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1. Introduction

In the theory of plasticity various models describing behaviour of the
material after plastification are used. Very often it is a model of a
body with some kind of hardening, according to real prc;pertles of mate-
rial. If such is a case, then stress-strain curve must be limited, not
admitting infinite value of stresses in material (infinite strength).
Corresponding physical laws of decohesion ‘describing such 1limits were
proposed by many authors. Detalls can be found in a monograph by
Zyczkowski (1981) in Secs. 18.7 and 18.8, but in spite of large number of
criteria of decohesion, their applications are rather scarce.

For engineering calculations frequently the model of perfect plasti-
city is applied. This model, as well as asymptotically perfect plasti-
city, does not need any limitation,as even for infinitely large strains,
stresses do not exceed certain value a'-o (yleld stress). For structures
made of such materials usually two values of limit external loadings are
distinguished: the elastic carrying capacity (e.c.c.)connected with the
onset of first plastic deformations, and the 1limit carrying capacity
{l.c.c.) when certain mechanism of plastic collapse is reached.

However, for some structures the limit carrying capacity cannot be
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reached, due to the'formation of certain inadmissible discontinuities.
Some other paradoxes in perfect plasticity were pointed out e.g. by Shoe-
‘maker (1968), (1974), Del Piero (1975).and Gamer (1983). :

Zyczkowski (1957) anticipated, that for disks the process of elastic-
plastic: deformations canhot be continued over certain value of external
loadings without violation of continuity of material. Zyczkowskl and ézu—
walski (1973) proposed to call such loédlngs the decohesive carrying ca-
pacity (d.c.c.)and treat them as real estimation of admissible loadings
for structure.

The aim of this paber is to give a review of papers dealing with pro-
blems of decohesive carrying capacity, and present the most important

features of this phenomenon.

2. Barg and bars systems

A bar under uniform tension made of the perfectly or asymptotically
perfectly plastic material can increéase its length infinitely. Introduc-
tion of any factor causing nonhohogenelty of the stress state, such as
body forces or notching, changes the problem. Only one cross-section can
be plastified, and in it strafns can be infinitely large, while in all
others cross-sections they are limited. As a result the elongation of the
whole bar cannot exceed certain maximal value, and tensile force cannot
be larger than the elastic carrying capacity. Further increase of exter-
nal loadings is impossible and will lead té separation of material in the
cross-section with maximal tensile stress, where the derivative of axial
displacement tends to infinity. '

The similar results were obtained by Szuwalskl and Zyczkowski (1973)
for some types of asymptotically perfect plasticity. The é&ongatlon of
the bar then depends on the value of an integral, interpreted as a part
of the complementary specific energy. For the most commonly used laws of
asymptotically perfect plagticity given by P;ager and JYlinen this integ-
ral 1is convergent resulting in limited elongation. Authors proposed

[

another law:
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e =f(c) = = ; (1)
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‘and proved that for nzl elongation of the bar can be infinitely large
leading to the limit carrying capacity.

The results presented above were obtained within the framework 61‘ the
small-strain theory, though the process ended with infinitely large stra-
ins. To avoid this internal inconsistency of theory 2yczkowski and Szu-
walski (1982) investigated the problem of nonhomogeneous tension of the
‘bar, using the finite strain theory. Namely they took into account chan-
ges of cross-sections using true stresses and logarithmic strains, but
retaining the assumption of uniaxial stress. The maximum of tensile force
with respect to the’ strain was determined. The condition is identical
with the condition of necking in homogeneous tension, but its meaning is
quite different. If the process is to be continued (the force s decrea-
sing) then only in one cross-section the process will be active, whereas
in the'rest of the bar we will have wunloading. As a result we obtain
again a termlnaf:ion of the process, but the reason changes. Instead of in-
admissible discontinuities of displacements, we obtain here inadmissible
discontinuities of stress field. For the maximal force the derivative of
normal stresses with respect to the material coordinate tends to infi-
nity. :

The problem of limited elongation of the bar becomes of special impor-
tance when such a bar WOfks in the bar system. This problem was discussed
by Szuwalski and Zyczkowski (1973) for simple perfectly elastic-plastic
bar system with either tapered bars, or with their own weight taken into
account. After the first decohesion, coinciding with the elastic carrying
capacity, the whole system immediately collapses.

The same bar system, but made of asymptqtically perfectly plastic ma-
terial, was analyzed by Szuwalski (19802). The Ylinen's material, as gi-
ving the possibility of limiting procedure to the perfect plasticity, was
used. For maximal admlsslbi'e loadings the maximal stress In the system
equals %y The corresponding d.c.c. of the system with weightless (or
prismatic) bars and perfectly plastic material exhibits the property of
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nonuniquness and depends on the limiting procedure. Disregarding the
weight of bars first, we always obtain classical l.c.c. while assuming at
’flrst the perfect plasticity, even for weightless bars the d.c.c. is rea-
ched. .The results were compared by Szuwalski (1980b) with those obtained
from the criterion of limlted strains and condition for extended work
after the first decohesion was formulated.

; The concept of d.c.c. is especially useful in the case of purely ther-
mal loadings, when thermal and plastic strains compensate each other, and
no mechanism of plastic collapse can be found. In absence of l.c.c.
Zyczkowsk! and Szuwalski (1975) determined the d.c.c. of a bar system, as
an estimation of admissible value of thermal loadings.

3. Statically indeterminate beams

The mechanism of plastic collapse for statically indeterminate beams
usually requires formation of more than one plastic hinge. However, from
the viewpoint of continuous medium, the process of elastic-plastic defor-
mations must end with the formation of the first plastic hinge. After-
wards any finite rotation angle in the hinge is impossible,since it can-
not be described by continuous displagement field. Further rotation would
lead to vacancies on the tensile side and to overlappiqg of the material
on the compressive side of the beam. External loadings causing-formation
of the first plastic hinge describe the d.c.c. of the beam.

/2
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Fig 1. The Stussi{-Kollbrunner paradox.
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Making use of this concept Tran-Le Binh and Zyczkowski (1976) clari-
fied the well known Stlssi-Kollbrunner (1835) paradox. This paradox con-
- slsts In the independence of the classic l.c.c. of the beam in
Fig. '1,(F1=8n/12). from the length of the beam span 1 (the only possible
mechanism of plastic collapse is shown in Fig.1).

But for 11 » the plastic hinges at points B and C are not necessary,
outer spans do not affect the middle span, and we obtain quite different
value of l.c.c. F2=4ﬂ/12. Admitting continuous displacement field oniy,
Tran-Le Binh and Zyczkowski obtained a continuous function for dependence
of d.c.c. from 1, varying from Fz for 1.=0, to F1 for 1 .

The decohesive carrying capacity for others beams was calculated by
Tran-Le Binh and Szuwalski (1977), who showed that the first plastic hin-
ge may be localized not necessary in the cross-section in which the first
plastification took place.

The effect of decohesion can be observed also in bending of strongly
curved bar with I-cross section. Szuwalski (1989) proved, that for suf-
ficiently stiff flanges, the lower one separates from the web.

4. Disks and sheets

To generallize the problem of d.c.c. to the two-dimensional stress sta-
te, most ;:ommonly clrcularly symmetric disks and sheets were investi-
gated. 5 ' ' :

An infinite perfectl& elastic-plastic sheet with rigid circular inclu-
sion, subject to uniform tension at infinity, was discussed by Szuwalski
and 2yczkowski (1973). Using H-M-H yield condition and the Hencky-
Ilyushin theory of small elastic-plastic deformations, they proved that
process cannot be continued over certain value of tensile loading. The
termination of continuous solution is due to the infinite increase of
radial strain at the point of joint of sheet with the rigid inclusion. As
the radial strain is a derivative of the radial displacement, further in-
crease of external loading leads to jump of displacement - separation of
the sheet from the inclusion. The plastic zone at the moment of decohe-
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sion is rather small, and for an incompressible material vanishes.

The general criterion of decohesion of the same infinite sheet, made
of asymptotically perfectly plastic material was formulated by Szuwalski
(1986a). The results are similar to the mentioned above for bars under
tension - decohesion can.be avolded only for nzl in the law (1). The same
results obtained Szuwalgki (1985b) using the generalized power series.

Annular axially symmetric disks with finite external radius were ana-
lyzed by Szuwalski (1979). The criterion of further work of the free
disk, after decohesion was formulated. Very narrow disks can work before
decohesion even after full plastification. Quite different approach to
the problem of decoheslon of annular disk with rigid inclusion proposed
Mroz and Kowalczyk (1989), by introduction of an additional constitutive
relation between the rate of displacement discontinuity and respective
traction rate. With its help, the process of decohesion can be analyzed
under geometrical parameter control, while under loadings parametér con-
trol, Jump of displacement was obtained. In this way decohesion treated
in earllier mentioned papers as the rapid "brittle" phenomenon, after
change of control parameter was described as continuous process.

The effect of termination of ihe process of elastlc-plastic deforma-
tions was observed by Szuwalskl (1984) also for disks with variable thic-
kness. For hyperbolic disks the Iinadmissible discontinuity of displace—
ment field may occur also at the external radius. Diffepent type of ter-
.mination was found by Szuwalski (1985a) and (1986b) for rotating disks
consisting of two parts made of different materials. The Tresca-Guest
yield condition was applied and therefore the various arrangements of
principal stresses had to be discussed. If the external part of disc has
lower yleld stress than the inner one, it can be totally plastiflied,
though the inner part remains, at least, partially elastic. The conti-
nuous solution cannot be obtalned for greater angular velogity without
violating the boundary conditions.

In absence of l.c.c. in the case of purely thermal loadings, d.c.c.
may serve as an estimation of admissible values of such loadings.For uni-
formly heated infinite sheet with circular rigid inclusion the d.c.c. was
evaluated by Zyczkowski and Szuwalski (1975). This solution was generali-
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zed by Szuwalski and Zyczkowski (1884) to case of combined loadings -
‘uniform traction at infinity and uniform elevated temperature. The cor-
responding interaction curve exhibits the property oi‘ concavity, while
usually the interaction curves in the theory of plasticity are convex.
Moreover it depends on the elastic modulus -~ the Poisson’'s ratio v.

ﬁisks made of f\omogeneous material, but consisting of two parts of
different (constant for each part) thickness, subject to temperature gra-
dient were discussed by Skoczen and Szuwalski (1988). For majority of
such disks the continuous solution is limited by gradient of temperature,
at which the radial strain in the outer {(thinner) ring, at the radius of
Joint with the thicker Inner disk, tends to infinity. Corresponding
d.c.c. depends on geometrical properties ;f disc: ratio of thicknesses
and ratio of radil of both parts. Those ratios mus't be su:f:flciently large
- their critical values were determined.

Zyczkowski and Szuwalski (1982) discussed the work of tensioned infi-
nite sheet with circular rigid inclusion using the finite strain theory.’
Using the Nadai-Davis U.meory of similarity of deviators of logarithmic
strains and true stresses they found out that process will be terminated,
but this time, by occurance of inadmissible discontinuities of stress
field. Corresponding decohesive carrying capacity is even slightly smal-
ler, than obtained using the small strain theory, because of decreasing
thickness of the disc.

The case of combined thermal and surface loadings was also solved w;vith
help of finite s_train t‘heory by Szuwalski and Zyczkowski (1984). Obtained
interaction curves are concave, but only for elevated temperature. For
cooled sheet the d.c.c. does not exist, due to the increasing thickness
of the sheet at the point of joint with the rigid inclusion. :

. The effect of decohesion was observed by Szuwalski (1990) for circular
sandwich plates with rigid inclusion, subject to tension and bending.

5. Shells

Investigations of d.c.c., for shells are usually more complicated and
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need numerical treatment. Tran-Le Binh and Zyczkowski (1984) were looking
for interaction curves of an infinitely long sandwich circular cylindri-
cal shell under a ring of radial forces and axial loading at infinity.
The material of shell 1is perfectly elastic-plastic and the' small-
deflection theory is emﬁloyed. The process of elastic-plastic deforma-
tions cannot be extended over loadings causing infinitely large axial

strain in the cuter layer at the point where the ring of radial forces is
: applied. At that moment.d.c.c. of the shell is reached. The corresponding
interaction curve is concave.

The effects of termination of continuous solution of many types are
observed in analysis of toroidal shells, when large plastic deformations
are allowed for. Skrzypek and Hodge (1975), and Skrzypek (1978-82) poin-—
ted out some discontinuities in both stress and velocity fields, for
thick, ideal sandwich incomplete torolda; shell. The material is assumed
to be rigid/perfectly-plastic.

More detailed analysis of such shells was given by Skrzypek (1979). He
discussed several modes of termination of the process of plastic defor-
mation, depending on the choice of loading trajectories. Termination can
be caused by bulging effect or 1ﬁadmissible kinematic singularities. In
the latter case d.c.c. of shell is reached. Applying the small strain
theory, as well, as flow theory limit curves were determined.

Skrzypek and Zyczkowski (1983) compared results for incomplete toro-
idal shell obtained with use of deformation theory and incremental theory
of plasticity, for both small and large strains. They proposed certain
classification of possible modes of termination of the process of plastic
deformations. Two types of local kinematic discontinuities were distin-
guished: of order 0 - connected with infinitely large strains and of or-
der 1 - infinitely large material derivative. The posslbility of occuran-
ce of both types of discontinuities was discussed.

For elastic-plastic toroidal shells ways of termination of continuous
process’ of deformations were investigated by Skrzypek and Muc (1988). In-
admissible kinematic discontinuities may appear then either at an elas-
tic-plastic interface, leading to'inflnitely narrow strain localization,

or within the plastic zone by formation of a plastic hinge. Further gene-
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ralization of this problem is due to Blelskl and Skrzypek (1989). Three
_possibilltles of exhaustion of d.c.c. were observed. It may coincide with
e.c.c. (no plastic zone), or decohesion may occur in elastic zone, but
some plastic zones in other parts of shell may spr;ead out earlier, or it
may appear inslde the plastic zone (plastic hinge). The influence of ge-
ometrical parameters was discussed.

8. Final remarks

The concept of d.c.c. ehables formulation of purely mathematical cri-
terion of termination of the elastic-plastic defox;lhations process. This
criterion may be treated as an upper bound of all physical criteria of
decohesion. ' 2

Termination of continuous process is due to some inadmissible kinema-
tic discontinuities. Further increase of loadings must lead to separation
(decohesion) of two parts of the system. Sometimes a part of system after
separation can carry even greater loadings, but system as a whole ceases
to exist. Detalls were discussed by Zyczkowski (1881).

In contrast with limit carrying capacity, d.c.c. depends on the ela-
stic constants of material and often leads to concave interaction curves.
This concept is especially useful in case of purely thermal loadings,
when in absence of limit carrying capacity gives a possibility of estima-
tion of admissible values of such loadings. The problem is of great im—
portance, when numerical calculations are involved, as they do not bear
infinities. :

Application of the finite strain theory also leads to inadmissible
discontinuities, at least in case of tension. For compression increase of
cross-section helps to avoid decohesion.

Almost all papers on this topic were prepared in Technical University
of Cracow, with participation or under supervision of Prof. M.2yczkowski.
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Su_ry

NOSNOSC ROZDZIELCZA W TEORII IDEALNEJ I ASYMPTOTYCZNIE
' IDEALNEJ PLASTYCZNOSCI.

Dla pewnych ukladow z materialu idealnie, 1lub asynptotyt:znie idealnie
plastycznego nle moZna oslagna¢ nosnosci granicznej. Wczesnliej, przy ob-
ciazeniu nazwanym nosnoscla rozdzieleza, pojawiaja sie pewne niedopusz-
czalne nleciagloscl pola przemleszczen lub naprezen. W pracy dokonano
przegladu opracowan iwla,zanych Zz nosnosclia rozdzielcza 1 przedstawiono
najwaznie jsze cechy tego zjJawiska.



