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DYNAMIC OF THE MATERIAL BODY WITH VARIABLE MASS

PioTR KONDERLA

Politechnika Wroclawska

1. Infroduction

The paper contains the analysis of the material deformable body of with the mass
is growing with time. Such a body may be the model of the real constructions being in the
course of assembly. This study is an attempt of description of the dynamic process in
the aforementioned material system. For example, in the figure 1 are shown three engine-
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Fig. 1.

ering objects in the course of erection. It is easy to notice, that there are two factors, which
are not usually taken into consideration in the classical analysis of the construction:

a) the load as well as the deformation of the construction take place already in the course
of erection of the object, '



626 P. KONDERLA

b) using the material which undergoes the ageing (for example: concrete) we deal with
the anisotropic body.

In the literature of the subject there is small amount of the papers devoted to that
problem. There is only monograph of Arutunian and Kolmanowski [1] where one can
find an extensive discussion of that problem together with numerical examples. In prin-
ciple, the authors confined themselves to the discussion of the linear, viscoelastic problem,
concentrating on the models of the ageing body. This monograph is a recapitulation of the
earlier works of these authors as well as others [2, 3, 4,5, 6, 7].

This study is an attempt of the construction of the model of the material body with
variable mass treated as nonlinear one, at the same time, the starting point is classical
problem, i.e. dynamic process of the material body with constant mass. ,

The paper presents the definition of the body model, there is description of the motion,
the measures of strain and stress as well as forces acting on the body. Next there is proposal
of the modified principled of behaviour, which supplemented with constutive relations
create the basic system of the model relations. It was proved, that all relations to be derived
coincide with classical equations for dynamic process in the case of limiting transition from
the body with growing mass to the body with constant mass.

{
2. Basic definition and assumptions

In Euclidean space E was defined an arbitrary system of coordinates {x‘} interrelated
with Cartesian coordinates {z'} by transformation:

xt=x'(z, 2%, z%), z° = Z°(x!, x2, x%), )}

. which is further called the system of the spatial coordinates.
The natural basic of the system {x'} are vectors:

gl(x) = Z‘.’I(x)eas (2)
metric tensor is in the form:
815(x) = g1(x)g,(x) = z?lz?.l Oup - €)

In the same space was defined second system of coordinates {X”}, which is called the
system of the material coordinates:

X'=X"2Z',22 2%, 2Z*=Z4(X',X*X%, )

with the natural basic:
Gi(X) = ZA(X)e,, )

and the metric tensor:
G(X) = G(X)G;(X) = Z:iIZ?J Oan- ®

Cartesian systems {z”} and {Z4} are identical,

The following definition of the material system (material body) with increasing mass
have been introduced:
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Def. 1. The material system is a set B composed of the bodies 4;, A,, Ag, ..., being
Boolean algebra with relations of the alternation v, conjuction A and arrange-
ment <.

Def. 2. The body with increasing mass is called a material subsystem B* if it is the subset
of the material system B* = B and if the elements of B* are the bodies B, € B*
with the following structure:

a) B, body is the set of elements P called material points. Subscript ¢ refers to the
moment ¢ under consideration, and for every 7, > t;, By, < B,,.

b) Every element B, € B* can be mapped onto Euclidean space E, it means that at
every moment ¢ the configuration %, of the body B; in E is given.

c) In the space E to each body configuration B, is assigned Borel measure on all
subsets of B; set.

d) For every material point P € B, the specified system of the constitutive equations
defining the material is fulfilled.

The above definition is an extension of the known definition of the material system-
[8]. According with the postulate b) there is possibility of the assignment to the elements
P e B, of the definite place in the space E, what was written:

X ==x/(P), XeE. ¢

It is assumed that the mapping (7) is so choosen, that for the same element P € B;,
and P € B, , %,;(P) should equal to x.,(P).

The aforementioned definition of the body with increasing mass one can interpret
twofold:

— as a set of bodies B, with constant mass, at the same time, the mapping of the points
- of these bodies X = x,(P) is so choosen that for the successive moments ¢, < #, <

< t3 ... their pictures in E overlap respectively ., (P) = %, (P) = #;3(P) ...

— as a one body, whose picture in E evolves in time, i.e. it constitutes differentiable
manifold in the space with variable boundaries.

In the later passage of the paper the second interpretation was used as being much
closer to the physical interpretation of the problem.

Evolution of the material body is a determined process, i.e. there is known function
defining the instant when the element P becomes an element of the material body. This
function is ‘called the function of the mass increment 7(%,(P)) = 7(X) and was described
as follows:

Def. 3.:

a) Function 7(X) takes the values from the time interval [t,, T] and it means the
instant ¢ of the particle joining with the coordinate X to the material body. It
the instant ¢ = T the body reaches its nominal mass.

b) Function 7(X) is the continuous function of the class C! on the finite number
of the subdomains £,. On the boundaries of these subdomains there can be
discontuities of the function 7(X) itself or its derivatives. At the same time it is
assumed that the boundaries of the subdomains may be only the equiscalar
surfaces of the function 7(X).

¢) Function 7(X) has been choosen in such a way that at every moment of time
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t€ [y, ) there is ensured material continuity of the body — there are no
relative extremum at each of the subdomains.

d) Equiscalar sutfaces 7(X are smooth ones, coinciding with some part of the domain
boundary £2;.

The definition written above enables us to formulate the problem. From the engineering
point of view, the goal is to build-up and to describe the motion of the material body
taking up determined shape in the space. It is assumed that the body shape to be designed
in the space E assumes the configuration 2 and occupies the domain 2 (fig. 2). On this
space there is defined function z(X) which allows for explicit determination of that part
of the domain 2, = £ which is occupied by the body for given insfant 7. At instant ¢ for
every X € £, the relation 7(X) < ¢ is fulfilled. Configuration %" (further called the initial
reference configuration) and the function 7(X) in the explicit way determine each of the
configurations &, of the body B, in E. '

The body domain £, is limited by the surface S, and

S, = StuS?USE, ®)

where S} is the surface with assigned kinematic boundary conditioné, S? is the surface
with assigned kinetic boundary conditions. Surface S3 is uncloaded, equiscalar surface
of the function 7(X), the evolving surface.

a)

;

Fig. 2.
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The body is loaded by the body forces f(x, t) as well as by the surface forces g,(x, t)
on S?. Every element with coordinate X at instant ¢ has attributed: mass density g,(X)
and the initial speed vo(X). It is assumed that at the moment ¢ = 7(X) at pomt X the
deformation equals to zero.

3. Motion. State of strain

In .the course of the motion the material body at instant ¢ occﬁpies the actural con-
figuration »,. Each of the material points P = 2#~1(X) takes up the position x(P). The
set of all these configurations we call the body motion, and it is written:

xh = x{(P) = y'(X, 1), ®
where 2(...) is the deformation function, X e £2;, t & [t;, o).

Equation- (9) describes the motion with respect to the reference configuration o¢.
The mapping x <> X is explicit (j = det(dx'/dXT) # 0), thanks to that there is inverse
relation: |

X = 4~ H(x, £). (10)

Speed and accleration of the point X was written in the form

ol(x, 1) = X'(x, 1) = %x’(X, D.
, 1 an

Ao, f) = 5, ) = - (X, 1),

dt?

The basic measure of the deformation is deformation gradient. From definition we
have [8]:

Fi(X, t)=—387 FX, 1) and  Frii(s, 1) = i . (1)

In general, configuration X is not the configuration of the state of the natural body,
thus, the deformation (12) doesn’t express the real deformation of the element at pomt X.
At instant ¢ = 7(X) the deformation gradients equal to:

Fi(X,7) = Fix), Fri(x,7) = Fri(x), (13)

and in general are different from g} and gl(gi(x, X) = g'Gy, gl (x, X) = G'g)).

On the other hand, there is not such configuration, where all elements (particles)
* would be in natural state. To overcome this difficulty it was necessary to introduce the
concept of the local reference configuration.
Def. 4. The local reference configuration 4, in the neighborhood of the element X is

tangent to the actual configuration #x,(., at the place x(X, 7).

Definition 4 allows for the construction of the configuration, in which all elements
of the body are — according with the previous assumption —in the natural state (un-
deformed). At instant 7 = 7(X) the position of the element X equals to:

xt = (X, (X)), 149
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Let: -
QQ(X) = ‘5;1xi (X’ T(X)) == ”?T)(X)’ 1

X1(0) = #7(6). )
The system of coordinates {&#*} determined by means of eq. (15) will be distinguished

by introduction of the local reference configuration o, To mark off, all quantities descri-
bed with respect to local reference configuration will possess dash over the letter.

Fig. 3.

In the fig. 3 is shown the material body in configurations o, 2, and x,. The radiuses-
vectors of the point X in the particular configurations are equal to:

R(X) = RI(X) Gy(X),
r(X, 1) = F(X, Ng.(), (16)
O, 1) = r(x5(0), 1).

Vector of the natural base of the system {©%} are equal to:

- d d o 0
Ga(@)=[wr(x,z)] = [Wr(xai(@),t)]m(; HX0%6a@)800. (1)

Putting K1(0) = »;1w(0) we have: .
G.(0) = Fi(X)K{(@)$:.(X), ()

where &(X) = gi(x, ©(X)), Fi(X) = F}X, 7(X)).
Tensor K is in reality transformation tensor of the configuration o on configuration
A .. The inverse tensor K~! has the form:

t=1(X)

K x) = 20 _ i) o400 001, 1)

The motion and deformation gradient with respect to the local reference configuration

are equal to:
X = yi(x (), 1) = 70, 1), 0

F{@,n = _3%7(@, 1). . (21)
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Deformation gradient F which is called further the gradient of the relative deformation
expresses the real deformation of the material point. It is interrelated with gradient F
by the transformation expression:

Fi(@, 1) = Fi(X, 1)Ki(0), @
and at moment ¢ = 7(X) equals to 1.
Fi(©, v) = F(X)Ki(0) = £.(0), (23)

where 24(0) = £'G,.

Transformation (15) is continuous, if the function ©(X) is of the class at least C!.
Otherwise, tensor K as well as the quantities connected with local reference configuration
have the surfaces of discontinuities. Discontinuity of function 7(X) in the real process
corresponds with the pause in the erection of the material body while the discontinuity
of the gradient V7(X) refers to the sudden change of the speed of increment of the body
mass, Other measures of the strain are in the form:

— tensors of Green’s deformation:

CIJ(X7 t) = ‘F_'il(Xy t)F.-II(X’ t):

Caal©, 1) = Fiol®, DFYO, 1) = KLy K3, @4
— tensors of Green-Saint Venant’s strain:
2E(X, t) = Cpy(X, 1)—Gp(X, 1), 25)

2E,5(0, 1) = Cup(@, 1)~ Gop(©) = 2KX(Ey;— Ers) K}

4. Principles of conservation

4.1. Principle of the mass conservation. According with the formulated problem the whole
mass of the material body changes with time. It is assumed, that at any instant ¢ at the
domain w, there exists the scalar function o(x, £), which is interpreted as a mass density.
At instant ¢ = 7(X) the particle with coordinate X has assigned the known mass density
equal to gq(X):

o (x, 7(X)) = go(X). (26)
x

Fig. 4.
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The body in local reference configuration °, occupies at the moment ¢ the domain
£, (fig. 4) and the mass increment takes place on the surface S7. At instant 7+ df the domain
occupied by the body equals to £2;,4. The total mass of the body in the time interval
[£, t+dt] increases by the mass of the material particles being contained between surfaces
S3? and Efwz- The measure of the distance between these two surfaces is the segment 4/
collinear with grade 7.

The principle of the mass conservation can be formulated as follows: the time derivative
of the mass increment of the material body equals to the speed of increase of the body mass

on the surface S2, what was written:
D dl .
o | et 0do = [ o0 Gras. )
ay Si

After transformation of the left hand part of eq. (27) we have:

D _
-D%wf o(x, )dw = Ebfg(x, NI(O, 1)dAO) =

Z%_ f Q(x,t)f(@,t)d.Q(@)+:[@(x,t)f(@,t)%dS(@)= 8)
St

£2y=const

= f Dﬂt[g(x,t)7(@,z)]d9(9)+_[ QO(X)%dS(@),
St

!_J; =const

where J(, f) = det(Fi) Vdet(gy,)/det(Gp).
After substitution (28) to (27) one can get the local form of the principle of the mass
conservation:

o, DT(©, 0] =0. o ®)

4.2. Principle of balance of momentum. Momentum & of the material body occupying
at instant 7 the domain w, can be expressed as:

2 = [v(x, )o(x, 1) do(x). (30)
The principle of balance of momentum postulates that instantenous material derivative
of momentum equals to the sum of the forces acting on this body, hence:

D%‘@ = ‘DI‘)T f”(x’ Ne(x, Ndw(x) = ff(x, Deo(x, 1) dw(x)+

“ - G1)

+ f qo(x,t)ds(x)+—l% f Po(X)dS(X).
s? .

S:l us?

According with assumption the material particles with cordinates X have assiggned
the vector function vo(X’), what is interpret in the real process as a initial speed at the mo-
ment, when the particle “joins” the body, i.e. at moment ¢ = z(X). The quantity po(X)
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should be interpreted as a density of momentum falling on the surface S3? resulting from
“the joining” material particles. After transformation of the left hand of eq. (31) we have:

i | 2 D0t Do) = 3 [[vtx, 0 £ T(0)ad(0) -
oy R

D (32)

KH

!—2; =const

I

Segment ! is connected with the speed of displacement of the boundary S? by the

dependence: _
dal _ 1 . 1
dt |gradg |- ]/ m

= ’1’(")(@) . (33)

After substituting (32) and (33) to (31) and further transformations we arrive at:

[ atx, Do, Ndox) = [ (e, Nele, Do+ [ golx, Hds(x)+

we Sl“Ung

| (34)
+ [ 2o(X)~9(X)]e0(X)%(0)ds(x).
s?

The integrand in the last integral one can interpret as the load intensity of the surface
S3. The difference v,(X)—v(X) is the diference of the particle speed with coordinate X
and the particle of the surface x(X, 7) € s? at the instant, when the particle has joined the
material body. After denotation:

qo(x, 1) for xes!ust
q(x"t) = _ £ 3 (35)
[vo(X) =5 (X)]0o(X)¥(ny () or x€es;
the principle of balance of momentum conservation can be written in the standard way:
[atx, o(x, Do) = [fee, elx, Ddo(x)+ [ gCx, 1) ds(x). (36)
wt W St

After analogous as above transformations one can get the equation expressing the
principle of balance of moment of momentum conservation in the form:

fDitr(x, 1) xv(x, t)o(x, 1)]dw = fr(x, 1) xf(x, e(x, t)dw+

€1)
+ fr(x,t)xq(x,t)ds(x).
g )

5. State of stress. Cauchy equations of the motion

In the Fig. 5 there is shown the material body with distinguished element of volume
in reference configurations 2~ and ¢, as well as in actual configuration x,. At the interface
of the surfaces cut-off in the thoughts it is postulated the vectors field of stress ¢y, which
can be presented in the form of the stress tensors:

5 Mech. Teoret. i Stos. 4/88
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Fig. 5.

tnds(x) = t¥(x, ) g(x)n(x)ds(x) = TT(X, 1)g,(x)Ni(X)dS(X) = (38)
= T"(0, Ng(x)N.(0)dS(0),
where 77!, T are Pioli-Kirchhoff stress tensors with respect to " and ", configurations
respectively. '

Cauchy equations of the motion are local forms of the principles of balance of mo-
mentum and moment of momentum conservation. Let discuss the domain w, limited
by the surface s;. According to def. 3 function 7(X) or grad 7(X) can posses definite number
of the discontiuties on the surfaces s}, sZ, ..., s® (Fig. 6). In this way there can take place

Fig. 6.

the discontiuties of the stress tensor. Dividing the domain w, on the separable subdomains

i as well as taking advantage of the boundary conditions, eq. (36) can be written in the
form:

J alx, Delx, Ddw(x) = [ f(x, Dolx, Ndw(x)+ [ tayds(x)+
we Y

“ K - (39
D e, s+ [ e nds(x)].
sit

r=1 g7
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The last sum in the eq. (39) is by identity equal to zero, what gives the continuity
condition of the stress vector on the surfaces s:

tay(x, )+l (x, 1) =0 for xeg. (40)
After denoting by dw; the limiting surface of the domain w] we have:
R
[ax, Ne(x, dw@) = [ fx, e, Ddo(x)+ 3 [ tuyds(). (1)
wt @r r=1 E

. Taking advantage of Gauss-Ostrogrodski theorem for each of the terms of sum and carry-
ing-out all necessary transformation, we have:

R
D) [, el 0 [f'(x, )—d!(x, D]} () doo(x) = 0. “2)
r=1 uf

Hence, the first Cauchy equation of the motion together with the continuity condition
has the following form:

R
th(x, ) +ox, ) [f'(x, )-d'(x, )] =0 for xelJoj,
r=1
R 43)
@ —~tHn, =0 for xelJs.
r=1

Performing analogous procedure with eq. (37) we get secound Cauchy equation of
motion in the form:

R
Mx,2)=t"x,t) for xelJow. (CZ))
r=1

Cauchy equations of motion (43) and (44) one can get using Pioli-Kirchhoff’s stress
tensors.

6. Counstitutive equations

To describe the dynamic process of the with growing mass it is necessary to formulate
the constitutive equations. It is possible to use without any limits the same equations as in
the classic problems. Let for example, the body to be built from isotropic elastic material,
then the constitutive equations dependences have the form [9]:

tkl(xa t) =fkl(C—KL(@9 t)) (45)
This study contains the set of equations of the problem of initial-boundary body with

growing mass. Full description requires additionally of the formulation of the initial and
boundary conditions of the process.

7. Example

An example presented below illustrates the function of the mass increment and the
relations between the kinematic quantities for given material body.

5%
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Fig. 7.

A flat rectangular disk of dimensions L x 11is considered (Fig. 7a). Coordinate systems
{X"} and {x'} were assumed as Cartesian ones. Let the function of the mass increment
7(X) to be in the form:

F/aN
I1-—- Nl»—-ﬂ

T,X* for X2
(X!, X?) =T X* = ' , (46)
T,X* for X% > —- :

N

where T, > fI_:l > 0. The initial moment is #, = 0. It was assumed that T, = Ty = T
(see Fig. 7).
As it results from (46) the disk is build in two time intervals [O,%Tl] and [%Tz, TZ].

The pause in the course of building of the body corresponds to the time interval

1 1 . :
(5 T, > Tz). The diagram of function 7(X) is shown in fig. 7b.

. _ t=0 t=05T

T oT T T
RERER R
i T
-~~~ T

N O S I X
T oast

RN
T T T

Fig. 8.
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The disk is subjected to the “pure” forced shear. Disk motion is described by equations:
x=Z(X, t)3 XI(X, t)=X1’
234X, 1) = AtX*+ X2, S
where A — an arbitrary constant.
The successive phases of disk construction as well as its successive configurations are

shown in fig. 8.
The local system of the material coordinates is defined by eq. (15):

oX)= ”(1)(X); % (X) = X,
Hey(X) = AT, X' X2+ X2,
X(0) = x(0), x5'(0) =0, (8)
0 v
AT O +1

The transformation matrix of system {X7} into {@*} is in the form:

' 0) =

1 0
K(6) = Vexy(0), Ki@)=|_ ATO? 1 : (49)
(ATO'+1)* AT,0*+1
Coordinate system {©@*} has the surface of discontinuity for X2 = -;— It is equiscalar

surface of the function 7(X) at the moment of “the pause of building” of the disk. The
vectors of the natural basis of the system {@*} as well as the first metric form equal to:

51 =&1>
G _ Amee 1
2T UTE ) 8T AT+ B (50)
- A*THO'0Y:  A2T?O'O?
_ AT +1)* (AT,O*+1)?
Gaﬂ(e) = 1
sym. AT O +1)?

The motion in relation to the local configuration expresses the equation:
i(@’ t)=Z(X(@),t), El(a’t) 2019
62 : (51)
AT O +1°
The strain measures in relation to the local configuration are equal:
— gradient of the relative deformation: : ’

(0, 1) = 410" +

1 0
_ AT6? 1 s (32)
(AT,O"+1)> ATO'+1

F(i(@$ 1) =

At
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— tensor of the relative deformation:

1|4 AT,0% 1 o
— * - _(XTt@l +1)? v (53
O,1) = >
Caﬁ( > ) 1 e ATIGZ 1 )
ATO"+1 (AT,0+1)* (ATO*+1)*

— tensor of the relative strain:

ATO* T A*TH(O10%?
At— v A sym.
. ATO'+1) (AT,0" +1) -
e 1 e ATE? ]_ 42720'60*
AT,0 +1 (AT,O0 '+ 1)? |~ (AT,0 +1)°
Ay2 A x?
1.0 I
'\'\; Iss
05
" o g o S
00 05 o Q0.5 1.0
E“/AT Eqp/7AT

Fig. 9.

. . . . . . 1
All the strain measures in relation to the local configuration on the line X2 = - are

discrete. For example, fig. 9 presents the diagrams of non-zero values of strain tensor
coordinates E following their transformation into the system {x'} according to the relation:

2E1(0’ t) == 2Eaﬁgoi‘glg' (55)

References

1. H. X. Avyrionan, B. T. Komemanosciu, Teopur noasyuecmu neodnopodnsrx ten, Hayxa, Mocksa
1983.

2. H. X. Aryrionsan, A. A. 3esun; Omnumasshar dopmua Hapawyusaesoti xosonuw, ¥ss. AH CCCP,
MTT, 1981, up. 5, c. 128 - 132,

3. H. X. Avvrioans, A. A. 3psuxm, 3adauu ONMUMUSAYUL 6 MEOPUU NOAIYUECTIU OAA HAPAUUBAEMBIX
mes, nodseposcentbix cmapenuro, ¥as. AH CCCP, MTT, 1979, up. 1, c. 100 - 107.

4. H. X. Aryriownn, Kpaesan sadaua meoprut noazyueciu 0ay Hapawusaemozo meaa, IIMM, 1977, T.
41, Bom. 5, c. 783 - 789. '

5. H. X. AryrrousH, B. B. Menios, Hexomopsie 3ad0auu meopuy noasyuecmu HeoOHopoOHo-cmaperouyux
men ¢ usmenArowelica 2panuyedi, Yiss. AH CCCP, MTT, 1982, up. 5, c. 91 1 100.

6. H. X. Aryriouss, A. C. JlosoBcxku, OF odnoti 3adaue meopuu ersxoynpyzocmu O4a mes ¢ Pasoauis
npegparyerunsnu, JAH Apm. CCP, 1977, T. 65, up. 2, c. 109—115.



DYNAMIC OF THE MATERIAL... 639

7..B. . Xaenas, K auneiinoil meopuu noasyvecmu napaujusaenozo meaa, Mex. Crepycnennix Cucrem
H CIIOWIHBIX cpen, Buit. 13, JIMCH, Jleuwnrpag 1980.

8. P. PERZYNA, Termodynamika materialéw niesprezystych, PWN, Warszawa 1978.

9. A. C. BRINGEN, Nonlinear theory of continuous media, Mc Graw-Hill Book Company, London 1962.

Peaome

IVUHAMHKA MATEPUANBLHOIO TEJNA C NEPEMEHHOM MACCOH

B pafoTe CKOHCTPYHPOBaHO MOJENE MATEPHANBHOTO Tela C riepemMeHHO Maccoit. IlpezcraBieHo
onpeseneHue TAKOH MOAEIH, OMHCAHO ABIKEHHE, MepH AedopMalluy, HanpsHKEHHS U CHILI HeHCTBY-
youme ua Teno. Kpome aroro npexnaraem MoandHLHPOBAHHbIE 32KOHLI COXPAHEHHS, KOTOPhIE JOMNON-
HEHHBIC ONPEREJISIOIMMH YPABHEHIIMH AIOT OCHOBHYIO CMCTEMY COOTHOLIEHMI MOJENH.

B oxonuaHuy pafoThi IOKA3aHO HNPHMED MUIOCTPHPYIOINMIA KHHEMATHUECKHE 3ABUCHMOCTH MO-
Jerr.

Streszczenie
DYNAMIKA CIAELA MATERIALNEGO O ZMIENNEY MASIE
W pracy skonstruowano model ciala materialnego o zmiennej masie. Podano definicje takiego ciala,
opisano ruch, miary odksztalcenia i naprezenia oraz sily dzialajgce na cialo. Nastgpnie postuluje si¢ zmodyfi-

kowane zasady zachowania, ktére po uzupelnieniu zwigzkami konstytutywnymi daja podstawowy uklad
relacji modelu. W zakoficzeniu pracy podano przyklad ilustrujgcy zaleznoici kinematyczne modelu.

Praca wplynela do Redakcji dnia 28 grudnia 1987 roku.



