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The indentation of a transversely isotropic layer on a two-parameter elastic foundation
by a truncated conical punch is investigated. The author formulates the problem as the
solution of dual intergal equations, which had to be solved approximatelly. The physical
quantities which characterize the contact and the stress singularity are obtained. In the
limiting case of the half-space problem exact solution is obtained. Some special cases such
as cylindrical, conical, cylindrical with beveling punches also are considered. Numerical
calculations are carried out for various cases of the material, such as cadmium, magnesium
single crystals and E glass-epoxy and graphite-epoxy composites.

1. Introduction

In the elastic contact problems, there may be cases that the contact region depends on
the magnitude of the external load (receding and advancing contacts). In the three dimen-
sional contact problems with such contact regions, it is very difficult to determine analyti-
cally the solutions of the problem. The theoretical solution for the punch in the arbitrary
shape in the three dimensional case, has not yet been made, to the author’s knowledge.
However, in the axisymmetric contact problems, the contact region becomes a circular
or an annular and it is enough to determine only their radii.

In a truncated conical punch, the side surface is also contacted by the elastic layer
and the contact area changes as the applied loading changes [1].

In the presented paper, the author analyzes the axisymmetric contact problem between
the truncated conical punch and transversely isotropic layer on a two-parameter elastic
foundation. The relationships among the contact stress, the resultant load, the displace-
ment under the indenter and contact area are shown. The effect of transverse anisotropy is.
clarified.

2. Basic equations

Consider a transversely isotropic layer 0 < z < A, with the planes of isotropy parallel
to the boundaries. The stress-strain relationships of such a medium can be written in cylin-
drical coordinates (r, @, z) as follows:
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o, =c6+Ccc6+C36,,

Op = C261+C 1891+ Cp3€;,

o, = ¢3¢, +C3e9+C33e,, 2.1
Grz = C446yz,

0g; = C44€0;z,
O, = *2~ (cr1~ci2)ee,

where ¢;;’s are the elastic constants of a transversely isotropic solid body.

The foregoing strain e¢;; can be first written in terms of the displacements and then
substituted into the preceding equations to obtain the stress-displacement relationships.
The relationships are finally used to the equilibrium equations to form a system of partial
differential equations for the displacements.

In the problem with exial symmetry the displacements (v, 0, w) are governed by the
equations:

o111 o 2w otu
Cupr [TW (ru)]+ (c13+Caa) or oz +Caq P 0,
2.2)
Caa ™" or or Gt Cad) T | o VW TR g2 T
Introducing potential functions ¢, (r, z) and ¢,(r, z), [2] given by:
9 9
== (kpi+@2), w= o (s +keo), (2.3)
the system of equations (2.2) is replaced by the following partial differential equations:
z
2? 1 0 1 02 .
(‘3;2—+77r+§?)%(f,2)=0 (i=12), 249
provided that the dimensionless parameters s, , s,, k are given by the following equations:
c33C4a5* — e c33—c13(cr1a+2¢40)]5% +Cpycas = 0, (2.5)
k = (c33st—caa)/(cra+Cas). (2.6)

The components of the Cauchy stress tensor 6 can be expressed in terms of derivatives
of g;(r, 2):

*
0, = —Caalk+ 1)?(%4'(?2)"(011—6'12)"_1%
0? ou
g = —c.-,.;(k-i—l)w((771+?72)—(C'11_C12)7)
2.7

82
0, = coalk+ I)W(SJ‘Z%HEZ%),

0%
0, = C44(k+ l)m;((pl-{_(pz)' .
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3. Boundary conditions

The problem to be solved is that of an elastic transversely isotropic layer of thickness A
indented by a single rigid truncated conical punch on its upper surface. The conditions at
the lower surface of the layer are those of a two-parameter elastic foundation. The axi-
symmetric face of a punch is assumed as e, —ko(r—a) H(r— a), where k, is the slope of
the side plane of the punch, H(r—a) is the Heaviside’s function and ¢, is the measure of
the depth penetration, while a is the radius of the plane contact region.

The boundary conditions for the elasticity problem can be written as follows (Fig. 1):

(@) w(e,0) = eo—kob(e— M) H{—-4); 0<po<1,

(b) 0:(¢,0) =0; 1 <o,

(©) 0.(0,0) =0; 020, 3.1
(d) o.(p,0) is finite at o - 1 -0,

(e oo,m) = —k,wle,n); 020,

(£) anlo,m) = —ku(e,n); e=0.

0 (0
Rigid truncated
conical | punch arctgkg

RO A J‘ hig)
" bi1) b(1)

Elastic transversely

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

Fig. 1. Geometry of the problem

The resultant load due to the local indenter stresses is obtained as follows:

1
Po = —2ab* [ a,(0,0)0do. (3.2)
0

In above conditions the nondimensional variables and parameters are introduced:
o=rlb, C=z/h, A=alb, n=nb (3.3)

In egns (e) and (f) in (3.1) k, and k, are the moduli of the linears reaction with the dimen-
sions of stress per unit length. The regularity conditions at infinity also are assumed.

In our problem contact is maintained only by compressive stresses; in this unbonded
frictionless contact problem the extent of the contact is the primary unknown quantity,
it changes as the applied loading changes and the contact stress is finite at the end of the
contact region, namely it is further imposed that the stresses be nonsingular at ¢ » 1 -0
(eq. (d) in (3.1)).

8 Mecch, Teoret. i Stos. 2/89
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4, The displacement potentials

The method of Hankel transforms is used to satisfy the equations (2.4) and conditions
(), (©) and (f) in eqs (3.1). Then the displacement functions ¢, (r, z) and ¢, (r, ) are found
to be:

[ra]

i@, 80) = (-1 -1 $182 fx_lwx xn)chs; xnl —
(p (g ) ( ) Gx(k+ 1)(S1'_S2)S‘ : ( )[gi( 17) 77C
—Shslxné-]JO(xe)dx; (l = 17 2)7 (41)
where G; = ¢,, is the shear modulus, along the z-axis, of the layer material and:
3 3
2
gi(xn) = Z # b4 (x7) / 2, wymy(xn),

n=0 =0

b (xn) = ch(axn)—(—1)B~* [wch(Bxn)—2s).
b (xn) = (xn)~*[sh(axn) + (—1)'sh(Bxn)],
b (x) = (xm) B~ [(k2sy —sy) ch(axn) + (= 1)i(k2sy + s ) ch(Bxm) — (= 1)'2ks ], (4.2)
mo(xn) = sh(axy) +af=sh(xr),
my, 5 (xn) = (xn)~* [ch(oxn) F ch(Bxn)],
ms(xn) = (xn)~ 2B~ [(k?s* —sy) sh(axn) — (k2s, +s,) sh(Bxn)],
a=s+5, B=s5-5,
are the functions of the elastic constants, and:
o =1, %y = k,h(GL O, 2, = kh(Gy Csy55)™", %3 = kak h*[Gy(k+1)]72%, (4.3)
describe the relative rigidity of the foundation to the layer, in which:
C = (k+Dk-D" (st —s1Y), 4.4)

is the function of the material parameters s,, s, and k.

The normal stress and displacement needed for the solution of the mixed boundary
conditions on the upper surface z = 0 of the layer can be obtained from the expressions
of the potentials (4.1).

We obtain:

o0

bG, Cw(e, 0) = [ w(x)Jo(x0)dx,
0

4.5

a

b0,(0,0) = — [ xw()[1~M(xn)lJo(xe)dx,

0

where M(x) is the function involving material and geometrical parameters and is defined

© o as:

3 3
M) = 1-{ 3 matien)) | | Z ()

n=0

fo(xn) = ch(axn)—1—a2p~2[ch(Bxn)—1], 4.6)
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f1,20m) = (xn)~* [sh(exn) + 2B~ >sh(Bxn)], (4.6) [cont ]
JaGen) = ()™ 2[(k?s3—5,) f~ chlaxm) + af~ 2 (k25 + s;) ch(Bxm) — ka® B2 + k].
We let:
p(x) = wx)[1 - M(xn)], 4N
where p(x) is the new auxiliary function.
Then eqns (4.5) become:

Leel

bG, Cw(e, 0) = f PO —gGem] Jo(xe) dx,
0

520,00, 0) = — | xp(x)Jo(xe)dx, 8)
0
where:
3 ©
glxn) = 1—( IZ %,m:(xn)) / ( Z x,.f,.(xn)), (4.9)
=0 n=0

with m,(x7n) and f,(xn) being defined by eqns (4.2) and (4.6).
Hence, p(x) is the only unknown which from eqns (a), (b) and (d) in (3.1) can be found.

5. The Fredholm integral equation

The problem of the type considered here has the character of the mixed boundary
value problem with unknown radius b (1) of the contact region.

By substitution of eqns (4.8) into boundary conditions (a) and (b) of eqns (3.1) we
find that the function p(x) must satisfy the dual integral equations:

w(o, 0) = (G, CH)™* [ p(x)[1 — gl Jo(xe)dx =
(]

=¢eo—kob(o—AD)H(p—1); 0<p0o<1, (5.1
0.(0,0) = —b72 [ xp(0)Jo(xe)dx = 0; 1 <o,
0

under the condition (d) of egs. (3.1).

Multiplying both sides of the first and second of eqns (5.1) by o(¢?—0*)~1/2dp and p(o*—
—1?)~1/2dp, respectively, and integrating with respect to ¢ from O to 7 and from ¢ to o,
respectively, and differentiating the result of the first equation with respect to ¢ and using

the formulas [3]:
!

d ]/Q;’:(xg) do = cosxt,
(5.2

f gJo(xg) _ cosxt

Ve-e %

8*
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we obtain:
fp(x)cosxtdx=f p(x)g(xn)cosxtdx+
0 0

+CG, b [so—kobtarccos }{ 'H(t—l)]: 0<t<gl, (5.3)

o0

f p(x)ycosxtdx =0, > 1.

0

Making use of the Fourier inverse-transformation:
{

p(x) = ?Zt—fp(t)cosxta’t, (549
0

we get the following Fredholm integral equation of the second kind:

1
p(t) = [ p(OKE, DdT+f(1); 1, 70,1, (5.5)
0

where the symmetrical Kernel is defined as follows:
K(t, 1) = %f glxm)cos x(t+ 1) +cosx(t—7)]dx, (5.6)
0

and the function f(¢) is given by:
&) =G, Ch [eo—kobtarccos}; . H(t——,l)]; 0<r <. (5.7

The essential difficulty of the problem is that there is an unknown contact region, between
the punch and the layer; the extent of this region has first to be found. It is seen that there
is an elegant solution of the half-space problem which converges to the closed-form solu-
tion, according to g(xn) = 0 for the half-space case.

6. The solution of the Fredholm equation

The solution of the integral equation of the Fredholm type (5.5) we obtain by an itera-
tive procedure; this is valid when the ratio of the layer thickness to the radius of the con-
tact region satisfies some condition. This condition is clarified below. The approximation
of zero order corresponds to the solution of the half-space problem. This solution, at first,
we obtain

6.1. The half-space problem. For the half-space case g(xn) = 0 so that the governing
equations (5.5) and (5.4) give exact form of the solution:

=ft),
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1
2 sinx sinxt d A
Po(x) = ;Gl Cb[(so—kobarccosl)]w}/-+kobxf—x——- W(iarccos T)dt'
6.1)
Substituting eq. (6.1) into o.(g, 0) of eq. (5.1),, we obtain:
0,0(0,0) = — 26, € [(so kobarccos A) (ll _0) +
V1-g?
1
: i A H(t-9)
+kob f (arccos—+ —_) e dt] (6.2)
t 2_ 72 2_ 2 : .
J yer—-a2 | yer—o

The stress o,(p, 0) is always zero in ¢ > 1. The first term in eqn (6.2) is singular at ¢ —
— 1—0, while the second term tends to zero in this point. For the singularity to vanish
at ¢ —» 1-0, it must be true that the coefficient of the first term of eqn (6.2) must be zero
because 0,4(g, 0) is finite at ¢ — 1 —0. Then the condition (d) of eqn (3.1) gives:

g9 = kobarccos A. (6.3)

Eqn (6.3) represents the nonlinear relation among &, ko, @ and b because 4 = a/b. For
given kg, &, and a this equation yields the extent of the contact region b in terms of known
quantities. Substituting eqn (6.3) into eqn (6.1) and (6.2), yields:

1
2 R f sinxt d A
po(x) = ; Gl Cbh k() . x /d—t‘ (tarCCOS T) d[, (64)

A

1
2 A A H(t—
a,0(0,0) = S Gleof(arccos ﬁt—+ l/t2 e ) ]/tz 93, d;, 0<po<xl. (6.5)
2 o g 4

Using the elliptic integrals of the first kind F(g, s), [4], the stress o,0(0, 0) in the interval
0<o<lis:

2
0:0(9’ 0) = '—;’ Gl CkO X

1 arccos (—7)
F ,”_,—9‘ —F arcsing,ﬁ— +f—~7————dt; 0<o< 4,
A A P Y12—g?
P 6.6)

2 e 2 ! arccos ( )
—|F|=, %)-Flarcsinp, — dt; 2<p<gl.
9[ (2 e) ( : )] R #

The stress o,,(¢, 0) becomes an infinite compressive at ¢ = 1+ 0. The logarithmic singula-
rity of the contact stress is:

: 2
0:0(0,0) = == G, Choln | —————— |5 ¢-3x0. (67
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Using eqns (6.4), (4.8); and (6.3), the axial displacement w(p, 0) on the surface of the
half-space (g(xn) = 0) is calculated to be:

1 @
wol(o, 0) = %kobf—;—t(tarccos %)dtf sinxt Jo(xp)dx =
i 0

—kob(e—MH(-1); 0<poxgl

1
- 3[aoarcsin (L)—kobfarccosi-+ dt]; o= 1. ©8)
7 0 ¥ ! Yor—12
The gradient of wy(e, 0) in ¢ > 1 with the aid of eqn (6.3) is:
dwe(0,0) _ 2 e Ve -1 _ﬁ[i , (12(1—92)+92(1—12)
'——_b?@’ = e b 0 e 2 +arcsin 92_12 . (6.9)

It is seen that as g tends to 14-0, the gradient of wo (e, 0) tends to —k,. Then the slope of
wo(o, 0) at ¢ = 1 coincides with that of the punch face. It means that the condition of
az(p, 0) = finite at the smoothly contact edge ¢ = 1 is equivalent to [dwy (e, 0)/dp),~;1 =
= —'ko.

By substitution of the stress (6.5) into the equilibrium condition of the punch (3.2),
we obtain the resultant load:

) _ ako L)
P§ 2G1Csob[l+ o Sm(kob . (6.10)

The relationships among the resultant load PJ, the depth of the penetration &, and the
configuration of the punch &, a and the contact radius b are nonlinear.

6.2. The layer problem. The layer case is complicated by the presence of the boundary
function g(xn) in equations (5.5) and (5.6). An iterative solution to eqn (5.5) can be obtain-
ed if n~1(= b/h) is small. It is convenient to make the kernel (5.6) dimensionless.
Introduce a new variable £ = x» and write the kernel (5.6) as follows:

K(t, 1) = %n"‘f g(®[cosén~(t+ 1) +cosén~t(t—1))dE; K(t, vy e L2 (6.11)
0

When expanded right band side in eqn (6.11) in powers of %! this gives:
I,
K(t, 7) = 2 e K65 LTe, (6.12)
n=0

where:

K(t,7) = [(t+ D%+ (t— 1)1, 6.13)

n 1
(=1 2(2n)!

and:

2 r 2n
= —Eof g§)€rds; n=90,1,2, (6.14)
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The power series in eqn (6.12) is absolutely and uniformly convergent for any values
t, T €0, 1>, when the parameter n(= h/b) satisfies the inequality:

n>C, (6.15)
where:
C, = sup |K(@, 7). (6.16)
0<r, 151

T he analysis of the layer problem by expansion in power series wit respect to the ratio
7~ 1(= b/h) restricts the range of applicability of the obtained solution to these cases in
which the ratio of the layer thickness to the contact radius of the punch satisfies the ine-
quality (6.15). The governing integral equation (5.5) is exact, within the assumption of
classical elasticity theory. Since this equation were derived using small-displacement
approximations it must be ensured that ¢, < &,, where ¢, is the measure of the depth
penetration of the punch and g, is a predetermined value below which displacement are
considered “small”. Thus it is possible to place an upper bound on the ratio b/h. Using
the results for the penetration of the punch, which are given below by eqns (6.21) or (6.24)
we can shown the maximum allowable values of b/h to ensure small deflection as b/h <
< (8o/h) ko f(b]h, a|b, ky, k:, material parameters), where f( -) are the real-valued functions
involving material and geometrical parameters. Their full expressions are given below by
eqns (6.28). If these conditions are violated the assumptions of infinitesimal linear elasti-
city are not applicable so that the present analysis is not meaningful. The inequality on
b/h must be verified numerically; it was found to be satisfied.

The function g(&), defined by eqns (4.2), (4.6) and (4.9) exponentially tends to zero
as the value of & becomes large, is continuous for any & € (0, c0) and its limit is bounded
as & tends to zero. Then, we can easily evaluated the integrals (6.14) by a numerical method,
integrating in finite interval.

The solution of the layer case was obtained in iterative form, all quantities being ex-
pressed in power series in the parameter 5~'(= b/h). We have the following recursive
relation to calculate of the auxiliary function p(t):

1
Prss(t) = po@)+ [ 2 (DK(t, DYdz; r=0,1,2,..., ©6.17)
0

where p,(2) is the solution of the half-space problem, which is given by eqn (6.1) and (5.7).
Applying the expansion (6.12) and (6.13) and the iterative formula (6.17), we obtain the
approximate solutions correct to 0(n~2) or 0(n~1°):
P1(1) = po(t)+ Gy Con~*py (1),
P2(t) = po(t)+ Gy Con~* [p1 (1) + 0~ *p2 (1)1,
where p,(¢) and p,(¢) are the first and second approximations, respectively, and:
P1(t) = eo(aotayt>+a t*+ay18)~kob(bo+by 12 +b, t*+b316)+0(n~%), (6.19)
p2(t) = eo(co+c 1) —kob(do+d, t3)+0(n"). (6.20)

(6.18)

describe the differences of the approximate solutions of the layer problem and exact
solution of the half-space problem, respectively, The coefficients a;, b;, ¢; and d; are the



312 B. ROGOWSKI

functions involving material and geometrical parameters; their full expressions are given
in the Appendix. Substituting eqn (5.4) into eqn (4.8), using the solutions (6.18) and (6.19),
after simplification (i.e. through use of the Weber-Schafheitlin integral [3]), we arrive at
the following solutions:

1st approximation:

go[l+7n7 (ag+a,+a,+as)] = koblarccos A+5~1(bo+b, +b,+b3)], 6.21)

4 S 2 3 1
0.1(0,0) = a,(0, 0)+; G, Cb 'yt ]/1 - 02 {so [a, +—3— a2+—5~ as +4(? a,+

P U VRSN | §
: b3+4(3 b,+.—-5—b3)g +bs0 ]}

0 €0, Hu(@@, I, (6.22)

I 8
+?a3) 92+'5—a394]—k0b[b1+ b2+

2 (1 1 3
w1(9> 0): wO(Q: 0)‘*‘; 7]—1 lEo |:Zi.I'CSlI](-?)-(ao-*-7 a, 92+,g~ 0294_*_

s 1 I I 5 ) s .,
"‘W‘ISQ) 71/9 -1 (01+7(12+3a3 3a2+—4«a)+8a39

———‘/Q —1 (bl ! —b,+
1 5 5
‘“'b3+ 4 Q (3b2 +Tb3)+8 b394)J

s oz L. (6.23)

_—
3¢
(1 5
—kob jarcsin N b0 + b, 0? +—b29 + 6b39

@ 1
- f [g(xn) Jo(x0) fﬁl (#)cos xtdt] dx
0 0

2nd approximation:
soll +n7 Y ap+a,+a,+az)+n"%(co+¢y)] =
= koblarccos A+ 1~ (by+ by +b, +b3)+ 1~ 2 (do +d1)], (6.24)

4 .
022(0,0) = 0, (0, 0)+ - G,Cb~'~ 2/ 1—0? (eoc1~kobd,); (6.25)

0 €0, Hu(4, 1>,

2 . 1 1
wa(o, 0) = w,(o, 0)+71— 77‘2{30 [arcsm (?) -(co +7 o) 92)
1 o —
—5a Veor—1 ]—kob [arcsin (%) -(do+% dlgz)—%dl Veor—-1 ] (6.26)

© 1
- Of [g(xn)lo(xe) f ﬁz(t)cosxtdt] dx}; 0z 1.
0



INDENTATION OF CQNICAL PUNCH 313

The improper integrals in eqns (6.23) and (6.26) can be evaluated in finite interval by a nu-
merical method, because the integrands involving the function g(x7) converge exponen-
tially to zero as the value of x becomes large.

The above mentioned approximations are valid for layer case provided that the inequality:

bih < (Eo/W)[kofy,(b/h, alb, k., k,, material parameters), (6.27)

is not violated.

In an upper bound (6.27) which can be placed on the ratio of contact radius to layer thick-
ness, the ratio &,/h is the relative allowable displacement under the indenter below which
displacement are considered “small” and the functions f;,,(-) are defined as follows:

fi(+) = [arccos A+97 (bo+ by + b, +b3)][1 +77 (a0 +a;s +a, 4+ a3)] ™,
f2(+) = [arccos A+~ b+ by + by +b3)+71~ 2(do +d)]I1 +17 (a0 + (6.28)
+ay+a,+a))+n Heotce)l™t; A =alb,nt = bjh,

in the first and second approximations, respectively, where a;, b;, ¢; and d, are defined in
the Appendix. The expression (6.27) shows the maximum allowable values of b/h to ensure
small deflections and determines the range of applicability of the presented approximate
results. In the problems solved through the course of this study, the contact radius b changes
as the applied load changes. If the imposed condition (6.27) is not violated, the problems
studied are indeed linear contact problems and the results obtained approximates the physi-
cal quantities which characterize the contact quite well for engineering applications. The
conditions on b/h, must be verified numerically; it was found to be satisfied.
In both approximations the total load P, is:

© P§V = P§» —8G, Chy~? {Eo(-l“ @ty “2+1_§a°)

3 5 3
1 2 13
——kob(? b1+? b2+3—5b3)}, (6.29)
P® = PgU_.g_ G, Cbn~2(sq ¢, —kobdy). (6.30)

Equations (6.21), (6.24) and (6.29), (6.30) represent the relationships among P, &, ko,
a, h and b, which are nonlinear. The contact stress in the layer case has the singularity
such as in the half-space problem; it is the logarithmic singularity given by eqn (6.7).

7. The special cases

The solution of the special cases are summarized:
(a) Indentation of an half-space by a cylindrical punch. Particulary, taking b —» a+6,(1 —»
— A+46, 8 » 0) and ¢, = const, we have:

% 5 2 si
arccos A = ]/26 , g = kol/Z(s a, po(x) = ; G1 Caeo%,

P = 4G, Ceoa (7.1)
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2G,cfo 1

s a y1-g?

wole, 0) = & [H(l -0+ %arcsin (%) H(o— 1)].

020(9’ 0) = H(I_Q)r (71) [COIIt.]

(b) Indentation of a half-space by a conical punch
Taking ¢ —» 0(A — 0), we have:

o) = Gy Cb2ko S5 T ks,
x 2
P(()O) = 2G1 Cb’ob = ﬂGl Cbzko, (7.2)

0.0{0,0) = — G, Ckyarcch (%) -H(1-p),

wole, 0) = (20— koBOH(~Q) +— [arcsin(%)—w V-1 ] H(o—1).

The results (7.1) and (7.2) are the solutions for a half-space loaded by an indenter
cylindrical or conical. These results show that the depth ¢, of penetration and the displace-
ment wy(p, 0) are dependent on the material parameter G, C, where as the contact stress
o20(0, 0) is independent on the elastic constants of the material in a case of cylindrical
punch. In contrast with those, it is found in a case of conical punch the contact stress
depends on the elastic properties of the material, because the radius of the contact region
depends on the parameter G, C. Taking G, C = G/(1 —») we obtain the results of the iso-
tropic case, when the half space is an isotropic medium with shear modulus G and Poisson’s
ratio », which agree with the known results [5, 6]. From Eqns (7.1) and (7.2) we can under-
stand that a difference between two solutions of the isotropic and anisotropic half-space
contact problem is in the function of elastic constant only.

(c) Indentation of an layer by a conical punch
Taking g(xn) # 0 and 4 — 0, we have:

i,(0) = n/2(n+1), (see Appendix),
ol +7™" (ao a1+ a3 +as)] = 5 kob[1+n7 B+ +5:+59)],

or: ' (1.3
eoll+n" (a0 +ay+ay+az)+n"*(co+c)] =

n
2
1in the first and second approximations, respectively.

Full expressions of the coefficients &, and 4, are given in the Appendix. .
Substituting the relations (7.3) into eqns (6.22), (6.23) and (6.29) or eqns (6.25), (6.26)
and (6.30) and replacying, at first b;, d; and kob by b,, d; and zk,b/2, respectively, we
-obtain the solutions for a layer indented by a conical punch. The relations among ¢, ko, £
and b are nonlinear.

kob[1 4072 (bo+b; +b,+b3)+1~(do+dy)],
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{d) Indentation of a layer by a cylindrical punch
For the layer indented by a cylindrical punch we have:

in(l—é)ﬁ%]/ﬁ— (n=3,57), il(l—é)—»%l/Z_a, 60,

{see Appendix), (7.4)
eoll+7 (@ +a, +as+as)] = koay20 [1 +n"(b:o +b, +fz+?3)],
or:
eoll+n (a0 +a +a,+as)+n"2(co+cy)] =

= koay/28 (1407 (bo+by +b,+b3) +17*(do +dy)],
in the first and second approximations, respectively. Substituting eqn (7.4) into eqns (6.22),
(6.23) and (6.29) or (6.25), (6.26) and (6.30) and replacying, at first, b,, d; and kyb by b:,,;c}i
{see Appendix) and kyb |/2—6, respectively, we obtain the solutions for a layer indented by
the cylindrical punch.

(e) Indentation of a half-space or of a layer by a cylindrical punch with beveling.
Assuming, that:

go—kobarccos A = F(eg, ky,a, b) > 0, (7.5)

we obtain the results for a cylindrical punch with beveling. In this case, the contact stress
0z0(0, 0) is given by eqn (6.2) for the half-space problem (zero order approximation) and
by eqns (6.22) or (6.25) for the layer problem.

The resultant load, in this case, is:

P = 2G,Ch [260+kob (4 1/ 1— 22 —arccos 1)]. (7.6)

Substituting eqn (7.6) into eqn (6.29) or (6.30) we obtain the total load P, for the layer
problem.

The displacement wo(e,0) in ¢ = 1(r > b) is given by eqn (6.8) and the radial gradient
of the displacement in the interval ¢ > 1 is:

dwo(e,0) _ 2 eg—kobgarccosd
bdp mob Vor—1
ko | n . A=)+ (1-2H |,
__ﬂ_[—i-+arcsm 1 ;o> 1. 1.7

In this case, the gradient of wy(g, 0) tends to infinity at ¢ — 1+ 0. For the condition (6.3)
the radial slope (7.7) corresponds to eqn (6.9).
(f) Contact problems for a thick layer indented by a pair of presented punches.
Considering the limiting case %, — c0 and x, — 0 we obtain the boundary function in
the form:

chaxn—chfxn
 shaxn+af~'shfxy

g(xn) = go(xn) =1 (7.8)

Evaluating the integral (6.14) for the function (7.8) and substituting these integrals into
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the presented results we obtain the solutions of the contact problems for a thick plate of
thickness 2/ indented by a pair of truncated conical or cylindrical or conical or cylindrical
with beveling punches on its upper and lower surfaces.

8. Isotropic medium

All the result obtained in this paper can also be applied to completely isotropic bodies,
provided that s; = [, s, = [,ie. « = 2, § — 0 and k& — [. By evaluation of the limits by
means of de L’'Hospital’s rule in the above mentioned expressions we can obtain without
any difficulty all the boundary functions the relative rigidities of foundation to layer and
the material parameter C, which assume the form:

3

g(x) = l—;}% (8.1)

where:
%o =1, ey = kh(1—v)|G, %y = k,h(1—v)]G, %3 = k,k,h?[4G* (8.2)
Jo(x) = ch2x—2x2—1, f} ,(x) = x~'(sh2x+2x), (8.3)

J3(x) = x2[B—4v)ch2x+2x2+1+4(1 —»)(1 —2)],
mo(x) = sh2x+2x, my ,(x) = x"(ch2xF1),

(8.4)
ma(x) = x"2[(3—4v)ch2x —2x],

C=(l-»"1 (8.5)

when the layer is an isotropic medium with shear modulus G and Poisson’s ratio ». The
solution of a transversely isotropic case leads to the solution of the isotropic one.

9. Numerical results

Numerical results are presented for the relation among the resultant load P, the depth
of penetration &,, the contact radius & and the punch configuration ¢ and &, and for
different materials such as cadmium and magnesium crystals [7], fiber-reinforced composite
materials with the fiber direction normal to the plane punch face, E glass-epoxy and
graphite-epoxy [8] and comparative isotropic material, which occupied the half-space
region.

To expedite numerical evaluation, we determine P{”/2G,Cae, and 1 = a/b due to
aky/eo as shown in Fig. 2. The values P§?/2G | Cae, and A = a/b become infinity and zero,
respectively, as ak, /e, tends to zero. We can consider two states in such a case. The first
state, in which k, and ¢, are constant and a tends to zero corresponds to the indentation
by a conical punch. In this case, P§” and b are finite. The second state, in which a and ¢o
are constant and k, tends to zero corresponds to the indentation by a semi-infinite punch
with a little inclination.
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P(g)l 2G+Caep

4 ————— i=alb

ako/ €0

Fig. 2. The relation among a, b, ko, P§® and &

The values P§[2G Cae, decrease monotonously with an increasing ako/eq, and tend
to 2 as ak,/e, becomes large (cylindrical punch). In this case, we take 4 — 1.

The effect of the material dissimilarity is used by the constants G, C. Their values are:
2.03G,;; 2.51G;; 1.28G;; 1.57G;; G,/(1—»), where G; = 10* MPa, for cadmium, magnesium,
E glass-epoxy, graphite-epoxy and isotropic materials, respectively. The effect of material
anisotropy is apparent.

Fig. 3 shows the contact stress distributions in the two cases of a/b = 1/3 and a/b = 2/3,
respectively. The pressure in the region ¢ < A is smaller than that for the cylindrical punch.

— — —— circular punch

Fig. 3. The distribution of contact stress for 2 = 1/3 (a) and 1 = 2/3 (b)

The results, which are shown, correspond to the half-space case. The presented solutions
may be used also to show the qualitative and quantitative effects of the plate thickness,
boundary conditions and anisotropy on the contact behaviour and the load-contact length
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relation in the contact problem between the transversely isotropic layer and the rigid in-
denters such as cylindrical, conical, truncated conical and cylindrical with beveling. The
solution may be also applied to many other problems, including contact problems for the
transversely isotropic layer indented by a pair of the presented punches.

Appendix

The parametl:rs that appear in equations (6.19) and (6.21) - (6.30) are defined as:

3
S e
ao-— (2’l+1)' n"7 1 - 2 — (2"'—1)! n"? H

1 1
a, = 77—4(12“6 1377~2), a = T Iin~¢;

1
24
3
n 1 -2n;
bo = E (— 1) (2”)! 1"77 12n+la

1, -
by = 7 ( 131217 + g is T "’),
b, = 1 II b ———I-Ii -6
2 = —4 alyn™? 3= g s 17
I 1 1 -4 2
Co = ( 7 19 In~ ) ‘3?1177 (1 T0 ILn~ ),
1 1
a=-—5h (10 —2~117}_2)77'2,

1 1 1. 1.
dy = illg_'lo]l’?—z (—3— i1+’2 ) 1277—4( 5 11+—3‘l ) 24 L Lisn™*

1 . 1 (1. .
dl = —-7117}_2[1011—7 117’} 2(? 11+l3)],
where: ‘
1

1
, A 1 f i ]
- n — — —drl =
in(2) f T"arccos ( - )dr . [arccos A— 2 : ‘/12 — T

A

— 1 n=11—
14212 n=3
4
=—L arccosl_#l/l—-}»2 1+——7.2+£Z"'; n=>5 >
n+1 3 3
6 ., 8 ., 16
. — T 6. =17
i 1+SA+SZ+ 5 2, n R
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ln(}") € (ln(l - 6)’ l,.(O) > 4 0,

. j . 2n—1
11(1—6)—»2‘—;/26, i(1=8) — V26; n=23,5717

2n+3

in(0) = aff2(n+1D); n=1,3,57

The parameters that appear in the equations (7.3) and (7.4) are defined by the coeffi-
cients b; and d; by replacying i,(4) by 1/(n+1) for b, and d;, and i,(3) by 1/4, forn = 1,
and by 2n—1)/2"*3, for n = 3, 5, 7, for b; and d;.
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Pesome

BIABJIMBAHHUE INTAMIIA B BUIOE CPE3AHHOI'O KOHYCA B TPAHCBEPCAJIBHO —
M3O0TPOITHOM CJION

PaccMOTPEHO KOHTAKTHYIO 3a1ayy AJIA TPaHCBEPCANBHO-M3OTPOIHOTO CJIOA HAXOAALIEroCs Ha ABYX-
napamMeTPHUECKOM YNPYTOM OCHOBAaHMK M LITaMIla B BHIE CPE3aHHOIO KOHyca. ABTOp chOpMYIHpOBa
3ajauy KaK peunleHue OYaNbHBIX MHTETPAIbHBEIX YPaBHEHHMIA, KOTOpble permnn npHOmpxenno. Puau-
YECKHE BEJNMUMHBI XaPAKTEPH3YIOMME PACCMOTPEHHYIO KOHTAKTHYIO 3a[auyy ¥ CHHTYJIAPHOCTh KOHTaK-
THBIX HANPsHKEHMA NPENCTaBieHO (GOpMYyaaMM, KOTOPbIE ANA CIOA anpOKCHManwoHHble. HekoTophle
ocobeHHbIE CiIyuaiin KaK INTaMI IUIMHAPHYECKHA, B BUAE KOHYCa, JHOO IMIMHAPA OrPaHHYEHHOIO
CPE3aHHBIM KOHYCOM TOXK€ paccMOTpeHO. UMCIeHHBIe pacyéThl BBHINOJIHEHB! JUIA KPHCTAIOB KaIMHA
¥ MarHHUA ¥ KOMIIO3UTOB 3TOKCUIOBBLIX aPMHPOBAaHHBLIX BOJIOKHAMY CTEKJIa K rpadura.
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Streszczenie

KONTAKT WARSTWY POPRZECZNIE IZOTROPOWEJ I STEMPLA O KSZTALCIE STOZKA
SCIETEGO

Rozpatrzono zagadnienie kontaktowe dla poprzecznie izotropowej warstwy na dwuparametrowym
sprezystym podiozu i stempla w ksztalcie stozka Scigtego. Autor sformulowat zagadnienie jako rozwigzanie
dualnych rownaf catkowych, ktore rozwigzat w sposob przyblizony.

Fizyczne wielkosci charakteryzujace rozpatrzony kontakt i osobliwos¢ naprezen przedstawiono w po-
staci wzorow, ktore dla zagadnienia polprzestrzeni sg Sciste natomiast dla warstwy maja charakter apro-
ksymacyjny. Pewne szczegblne przypadki takie jak: stempel walcowy, stozkowy, walcowy ze §cigciem
zostaly takze rozpatrzone. Przedstawiono wyniki liczbowe dla réznych materiatow takich jak: kadm,
magnez i kompozytdw epoksydowych zbrojonych wioknami ze szkta lub grafitu.

Praca wplynela do Redakcji dnia 3 grudnia 1982 roku.



