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1. Introduction

Continuous self-excited systems, which occur in aircraft structures, as well as in other
fields of technology, have properties important for structural engineering. Elastic and
damping coefficients of such systems depend on the parameter of self-excitation and in
the case of external loading or parametrically exciting forces acting on the system, its
resonance characteristics also vary with the degree of self-excitation.

Nonautonomous linearized vibration problems of continuous self-excited systems have
been considered in a number of papers (cf. for instance, [1], [2], [3].

Nonlinear analysis of forced vibrations of a continuous self-excited system has been
presented in [4] and nonlinear parametric self-excited vibrations in [5]. In the present paper
vibrations of a continuous self-excited system will be analysed by way of example of a plate
of finite length in plane supersonic flow as shown in Fig. 1. Nonlinear membrane forces
induced by the plate motion will be included into analysis.
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Fig. 1.

The plate is forced by a harmonically varying pressure and periodic in-plane loads
Parametrically exciting the system.

The phenomena to be investigated include regular and chaotic motions which may
occur in such a nonlinear self-excited system (cf. [6]).
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2. Equations of the problem

Let us consider vibrations of a lplate of length L and infinite width assuming that the
plate is exposed to a one-side supersonic flow, the unperturbed velocity of which U,
is parallel to the x-axis (Fig. 1).

The equation of motion of the plate will be written in the form:

;W W arw
(1+00 Bt) I +N(W,1) 52 +o,h 32 = (W) O(x, 1), m

where the pressure difference Ap(W)is produced by the normal displacement W = W(x, 1)
of the plate in supersonic gas stream [1].

oW 1 1) ow
Ap(W) = —0o Us- [ Ix —U:(I_ —,“—2) '5;—], 2
and
. P v g

M = Uslay, > 1 is Mach number of unperturbed flow.
The variable nonlinear membrane force N(W,¢) is assumed as:

NW, 1) =N — (1+ﬂo at) 2 f (aazj) dx. 0

In Eqgs. (1) and (3) the viscoelastic Voigt model of the plate material and nonlinear
membrane forces are taken into account,
Parametrically exciting part of the membrane forces N(z) is taken in the form:

N(t) = Ny+eocospyt, 0]
and external pressure Q(x,?), we assume as:
O(x, t) = Qy(x)cosp.t+ Q1 (x)sinp.1, Q)

where the freqﬁencies P, and p, may be different in the genéral case.
In Egs. (1), (2), (3) the following symbols have been used:
EnR® . . . - .
D= ﬁ — plate stiffness, ¢, — spring-stiffness coefficient of the plate elastic
support, 6, B, — coefficients of material damping of the plate and its deformable support,
@p» B — density and thickness of the plate, a,, oo — sound velocity and gas density of the

unperturbed flow.

3. Transformation of the equations

The problem will be studied in the dimensionless form, assuming that the coordinate x
“is referred to the length of the plate L, the normal displacement W — to its thickness 5,
and the time #— to the ratio L/U,. The equation of motion is then obtained in the form:

I*W 2w W
(1+@ a:) i FSOV, 1) 5o+ MM? — = dodp(W)+ 42 P(x, 0, 6)
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where we have:

2y = 121 —2?) éL/; L =120 L @';0 , .
Iy = 12(1—v9) ¢ L 9‘;0, P(x, 1) = ‘“Qéf;g) : !
The dimensionless in-plane force:
S(W,t)=12(1-—v)E/3N(W )= St)— (1+ﬂ )cfl( ) ®)
0
and the pressure difference:
Ap(W) = —@oUsf - i [a;f + 1—7‘17)—3%]. )

The solution of Eq. (6) is sought in the form of a series of normalized eigenfunctions
X,(x) of the self-adjoined boundary-value vibration problem of the plate considered in
the vacuum with: ~

O =S(W,t)=0, : (10)

and it is assumed that the dimensionless load P(x, t) can be expanded in a series of functions
X;(x). Confining ourselves to n terms of these series, we have:

W, 1) = 3 wi(t) X0,
f:‘ (11)

Pex, 1) = DI B(OX,09).

For a plate simply supported at both edges — that is, for x = 0 and x = 1 — the eigen-
functions are: '

X,(x) =V 2sinjmx, j=1,2,3,.... ) (12)

On substituting (11) and (12) into Eq. (6), taking into account (8), (9) and making
use of the Galerkin method, we obtain a set of equations of the following form:

n n
1. i . .
Bl R ijkwk = ——ocjzijkZ (w,?+£‘—w,‘wk) +
a)1 wl : = =1 (01 (13)
+ejwycosp, t+yob(t),

forj=1,2,3,..,n,
where:

W, =n2/M]/ll, n,=w1[y1( ‘uz)+@]“],
.L20021

w =j2(j2—0), yo= Wt ' ¢))]
P
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The skew - symmetric coefficients by, for j # k assume the form:
2k ;
b= ~bu =5 1= (= /] (15

while for j =k, by = 0.

The set of Eqs. (13) is taken as a starting point for the vibration analysis of the system
considered under the assumption that, according to (5), the external pressure is a harmoni-
cally varying function:

hy(t) = hyjcosp,.t+hysinp,t. (16)

4. Analysis of vibrations in the vicinity of critical parameters of the system
’

Let us assume that the vibrations occur in the vicinity of the critical state of the system
under study, and the critical state is considered here as the boundary between damped and
self-excited vibrations.

In this connection we shall examine the simplified set of equations which can be obtained
by setting the right-hand sides of Eqgs. (13) equal to zero.

The critical Mach number is denoted by M., and w,, is the real frequency corresponding
to M,,.

The reduced time 7 is introduced:

T=wl, a7
and Egs. (13) will be transformed to give:
D+ 0 F U+ Y1 2 b0, = eF 0y, .y Uny Uy wvvs Uus T) (18)
k=1

for j=1,2,...,n
where:

El(vl, sre ‘Um‘z-}l’ ] i)na T) = (771*"71)7'0"'(71*“71) ijk'vk'*'

k=1
- djz?)jlikz(vﬁ+ﬂli;kvk)+ &1j%v,c08q, T+ o iy (1), (19)

and we have: i
7(7) =w, (—;—1) 9p = Pyl (20)

755 and v, denote the values of the coefficients #; and y, for M = M,,, ¢ is a small para-
meter.
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The solution of the simplified set of Egs. (18), for & = 0, can be found as:

2(7) = §;e' ™. @D
The coefficients &; satisfy the set of equations:
2 El(G—a% +ign;i) O+ 1B = 0, (22)
k=1

for j,k=1,2,...,n
where dj is the Kronecker delta.
The frequency equation of the simplified Egs. (18) has the form:
D, = det||(uf —g° +ign;,) S+ y14Bull = 0, (23)
k=123, .., n.
From Eq. (23) we obtain the critical parameters:

M= Mcr and q=4q1,2= t g (24)
and the imagmary parts of the remainder roots of Eq. (23) are positive-that is, these roots
correspond to damped vibrations.

It results from the above statement that Eqs. (18) satisfy the validity conditions of the
asymptotic method of single-frequency analysis [7].
For this reason, we seek the solution of Eqs. (18) in the first-order approximation as:
2,(7) = a(§,e+§e7Y), (25)
forj=12,...,n,

where:
a=a(z), p=qr+H7). (26)
The first derivatives of these functions can be found from the equations:
a = sd(a, P, 27

29' = Qu-—q_" s-Bl(aa /ﬂ)a
and we also assume that:
g.-—q = 0(e). (28)

On substituting the solution (25) into Egs. (18), taking into account (26), (27) and
employing the method of harmonic balance, we obtain the set of equations:

Z 5l — 48 +190m;8) Op+ Y1405 = e[290(aBy —id) &~y (A1 +iaB)E+ D), (29)
k=1

forj=1,2,...,n,
where:

2n . g
(‘DJ = —Zl;f F}(vi’ vers Ups Z.)l, ---"Z.)na 1/’—?9)6"'”"2”#- (30)
0
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From the set of Egs. (29) we can determine the functions:
A, = A(a,9), B,=Ba,P

and then we obtain equations of resonance characteristics in the vicinity of the critical
state and examine the question of stability of the steady-state vibrations under investiga-
tion.

5. Numerical analysis of vibrations

Numerical integration of the set of Egs. (13) has been also performed in order to study
the typical courses of vibrations, phase plane portraits of the motion and resonance charac-
teristics of vibrations.

In this connection Egs. (13) have been written in the form:

. n n
Byt 0+ ujwy +y, Z buvy = — aj’y, Zkz(‘vl%'*'ﬁl V) +
k=1 k=1 ’

(31)
+ & jv;c08q, T4y (56089, Ty sing, T),
for j=1,2,3,...,n.
Vibrations were calculated for:
9= qp[2, Ge=4qp, ¢.=0 (32)

and for other relationships between the frequencies g, and ¢,. ,

The region of frequencies, taken into consideration in the numerical calculations,
involved the first two natural frequencies of the system under investigation. In the vicinity
of these two frequencies elastic and damping properties of the system depend on the
parameter of self-excitation in a significant manner.

6. Examples of numerical analysis

Let us begin with the short analysis of the simplified, linearized nonautonomous
vibration problem. The frequency equation of that problem is Eq. (23), which can be
written as:

D, = Dy(M, g) = ReD,+ilmD, = 0. (33)

By determining the real roots ¢ in the function of number M from the first and the
second of Eq. (33) separately, we can plot diagrams in the plane M, ¢, which are shown by
way of example in Fig. 2 for n = 4 and plate of L/2 = 180, The intersection point of the
ines ReD, = 0 and ImD, = 0 determines the critical parameters (24). It follows from
the computations performed that the location of the line Re D, = 0 depends in an insignifi-
cant manner on the value of the material damping @, The line Im D, = 0 is shifted to the
left with increasing values of @, This fact results in a decrease in the critical parameters
(24).
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Stable solutions

" Unstable solutions

L/h =180
n=4

151

Fig. 2.

617

The form of the lines (33) for real values of ¢ is also a cause of deformation of the
resonance diagrams in the function of Mach number. This is shown by way of example in
Fig. 3 for the forced vibration of a plate in supersonic flow (cf. [1]). In this figure 2(0.5)
denotes the coefficient of dynamic amplification of the amplitude of vibration at the

middle of the plate.

It follows from the computation that for M < M., the maximum amplitudes of forced
vibrations approach each other with increasing M and a sharp resonance occurs in the

0(0.5)1\ | e
28~ n=4 [
L./h =180
24~ 6 =0
Mer=2.45 | ———M=2.4
q=3.28
20
Stable oscillation M £ M,
18 _M=22
. Unstable oscillation M> M,
. R
M=26
gk
\
L M=238
4 ~A
(]';Cr
0 { { | | [ { o P
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 q

4 Mech, Teoret. i Stos. 4/88
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critical state (24). In the case of parametrically excited vibrations of a plate in supersonic

flow, deformations of regions of parametric resonance have been studied (cf. [1]).
The vibrations have been investigated in the vicinity of the regions of subharmonic

resonance corresponding to the first two natural frequencies of the structure.
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Fig. 4.

Some results of computation of parametrically excited vibrations are shown in Fig. 4,
which presents deformations of the regions of unstable vibration on the plane ¢2, ¢q,
where & is a reduced amplitude of parametric excitation and ¢, = DPpl2m,.

It follows from the computation that in supersonic flow the largest region of unstable
vibrations is the first region of subharmonic resonance which corresponds to the second
natural frequency. The region corresponding to the first natural frequency undergoes
strong degeneration resulting from the action of the flow.

For Mach numbers M approaching M., for which the two natural frequencies approach
each other, the resonance regions corresponding to these two natural frequencies unite
and for M = M., there occurs a single fundamental region of subharmonic resonance
which touches the frequency axis at the point ¢, = ¢.,. For M > M., the image of regions
of unstable vibrations becomes more complicated, this is described in [1].

In the case of the nonlinear system let us consider nonautonomous vibrations in the
vicinity of critical parameters.

Equations (18), (19) will be used under the assumption that:

g =0, My(v) = hycosqr. 34
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This enables us to study the forced vibrations and to determine the resonance characteristics
of the system for subcritical and supercritical Mach numbers (M < M., and M > M,,)
(cf. [4]). '

Some results of computations are shown in Figs. 5 to 10. Diagrams present the ratio:
Cw(x) = C(x)/C(x)q=2.5 3 (35)

versus the dimensionless frequency of loading ¢ in the interval 2.5 < ¢ < 3.5 for fixed
values of M and x, where C(x) is the amplitude of forced vibrations of the plate under
study. The diagrams are plotted for a point with the coordinate x = 0.75, since from the
computations performed it results that the maximum of the plate displacement occurs
near this point (cf. also [I]). '

The coefficient «, determining nonlinear properties of the system, plays the role of a
parameter of those diagrams.

Cw(o.7s)4 |

i L/h=17

14 | /h=170
ot =0=] M=2.3¢ Mg
. Mer= 2.302

12 | Qo= 2.915

l Py =0.001
10~ || 0=0

2.5 2.75 3.0 3.25 35 q
Fig. 5.

Figure 5 shows the results of computation for the Mach number M = 2.3 < M,,
and © = 0, while in the following three Figs. 6, 7, 8, the diagrams are presented for
M > M, and & = 0.

It is seen in Fig. 5 that for a number M < M., the nonlinear properties of the system
considerably decrease the amplitude of forced vibration in the vicinity of the resonance
frequency g = g, even for small values of «. )

For M > M,, the system investigated becomes a self-excited one and in the case for
® > O with P(x, ) = 0, a stable limit cycle of self-excited vibration occurs with a frequency
near to ¢,,. ‘

4*
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/
For a harmonically varying load P(x, ), M > M., and a > 0, stable periodic forced
vibrations appear in the vicinity of g.,. They are shown by bold lines in Figs. 6 to 8.
For a given « > 0, the maximum amplitude of stable forced vibrations increases with
increasing M and the range of g, in which these vibrations occur, becomes narrower,

“cy(075) 4 Stable vibration
—--—— Unstable vibration
12 | :
i o =0,001 L/h =170
10~ i M=2.32> M,
1 Mer=2.302
i =29
8" ! ot
Hj 1 joe=0005 Po=0.001
H

6 =0

C,(0.75)

Stable vibrotion
rol- | ———~— Unstable vibration

' ¢ =0.005 L/h=170
= | / M =235 M,
\i // . Mer=2.302
= ®=0.01 _
- q, =2.915
6 ’\/ er
\f | P, =0.001
\\ B =0
\
»
//

By contrast, for a given number M > M,,, the maximum amplitude decreases and the
range of stable periodic vibrations widens with increasing o.

Figures 9 and 10 show some results of computation performed for the case in which
a small material damping ® = 0.05 is taken into account and M > M,,.
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C,,(0.75) A o =0.005 ;/:;;?50
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Fig. 10.

Comparing the diagrams in Figs. 9 and 10 with those in Figs. 6 to 8, we find that the
introduction of material damping by means of the Voigt model generates much sharper
resonance maxima than in the system without material damping. The same phenomenon
has been found in the case of forced vibrations of linear aeroelastic self-excited systems

(cf. [1D.

7. Concluding remarks

- Nonautonomous nonlinear vibrations of continuous self-excited systems have interes-
ting properties which are important for aircraft engineering. Some results of numerical
analysis of resonance characteristics of such a system have been presented in this paper.
The equations derived in the paper enable us also to study other kinds of nonautonomous
vibrations including regular and chaotic motions of the system.. This will be presented in
further publications.
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Pezsmome

HEABTOHOMHLIE HEJMHENWHBIE KOJIEBAHUSI ABTOKONEBATEILHON CUCTEMBEI
C PACHPEIERNEHHBIMU ITAPAMETPAMU. TINTACTHUHKA B CBEPX3BYKOBOM IIOTOKE

PaccMoTpeHbl HEaBTOHOMHBIE HeJIMHeHHBhIe KoeGaHMA aBTOKoNeOaTeNsHON CHCTEMEI C pacrpene-
JICHHBIMHM ITapaMerpaMi Ha NpuMepe IIACTHHKK KOHEWHOM NNMHBI B IDNOCKOM CBEPX3BYKOBOM IIOTOKE
HATPY>KEHHON OJHOBPEMEHHO rapMOHMUECKM MEHSIOMMCA [JaBJEHMEM H IapaMeTpPHUECKH Bo3byja-
JOLMMH CHJIaMK B e€ IUIOCKOCTH. B ypaBHeHMH IUTACTHHKH YYTCHO HENMHEHHOCTh YOPYTHX H BeYIpPYrHx
CHJI BBI3BAHHBIX HArPY3KOM B IUIOCKOCTH TIIACTHHKH.

Pemenye pefmaraercst B BUie pAAA o COOCTBEHHbIM (DYHKITAAM KOJIE0aHWA INACTHHKA B BaKyyMe.
TIprMeHEH aCHMOTOTHYECKMI METOX OJHOYACTHOIO AHANMM3a KoJieOaHmil IUIT MCCNexoBaHMA pPE30OHAH-
CHEIX X8paKTEPHCTHK B OKPECTHOCTH KPUTHUECKMX I1apaMeTPoB aBTOKOJICOATENEHOM CHCTEMBI M METON
YHCIICHHOIO MHTEPHPOBAHUA YPABHEHUM NBIMKEHMs.

IIpencTaBnessl peaybTAaThI NPHMEPHLIX YHCIEHHBIX PAcYETOB PE30OHAHCHLIX XapaKTEPMCTHK HC-
CIIeZyeMOl CHCTEMBI.

Streszczenie

NIEAUTONOMICZNE NIELINIOWE DRGANIA CIAGEEGO UKELADU SAMOWZBUDNEGO.
PLYTA W OPLYWIE NADDZWIEKOWYM

Rozpatrzono nieautonomiczne nieliniowe drgania ciaglego ukladu samowzbudnego na przykladzie
plyty o skoficzonej dlugosci w plaskim oplywie naddzwigkowym obcigzonej parametrycznie pobudzajacymi
sitami w plaszczyZnie plyty i harmonicznie zmiennym ci$nieniem. W réwnaniu plyty uwzgl¢dniono nie-
liniowo$¢ sit sprezystych i tlumiacych spowodowanych silami mapigcia w plaszczyZnie plyty.

Rozwiazania poszukiwano w postaci rozwiniecia wzgledem funkcji wlasnych zlinearyzowanego prob-
lemu drgad plyty w prézni. Oméwiono asymptotyczna metode jednoczestoSciowej analizy drgafhh w celu
wyznaczenia rezonansowych charakterystyk w otoczeniu krytycznych parametréw samowzbudnych drgan
ukladu oraz metode numerycznego calkowania réwnan ruchu.

Przedstawiono wyniki przykladowych obliczert numerycznych charakterystyk rezonansowych bada-
nego ukladu,

Praca wplynela do Redakcji dnia 8 grudnia 1987 roku.



