? has to be carried out at every integration po-
int J where appropriate information is stored and modified. That is why
constitutive relations are attempted to be formulated directly on the le-
vel ¥ . Plastic interaction surfaces for g. stresses are used in such an
approach, combined with the g. aésociated flow rule and other relations
similar to those as given in par.3.1 at the level ? - cf. WASZCZYSZYN
(1989), pp.79-87. '

. The sketched approach seems to be very attractive one since the stress
analysis at substitutive layers can be overcome - cf. CRISFIELD (1981),
SIMO et al. (1989). But it should be emphasized that the integral (area)
approach corresponds to the elastic, perfect plastic model of material
and the strain -hardening or locally passive process énalysls_ls practi-
callyimpossible. ' a7 et e !

The incremental relations on level the ¥ are assumed in the fbllowlng

form:

1
be = Lx(Ag) + le(Q.Ag) t3 Lz(Ag) ’
(3.19)

A =Q°PAgzD_°p[l_-_t(Ag)+Li1(Q,Ag)l.

where Lﬁ and L=2 are linear and quadratic differential operators respecti-
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vely and Lz(AQ) = L“(AQ,AQ) . The constitutive equation (3.19)2 is as-
‘sumed to be linearized with respect to the g. displacement increment Ad.

3.3. FE incremental equations. Let us assume the FE approximation of
the g. displacement field Ad(£) on the finite element level 8 :

a8 = N 85", (3.20)

where £ is a vector of independent variables, N(§) is the matrix of shape

-functions and Ag“)

is the vector of increments of nodal (generalized)
displecements in the coordinate system of the finite element (e). The in-
dex (e) is omitted In the relation which results from (3.19) on the base

of the approximation (3.20) :

Ae

(B, + B (d) + 5 B,(AQ)] Aqg,
(3.21)

s = D°° (B, + B (d)] Aq -

where go is the linear matrix, the matrices 'Ex and 5_2 depehd linearly on
the dispacements d and Aq respectively.
The above relations are used in the principle of virtual work :

Z‘I(an;)’(a + As) dq = ZJ(GA:_!)T(Q + Ap) da , (3.22)
(o) (e) 2 :

s P ek : L T

which is valid also for the displacement-dependent load :

op
p(d,§) = p (§) + 5d Ad . : (3.23)

The transformation into a global system of g. nodal displacements
Aq — Q and of the FE stiffness matrix O G
detail. Comparing the coefficlents at the variation 8AQ the following
FE equation, linearised with respect to the increments AQ, can be formu-

lated : .

is not considered in

K. 20=42 +B (3.24).
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‘where ET is the tangent stiffness matrix :
K. =K +Kl(s)+K(d + lsp(n). (3.29)

and R is the vector of residual forces :

R=P - E(g) . (3.26)

The stiffness matrix 51 , vectors AP &and R are assembled of the

following FE matrices and vectors :

k'? = Jg TD°PB d0 - small displacement matrix,
-0 0 =0
'Q(e)
(e) [ T
[} . .
gv 22 §§2dn initial stress matrix,
n(e)
k'’ ((B + B )T D°P(B + B )dR - initial displacement matrix
“u ] =0 1 =0 _"1
Q(e)
. . op ) _ (3.27)
k'® =- [N' = NdR - initial load matrix,
0

ap‘®’ = |N"ap dn, p‘®’= [N"p de - incremental and
o0

total load vectors

£(°) = J(§o+ Bl)Tg dQ - internal force vector .

Q
(e)

The components of the matrices (3.27) can be computed by means of nu-
merical integration over the FE domain (%e). The integrands of the ma-
trices depend on the cross-section stiffness er or on the stress matrix

S which are computed at every integration point by means of the quadra-
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ture formula (3.18). In such a way the transformation % — ¥ —5 &
is carried out.

The initial load matrix g:” " reflects the dependence of external
loads on displacements. In case of non-conservative loads the global ma-
trix Ep depends also on boundary conditions and can be./ in general, non-
symmetric - cf.e.g. HIBBITT (1979),SCHWEIZERHOF and RAMM (1984).

4. Algorithms on the 8 and ? levels

The discrete continuation method (step-by-step method), combined with
an iteration procedure, is commonly applied to compute the displacement
vector Q . In Fig.1 two possible iteration schemes are shown to pass from

nel

one equilibrium configuration ®C to the other equilibrium state C.
The intermediate configurations 'c , corresponding to the iteration

steps 1 , are not in equilibrium, i.e. 'Bs 0.

Fig.1. Schemes for incremental procedures.

Scheme 1 is commonly applied to the elastic analysis and can be ef-
ficiently used also on the structure level 38 1in the elastoplastic
analysis. Scheme II should be preferred on the ? level in case of ela-
stic-plastic matérial in order to ensure partially the path-independence
of the deformat'.ion process during the iteratlion process.
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4.1. Extended set of equations and the Newton-Raphson method. Let us
consider the single parameter load

P=aAP . (a.1)

where A 1is the load parameter and Ef is the load refference vector on

the 8 1level. In such a case and for the iteration scheme 1 the Incre-
mental set of FE equations (3.24) takes the form:

’5T AA'*'Q =aa'*"ap" + 'R . - (4.2)

The displacement and load increments AAI’IQ and 2A'*"A can be tre-
ated equivalently if Egs (4.2) are completed by a constrain equation.
From among various constrain equations - cf.e.g. WASZCZYSZYN (1983),
SCHWEIZERHOF and WRIGGERS (1986), the RIKS-WEMPNER equation can be writ-

ten in the following form:

lLT AA“IQ + ltA AAlo-lA = la Anolt , (4.3)

where (lL, ’tx) is the control vector and A™'t is the increment of the
control parameter (time-type parameter). The zero - one parameter ‘o
equals 1 for i=1 and. 0 for i>1. It corresponds to the predictor-
corrector iteration procedure. '

Eqs (4.2) and (4.3) can be written in the form of extended set of

equat ions:

1 (4.4)

(=2

Ml§=l

17

where the structure of extended matrix 'K and the vectors AA'Q and R
are shown in Fig.2. )

Specification of the control vector 'L enables us to gontinue the
computational process in the load-displacement space under load, a selec-
ted displacement or path-parameter control. Properties of the matrix lz
and the Newton-Raphson method, applied to the analysis of Eq. (4.4) were
discussed by WASZCZYSZYN (1983}, WASZ2CZYSZYN and CICHON (1987).
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K and - 8
’ /\ —~
-
AAQ B
w fr Fig.2. Structure
= of matrices In
Eq.(4.4).
- : -
i '-IJAAA Laat

The residual force vector depends on the g. stress field '§(_€_) %
1 1
R=R(s8) . . _ (4.5)

In case of the elastoplastic analysis the computation of the vector ‘g
requires the coming-back to the finite elements and to, substitutive la-
yers of the cross-section at the integration points in order to compute

the g. stresses there.

The tangent stiffness matrix ‘51 can be modified in a similar way at
every lteration step If the classical Newton-Raphson method Is explored.
bther methods, like the modified Newton - Raphson or quasi - Newtonian
. methods (BFGS, DFP, Broyden’s, Davidon’s) can also be used — cf. WASZ-

CZYSZYN and CICHON (1987)).

4.2. Computation of the stress vector and consistent modular matrix on
the level P. In the elastoplastic analysis the finite increment of the
stress vector has to be computed

T+AT : ZQAE EQAE
Ao = Jé dt = Jdg = Ir_:"’dg_ = E°P(t+aht)e . (4.8)
T ¢ €

In case of the explicit scheme o=0 and after the yleld surface is cros-
sed a deviation from this surface can occur (cf. Fig. 3a). In order to
minimize errors of such a scheme the subincremental technique was develo-



ped - cf. OWEN and HINTON (1880), pp.253-257. Main idess of the technique
are shown in Fig.3a. : . :

In recent years the implicit scheme, i.e. a=1 in (4.6), is rather used -
since it leads to more efricient and consistent algorithms. The aigorithn
for the computation of the stress increment - Al o consists then of elas~

. tic prediction and orthogonal napping on the actm.l yield surface °

. Fig.3. Subincremental and implicit scheme techniques.-

Ef.!-’ig. 3b. The consistent modular matrix is obtained during the cdmputa-
tional process. v

In order to illustrate the above algorithm the HUBER-MISES-HENCKY
yield function with isotropic strain bardenlng is assumed

. Fazdae-¥ie) =0, (4.7)

0 =

wheére A 1is a numerical matrlx associated with deviatoric stresses.
The finite increment of strain vector is related to the equilibrium

state m :

Ale m'e "¢ = a'c® + aleP ., . (4.8)

= " ¢+ E’A €, (4.9)

enables us to compute the following relation:

F - .
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lestr sl =’ - Paap e, (4.10)
“where "A‘c’ A"A A 'c has been used. Eq.(4.10) can be solved with res-
- _pect t.o _. g e
v'(l*AAEA)" ek (4.11)
Using t.he equalit y 4 A Y €T c ) the folowing formula
.for the eftective plast.ic st.rain ‘can ‘be derived
- CH 172 )
4 21 al :
_cp,u ep+[§ gA c] AA . (4.12)

After substitution of (4.11) and (4.12) into (4.7) the nonlinear equa-
- tion :

.F_(A-‘x)'--’-.o',. s £ e gt e . (4.13)

determines the increment of plastic parameter a'a. Eq. ('4. 13) can be sol-
- ved by means of various numerical methods, e.g. RAMM and MATZENMILLER
{(1887) used the Newton method, PABISEK and WASZCZYSZYN (1989) combined
bisection and ‘regula falsi' methods.

After the value of A'A 1s known the stress ‘¢ can be computed from
(4.11) and performing the transition $—¥—& the FE internal force vec-
tor £(°) is computed according to (3.2’7)e . The assembling process gi- :
ves the vector of residual forces ‘B defined by (4.5) and (3.26).

The differentiation of Eq. (4.8) with respect to the time-type parame-

ter. T gilves the equation which can be solved with respect to o :

lo=tE e - (M) AG) (4.14)
where the following equivalent elastic matrix is
E=((ED ™ +a'aa1? . (a.15)

From the conslstencf condition 'F = 0 the formula for (AA) , simi-
lar to (3.8), can be obtained (the superscript 1is omitted in what fol-
lows):
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. 1 T 2 ' }
(M) =—-pn Ec, : ) (4.16)
g . : )
where the following quantities are used :
ggﬁrﬁﬂr"’h- BF’AE -'h=m. (4.17)
and H'(cp) =V 3 dk/dcp.' Coming back to (4.14) the constitutive relation

becomes
c=(E-Ee=EPe, 2 (4.18)
where the consistent modular matrix is :

Eﬂ’ = é - é nr nrr é & e ' .(_4..19‘).

0> | =

N

This matrix is similar to the classical modular matrix E® in (3.10)
which results from the explicit scheme in the relation (4.86).

The consistent matrix Ep is valid for the active‘processes, defined
by the conditions (Ii. 12)1 . In case of passive processes E° s ufed in
(4.18) instead of E°®. In the consistent approach the matrix E™ is
substituted in relatiorﬁ of the type (3.17) and using the numerical in-
tegration the consistent, cross-sectional modular matrix :D,” can be
computed. ; > e 2 A 1

The above formulation has been based on the paper by RAMM and MATZEN-
MILLER (1987). Other yield functions were considered by MITCHELL and OWEN
~ (1988). B 2 =

The coupling of the itération schemé I on the level 38 (Fig.la) and
the implicit scheme of integra.tlon of coﬁstltu}:lve relation 6n the level
P (Fig.3b) is called the consistent approach. > '

Such an approach was originated by R.D.KRIEG and ﬁ.B.KRIEIG (1977) but
in fact it was well formulated by SIMO and TAYLOR (1985). During the re-
cent four years this approach has been introduced to majority of computer
codes - cf. Proceedings of the COMPLAS-II Conference, Eds. OWEN et al.
(1989). : '
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8. Numerical example

‘Many examples have been devoted to the comparison of efficiency of the

consistent Newton-Raphson (NR) method with the classical NR and other
methods in which the subincremental technique on the level 9 has been
used, e.g. papers by RAMM and MATZENMILLER (1987), MITCHELL and OWEN
(1988).0ne of suchexamples, the perforated tension strip is shown in Fig.
da. : :
_ One quarter of the strip has been analysed by PABISEK and WASZCZYSZYN
(1889) using 28 isoparametric, 8—nodé quadrilateral finite elements and
4 Gauss integration points in each. The boundary of yielded zone is
shown in Fig.4b for subseqdent load parameters A= 0.6,...,1.1 . The
convergence criterion has been related to the norm of residual force "
(R'R)'?/N < 107 where N = 200 is the number of degreesof freedom.

The ylelding zones are close to those from ZIENKIEWICZ (1978), pp.469-
471. In the frame of subincremental technique (classical NR) and A = 1.0
the convergence has been achievied in 5 iterations and eR-1o‘ = 2.01,
2.92, 4.59, 1.56, 0.152 . The consistent approach {(consistent NR) needed
only 2 tterations for eR-w‘ = 2.38, 0.623. For the load A = 1.1 the
classjical NR has been divergent and for the consistent NR the equilibrium
has been obtained after 4 iterations for e 10* = 5.37, 4.38, 1.03,
0. 162. : s _

In the baper by RAMM and MATZENMILLER (1987) the same example was ana-
lysed for 132 bilinear finite elements. Large load steps were used to
test various methods. Two convergence criteria were used for the Eucle-
dian norms: Jaa'q] / Ja'g) < 10° and J'R] 7 |™'B - "Rj < 107" At
the first load increment A = 1.1 about 25% of the strip area was yield-
ed (Fig.4c). The number of iteration and average CPU time are shown in
Fig.4d for the Newtonian and quasi-Newtonian updated methods.

The smallest number of iterations and lowest CPU time was obtained for
the consistent NR. The modified NR and DFP fail-ed at the first load
step. The classical NR and Broyden method were not convergent in the same

step.
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Fig.4. Perforated tension strip.
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8. Conclusions

In the paper attention has been focused on basic differences between
the elastic and elasto-plastic FE analysis of structures. If plastic pro-
perties of material are taken Into account then the analysis on the point
level P 1is of primary importance. Another difficulty is associated with
transition into the cross-section level ¥ where quadrature formulae (mul-
tilayer cross-sections) have to be applied to compute the generalized
stresses (croés—sectional stiffnesses).

The consistent approach is shortly discussed as a combination of the
implicit scheme of integration on the # level combined with the stan-
dard Newton-Raphson method on the structural level 3.

On example of the perforated tension strip the advantages of consis-
tent approach over the classical Newton-Raphson and quasi-Newtonian
methods have been proved.

The consistent Newton-Raphson method preserves its merits also in the
large displacement analysis of elastoplastic plates and shells - cf. RAMM
and MATZENMILLER (18987), SIMO and KENNEDY (1988), and for the nonlinear
stability analysis of elastoplastic arches under follower loads - cf. RE-
CZEK (1989).

The application of computational methods enables us to analyse succes-
sfully more complicated problems of thermoelastoplasticity, plastic buc-
kling and viscoplasticity, as well as metal forming and other engineering
applications of the theory of plasticity.These problems are partiélly re-
viewed in the lecture-notes by WASZCZYSZYN (1989) and recent achievements
are discussed in procceedings of conferences quoted in the references of
the paper. Such problems are often out of the classical assumptions of
the theory of plasti-city which limited the scope of the present paper.
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Su:-nry_

PODSTAWOWE PROBLEMY ANALIZY KONSTRUKCJI SPREZYSTO-
-PLASTYCZNYCH ZA POMOCA METODY ELEMENTOW SKONCZONYCH

Praca ma charakter przegladowy. Zwrdcono uwage na pbdstawoue rdznlice
miedzy anallza skonczenle elementowa  konstrukcji sprezystych 1§
spre2ysto-plastycznych. Zasadnicze znaczenie ma analiza na poziomie punk-
tu ? , gdzle korzysta sie 2z rownan konstytutywnych materialu
spre2ysto-plastycznego. Na poziomie przekroju & =zachodzi koniecznos¢
poslugiwania sie wzorami kwadraturowymi celem obliczenia uogslnionych sit
przekrojowych. Wskazano na 2zalety postugiwania sie roznymi schematami
procedur przyrostowych na poziomie ? 1 calego ukladu 3B .Przyklad licz-
bowy potwierdza korzysci wynikajace ze stosowania niejawnego Schematu
calkowania na poziomie ® 1 metody Newtona-Raphsona na poziomie 3 .



