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1. Introduction

The concept of constraints in solid mechanics is usually utilized to formulate special
cases of constitutive relations identifying with certain restriction imposed on pairs (y, T)
of a motion y and a stress 7. To be a constitutive relation such restriction must have a spe-
cial form, i.e. it must fulfil certain neccesary conditions stated in the general theory of
constitutive relations. The following Noll axiom is exactly one of these conditions, [9,
p. 160].

The principle of determinism for simple materials. The stress at the place occupied

by the body-point y at the time ¢ is determined by the history y' of the motion of the body
up to the time ¢, i.e.

T(x(X,1),t)=F (Vy(X, ); X).
Here % () denotes a sufficient regular mapping of histories Vy* of a gradient Vy of a mo-
tion y, body -points X onto symmetric Cauchy stress tensors.

The above principle of determinism will be called here a classical principle of determi-
nism. However, there exist real materials for which forementioned defined principle
leads to the theory not consistent with experiment. In such situations more general or
alternative formulations of the principle of determinism should be applied. For example,
if admissible motions of a body are subjected to constraints of the form:

w(X, Vi"Vy(X, 1)) =0, (1.1)

where w(-) is sufficient regular function with values in R" then the following statement
holds, [9 p. 176].

Principle of determinism for simple materials subject to constraints. The stress at the
place occupied by the body-point X at the time ¢ is determined by the history x* of the

motion y up to the time ¢ only to within an arbitrary tensor that does no work in any
motion compatible with the constraints. That is:

T(X(X’ t)’ t) = G(VX'(X, ),X)+N9
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where the mapping G(-) need be sufficiently regular and defined only for arguments
V' such as to satisfy the constraints, N being a stress for which the stress-power vanishes
in any motion satisfying the constraints, i.e. tr(ND) = 0 for each symmetric tensor D
such that:

?@fiy;—kﬁ)— D" (= 4G o = 0.

The principle of determinism for simple materials with constraints is a gencralisations
of the classical principle. If there are no restrictions of the form (1.1), i.e. w(+) = const.,
then N = 0 and both principles coincide.

The principle of determinism can be formulated in mechanics also in more general
form, describing more general classes of physical situations. For example in [!4] it can
be found the following formulation of constraints:

w(y, VI, s Vig) =20
and in [1] we deal with constraints:

W, VT, ..., Vo) =0,

J= (g 1™, s x @),

where p, g are natural numbers and numbers in scopes under the letters denote suitable
time-derivative.

In the paper we apply nonstandard analysis as a mathematical tool derive new consti-
tutive relations of mechanics from the known constitutive relations. Fundamental concepts
of this approach are based on [7, 11, 12]. The aim of the paper is to prove that by applying
concepts and methods of nonstandard analysis the principle of determinism for consti-
tutiverelations with constraints can be obtained from the classical principle of determi-
nism. This proof will be realized by a certain specification of nonstandard constitutive
relations which are consistent with the classical principle of determinism. We are to show
that this approach has the fol'lowing attributes:

(i) it eliminates from the axioms of mechanics the principle of determinism with
constraints,

(ii) it has a clear physical interpretation being based only on the classical principle
of determinism,

(iii) it leads to a description of physical situations which cannot be described neither
by the classical principle of determinism nor by the principle of determinism for constitu-
tive relations with constraints,

In the paper the concept of a constitutive relation is understood in more general sense
than that in most of the papers on this subject. Namely after a certain specification the
constitutive relations will be treated as constitutive relations for the internal forces descri-
bing material properties of bodies — or as constitutive relations for the external forces
describing interactions between a body and its exterior, cf, [11, 15].
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2. Physical foundations

Let be given the following objects:

(i) the sct {7 of states y of the mechanical system under consideration, i.e. assume
that I" is an open set in a certain topological space,

(ii) the set 2 of admissible evolutions R3¢ — y(¢) € I' of states of the mechanical
system under consideration, i.e. the set of right-hand side differentiable functions of real
variable; assume that this differentiation is well defined,

(iii) the dual pairing (W, <+, ->, W’) of linear topological spaces in which W is the
space of time rates p, W is the space of reactions ¢ of the system and <y, o) is the power
of the reaction g for the rate 4,y € W, 0 e W',

(iv) the set H, of histories y® : R, — I" of the evolution®y(-) € # of the system states
up to the time ¢, defined for each ¢ e R, i.e.

yP(s) = y(t—s)
forteR,seR,s = 0.
As a basis for our considerations the following requirement will be postulated.
Principle of determinism. For each timec-instant ¢ € R a reaction p(¢) of the system is

uniquely determined by the history ¥ € H, of the evolution y(-) € Z up to the time ¢ and
by the rate y(¢) of change of a system state in the time ¢, i.e,

o) = o(t, 7)), 7). 2.1)
Introducing above and applying below concepts such as the state of the system, a reac-
tion of the system, the rate of changing of a state of the system, etc., can have a different
physical interpretation, which can be found in [11].
in a description of a mechanical system the concept of constraints is used in situations
where it is impossible to receive so many informations to be sufficient to describe it by
a constitutive relation satisfying the classical principle of determinism. Accepting here
as a fundamental requirement the classical principle of determinism has then a superior
authority with respect to other ones. The approach using in the paper is in agree with
above premises because the concept of constraints is here a natural consequence of the
classical principle of determinism.

3. Tools from nenstandard analysis

Let & be a nonempty set. From all sequences of points of 2 we shall distinguish the
set C, C = IV, elements of which will be called the converging sequences. For each con-
verging sequence (x,).ey We assing exactly one point limx, € & which will be called a limit
of (x,).en. We will also say that each sequence (x,).ty € C converges to the limit limx,.
We assume that the operation lim: C — & fulfils the following conditions:

(i) each subsequence of a sequence converging to x, x € Z, is a sequence CONVerging
to x,
(i) the constant sequence with values equal to x, x € &, converges to x,

(iii) each sequence not converging to x, x € &, contains a subsequence whicn in turn

does not contain any subsequence converging to x.

1+
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Then the pair (Z, lim) will be referred to as L'-space, cf. [6 p. 339]. Let Cy, 4 < &,
stands for the set of all converging sequences with values in A4 and let P(%Z) be the power
set of &. Define two sequences cl,: P(Z) — P(%), int,: P(Z) - P(Z), of operations,
setting:

cly(4) = {limx,:(x)uen € Ca}s
clyyi(4) = clicl,(4), neN,

and:
int; (4) = Z\cl, (F\4),

intn+ 1(A) = intlintn(A); n GN:

for every 4 e P(%). Tt is easy to verify that each pair (%, cl,) n €N, is a step-space, cf.
[3], i.e. for each n € N the operation cl, fulfils all conditions defining a closure operation
in a topological space (possible except the requirement that cl must be equal to cl,).
It is easy to introduce a topological structure in each L'-space by defining the closed sets
as the sets D containing limits converging sequences of points belonging to the set D, cf.
[2 p. 90]. This topology will be denoted by 7. If the operation lim fulfils the additional
condition

(iv) if limx, = x and limx} = x,, €N, then there jexist sequences ()ien, (Ki)ien
of natural numbers for which lim x3! = X,
then cl, = cl,, for each pair (n, m) e N* and cl = cl,,n € N, is then a closure operation
in topological space (&, T, cf. [2, p. 90].

Similarly to such topological concepts as: the monad, the standard part operation, the
F-limit operation, we are going to define, for any n € N and for any L’-space, new con-
cepts of n-monad, n-standard part operation and F -limit operation. To this aid let the pair
(Z, lim) be a L’'-space and let &, lim be objects in a certain full structure 9. Let *MM be
an enlargement of M. We have *& ¢ *I and lim € *W (here and below we write lim
instead of *lim). The pair (*%, lim) is considered here as a QL'-space. For xe & and ne N
define:

Mon,(x) = n{*4: A e P(X), x € A = int, A}. (3.1)
Denoting by w,(x) the monad of x in the topological space (%, 7) it is easy to verify that
the following inclusions:
Mon, (x) > Mon,(x) > Mons(x) = ...,
as well as the equality:
() Mon,(x) = p,(x)

neN .

hold. The L'-space (%,lim) will be called n-Hausdorff, neXN, if x = y is implied by
Mon,(x) = Momn,(y). It is easy to see that if L’-space (%, lim) is n-Hausdorff, for a certain
n e N, then the topological space (%, 7) is a Hausdorff space.

Now let L’-space be n-Hausdorff for a certain n & N. Then in every n-monad Mon,(x),
x € Z, there is exactly one standard point. For each pair (x, y) € & x *& we shall write
st,y = x if y € Mon,(x). The aforemention operation st,: *%& — & will be considered
as the n-standard part operation. The domain of st, is equal to U {Mon,(x): xeZ).
A sequence (x,) ey of points of *& will be called F-converging if there exist a point
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x,x €%, and a hypernatural number 1, € *N\WN, such that the relation x, € Mon,(x)
holds for every » e *N\N, » < 1,. Points from Mon,(x) will be considered as F,-limits
of (X,)ne*n-

The concepts of n-Hausdorff L'-space, n-monad. n-standard part operation, F,-limit,
operation will be used below only in the case of n = 1. In the sequel instead of a 1-monad
a 1-Hausdorff space, etc., we shall use the terms: a monad, a Hausdorff L'-space, etc.,
respectively.

Now let T stands for a fixed topological regular space and 27 be the set of all closed
subsets of 7. Let define a convergence in 27 setting (4,),ev € C iff for some 4 €27 the
following statements holds:

(i) limsup 4, = 4, i.e. each neibourhood of any point from 4 has a nonemply inter-
sections with almost every set A,,n €N,

(i) liminf 4, = A, i.e. each neibourhood of any point from A has a non-empty inter-
section with infinite number of sets A,,n e N.

The set 27 with the convergence of sequences of sets defining above, determines a certain
L’-space, [6 p. 188], which will be denoted here by (27, lim). An important result, [10],
is that this L'-space is Hausdorff (i.e. 1-Hausdorff) and:

Mon(A) = {Be*(2"):°B = A}, 4€27, 3.2)
where °B stands for the standard part of the set B. It means that the standard part opera-

tion in L’-space (27, lim) is equal to the standard part operation of (closed) subsets of T.
Moreover, F-lim 4, = Mon(4) provided that:

A% e *NN\N)(VRE*N\N)[[n < L] = [d = °4,]],
for each F-converging sequence (A,),esny Of closed subsets A4, € *(27).

4. From microconstitutive relations to macroconstitutive relations.

Now we are going to formulate the method which enable us to obtain new constitutive
relations from the known constitutive relations. The known constitutive relations are here
relations satisfying the following form of the classical principle of deterrhinism (2.1):

o(t) = 4. (y(©), (1), v?), (D)

where function @,:I"x Wx H, - W’, for every ¢ € R, is defined by @.(y(t), p(t), y") =
= (2, p(1), y®). The formula (D) is a starting point of our considerations. In the sequel
arguments ¢ and y9, ¥ e H,, t € R, will be treated as parameters; for the sake of simpli-
city they will be omitted. So (D) has a form:

0 =9,y); p:I'xW—> W. 4.1

Let us assume that the set U(y) = dom@(y, ), for every y € I', is open in W. In a parti-
cular case Eq. (4.1) reduces to o = @(p).

Let @ be a set of functions §: > W — W’ which are assumed to describe physical
situations defined by (D). Hence we conclude that the set @ depends on parameters ¢
and p®(-). In agreement with physical premises, @ is an infinite set. Every function
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# € @ will be called a constitutive relation. It is not assumed here that every constitutive
elation being an element of @ has a physical sense.

Let 9 = (4,).es be a full structure in which sets R, I', W, W’ are scparated objects
of the type Aoy Passing to an enlargement *9 of M, elements of *@ will be called micro-
conctitutive relations:

0=, p); PFIX*W > ¥W, pe*d. (4.2)
For every microconstitutive relation @, @ € *®, and for every v,y €I, we have dom
#(p, *) = *U(y). Every function @, € *@, is an internal relation but not necessary stan-
dard.

Let us assume that the set I' is a topological Hausdorff space satisfying the first axiom
of countability. For every state p, y € I, we denote by (¢,(p))weny the neibourhood-basis
of y in I'. In the space 2%’ of all closed subsets of W’ we shall introduce a .L'-space struc-
ture setting 7: = W' in L'-space (27, lim). It is possible to introduce such structure by
means of considerations of Sec. 3, provided that W’ is regular. Let us define sequences
(R%(y, w)),en setting

Zi(y, w) = {o = @, Wy, w) € a,(y) x B(w, ro[n)}, (4.3)
where ro € Ry, y € *® and B(w, ro/n) is an open ball in W with a center w and a radius
ro/n, n € *N. Let ¥, be a subset of *® satisfying comditions:

(i) for every @ e ¥,y €*, we*W, sequences (AF(y, W))nery Of closures of sets
defined by Eq. (4.3) have Flimits (in the sense precised in Sec. 3),

(if) there exist 1° a standard state y, y € I', 2° a standard velocity p, y € W, 3° a non-
standard number 4, = 14(p), o € *N\W, such that:

[y, wl#0, (p,7,wePoxu@y)xpuw), (4.9)
where the closures @i’(}z,v—v) of sets Z7(y, w), for every » e *N\WN, » < Ao, are F-limits
of the sequences (%3(y, W))nesny and where the sets @Z‘P(?, w) do not depend on (7, w) e
#() x ulw).

Tn ¥, we introduce an equivalence reiation ~ , setting #; ~ @, provided that:

(V7 € *N\N)[[r < min (26(1), 40(P2)] = [°Rfi(y, w) = °RE(y, w)]],

holds for (@, @,) € ¥§. The equivalence class determined by the microconstitutive rela-

tion y € ¥, and the pertinent quotient set will be denoted by 7 (%) and IT respectively.
Setting:

ROy, w) = [ By, W), G
for (@, y) € ¥, x I, the relation:
0 Ry, w), R T'x W — 2%, (4.6)

will be called a maccoconstitutive relation generated by a microconstitutive relation @,
@ € ¥y, provided that 7 = 7(9). It is a macroidealisation of physical situation described
by microconstitutive relation given by (4.2). It is important that %#"(y, w) is a closed set
in ¥’ but not necessary bounded. Microconstitutive relations &, and &, will be considered
as nondiscernible if they generate the same macroconstitutive relation. Equality of
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classes 7(p,) and =(g,) is equivalent to nondiscernibless of microconstitutive relations
@, and @,. Introducing parameters ¢t and y? it can be formulate the following proposition.

Proposition. For every microconstitutive relation §, @ € ¥, there exists in It a macro-
constitutive relation &7 (p®, -) generated by @, i.e. there exists in I a set of reactions,
closed in W', uniquely determined by y(), ¥(¢) and »®. A relation ﬂ?@”(y“), ) not
depend on a choice of a microconstitutive relation from the class z(®), i.e. it is the same
for each pair of microconstitutive relations. So (4.2) implies:

o(®) € BFP (O, p(1), (). (GD)
Above proposition will be considered as the general principle of determinism and the
family of multifunctions:

Tsy - A1) = {we W: (y, w) e domBZID(y®, Y}, (4.7)
where:

dom@&FD(y®, ) = {(y, w) e I's Wi BFO(y0, . w) % O},

will be formed constraints. We will describe below physical situations for which constraints
(4.7) do not depend on the history y®, y® € H,. So, we shall also define 4,(y) = A7V (y).
From now on and from Eq. (4.4) we conclude that evolutions () € &, satisfying for
every t € R the condition p(z) € 4,(y(¢), exist. So, for each r € R and y € I" the set 4,(y)
is the set of all rates p of state o at the time 1. However, macroconstitutive relations as well
as constitutive relations from the set @ not necessary have physical sense.

5. From the general principle of determinism to the principle of determinism for
constitutive relations with constraints

The formalism presented in Sec. 4 leads from microconstitutive relations satisfying
the classical principle of determinism (D) to the macroconstitutive relations satisfying
the general principle of determinism (GD). The idea of such passage is in splitting the
set ¥, of microconstitutive relations into disjointed classes. To every class is assigned the
value of the operation ¢ — Z*@(-) on an arbitrary element ¢ of this class. This ‘mapping
is one to one and the operation mentioned above is additive if at least one from the com-
ponents is standard, i.e.:

@n(tp-*—"‘!l')( ) o ,@"(‘;)(. ) _*_‘%n(*w)( ) .

The operation @ — *@ together with the choice of the set @ of constitutive relations leads
to the set *@. The choice of the operation @ — *® seems to be natural, because @ and *@
represent the same physical object in different structures M and *IN respectively. The
restriction of the considerations to the set ¥,, which is the domain of the operation
P — %;“‘5’( ), has a character of a regularisation assumtion and is made only for securing
mathematical correctness of the proposed approach. Now the question arise: What con-
stitutive relations already known in mechanics can be obtained on that way from a certain
microconstitutive relation @, p € ¥,? '
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Answer yes to this qusstion can be easily obtained for relations satisfying the classical
principle of determinism (D) by setting @: = *p where y: I'x W — W’ is a function for
which. every element of the family {dom v (y,-): ¥ € '} is open. It is not so easy to obtain
a result related to the qusstion for more wide class of constitutive relations. In Sec. 6 we
shall obtain results for certain special cases of constitutive relations, namely we shall
found solutions to the following problem:

Problem. Let ¢ be a fixed time instant, £ € R, and let be given:

(i) constraints I's y - Ayy) = W, s €R,

(ii) the family of functions y,: I'x W x H; — W, s € R, suff iciently regular and that

for every s € R and for every pair (y, y®) € I'x H, inclusion:

A(y) = dompy(y, -, y®)

holds. We are to find a microconstitutive relation which generate the macroconstitutive
relation:

o) e p (¥ (1), ¥(1), ¥°)+Naoun (7 (). ;.1

In Eq. (5.1) N4, 6y (y(1) is a cone, normal to the set 4,(y(?)) in a point p(¢) € 4,(y(2)),
defined as follows. Let A <= W and w € W. First we define a cone tangent to 4 at a point
w, setting, [8]:

Tu(w) = liminfr-1(4 —w),
Aaw—rw
110

where lim inf is taken in the Hausdorff sense [4, p. 147].
A cone normal to 4 is the set defined by:

Naw) = {oe W'y, = 0, W e Tyw)}.

Note that if 4 is a closed set in a separable Banach space (and hence in all special cases
examined in Sec. 6) then, [8]:

Na(w) = {0 € W:o/lloll € dds(w)} v {0},
where dd, is the subgradient of the function ds: W — R, defined by:
dy(w) = inf {|lw—w||:we d}.

A solution to the aforemention problem can be given by an arbitrary microconstitutive
relation which generates a macroconstitutive relation satisfying the following principle
of determinism.

The principle of determinism for constitutive relations with constraints. The reaction

o(t) of the system at the time ¢ is determined by a history 9> € H, , up to the time # by a state

p(t) and by a rate p(¢) with an accuracy to an additive term g, o € W’, having nonne-
gative power:

y,e 20, (5.2)

on every rate p, y € W, admissible by constraints, i.e. on every rate belonging to the set
A:(y ().

In the forementioned principle of determinism the condition (5.2) can be changed by
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the alternative condition:

v, =0, (5.2.1)
provided that for every e R and every »(-) € 2 the set 4,(y(¢)) is a certain linear space.

6. Special cases

6.1. Firstly let us assume that: 1° I is an open set in a certain linear space W for which
dim W = dim W < + o0, 2° constraints are holonomic, i.e. for every ¢ € R equality:

Ai(y) = Tiap(y), v € (4], (6.1)
where:
[ = {ye W:4,() # D}, ©2)
holds. Moreover let for every ¢ € 4,(y) equality:
Naon () = Nigy(») (6.3)

holds. Then it can be proved that, [10], there exists a microconstitutive relation § € ¥,
which generates the following macroconstitutive relation:

oty e p (¥(0), P(1), ¥') + Niga(»).
This result is equivalent to the principle of determinism stated below.
Principle of determinism for constitutive relations with holonomic constraints in

spaces of finite dimension. The reaction ¢(¢) of the system at the time ¢ is determined by

a history y® of the system up to time ¢, by a state ¢(¢) and by a rate y(¢) with an accuracy
to an additive term having nonnegative power:

0020 (6.4)
on every rate p, ¥ € W, admissible by constraints, i.e. on every rate belonging to the set
Ty (@)

As before in the forementioned principle of determinism the condition (6.4) can be
changed by the alternative condition

e =0 (6.5)
provided that for every ¢t € R and every y(-) € 2 the set Tpay(p(s)) is a certain linear
space.

6.2. Now assume that: 1° I" is a certain Riemanian manifold and 2° the set A,(y(1)),
for every (¢, y(*)) € Rx 2 is a conformal image of a non-empty closed convex set in R"
or a diffeomorphici mage of a closed set in R" with C!-boundary. Then it can be proved
that, [10], there exists a microconstitutive relation § € ¥, which generates the following
macroconstitutive relation:

o) €, (p(t), () +Na, ey (P ().

This result is equivalent to the principle of determinism for constitutive relations with
constraints in its general form stated in Sec. 5 provided that I” is a Riemanian manifold.
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6.3. At last let us assume that (D) has a form:

o(t) = o' (y(1)),
where o: " — R is a certain function Gateaux differentiable in every point of the set I
which is assumed to be an open subset of a certain separable Hilbert space W. Then the
spaces W and W are isomorphic and will be identified below. Moreover let us assume that
constraints are holonomic, i.e. that equalities (6.1), (6.2) and (6.3) holds. Then it can be
proved that, [10], there exists a microconstitutive relation @ e ¥, which generates the
following macroconstitutive relation:
o) € & ((1))+ Ny (v(),

where z: I' = R denote the known Gateaux differentiable function, [4,] is assumed to
be a non-empty convex closed set. This result is equivalent to the following principle

of determinism:
The principle of determinism for potential constitutive relations with holonomic con-

straints in Hilbert spaces. The reaction o(¢) of the system at the time ¢ is determined by

a state y(¢) of the system with an accuracy to an additive term o having nonnegative power
{y, 0> > 0 on every rate y, ¥ € ¥, admissible by constraints, i.e. on every rate belonging
to the set 71[4,](?’([))-

As before in the forementioned principle of determinism inequality {y, ¢> > 0 can be
changed by the alternative condition (6.5) provided that for every ¢ € R the set Ti,;(y(2))
is a certain linear space.

7. Final remarks

In the paper the following results are obtained:

(1) An approach of formulating new constitutive relations of mechanics starting
from the known relations. The known relations satisfy the classical principle of determi-
nism.

(ii) It is proved that, in the proposed approach, constitutive relations with constraints
are special cases of constitutive relations without constraints. '

(iii) The principle of determinism for constitutive relations with constraints is deduced
from the classical principle of determinism, where no constraints are taken into account.

(iv) A generalisation of some topological concepts of nonstandard analysis to analogical
concepts in L'-spaces is discussed.

(v) It is proved that the standard operation in .L'-space of closed subsets of a regular
topological space T coincides with the standard part operation of closed sets in a topological
space T.

Results (ii) and (iii) can be generalized without difficulties for more wide class of con-
stitutive relations than that described in the paper. This generalisation is related to the
relations in which the reaction of the system depends on fields in RHS of (D) as well as
on elements of a certain fibre bundle, [5], and to the relations in which (D) is replaced by

o) = §.(5(), 3(1), 7),
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where p(-) = (y(*), @()) is a pair of an evolution p(-) € Z and a temperature-field @(-).
In this case, applying the method proposed in the paper, we are able to formulate thermo-
mechanical constraints, [13].

References

. W. BIELsKT, OSrodki ciggle z wigzami aholonomiczynmi, Dissertation, Faculty of Mathematics, Computer

Sciences and Mechanics, Warsaw University, 1976.

. R. ENGELKING, General topology, PWN, Warszawa, 1977.

F. HAUSDORFF, Gestufte Ranmes, Fund. Math., XXXV, 1935, 486 - 502.

. F. Hausporrr, Mengenlehre, 3rd edition, Springer, Berlin, 1927.

W. Kosidski, Rownania ewolucji ciaf dyssypatywnych, IFTR Report, 26, Warszawa 1983.

. K. Kuratowskl, Topology, Acad. Press, New York 1966.

. A. ROBINSON, Non-Standard Analysis, Studies in Logic and Foundations of Mathematics, North Holland,

Amsterdam 1979,

8. R.T. RockareLLAR, Generalized directional derivatives and subgradients of nonconvex functions, Can.
J. Math.,, XXXII, 2, 1980, 257 - 280.

9. C: TaursoeLL, 4 First Course in Rational Continumn Mechanics, The John Hopkins Univeristy, Bal-
timore-Maryland 1972.

10. E. WicrzBicky, Dissertation, Faculty of Mathematics, Computer Science and Mechanics, Warsaw
University, 1985. .

11. Cz. WozNiAk, Constraints in Constitutive Relations in Mechanics, Mech. Teor. i Stos.

12, Cz. Wozniak, Non Standard Analysis in Mechanics, Advances in Mechanics, to be published.

13. Cz. Wo7ZNIAK, On the Mbodelling of the Materials and Interrelations with Thermoelectro-mechanical
Constraints, Bull, Acad. Polon., Ser. Sci. Techn., to be published.

14. Cz. Wozniak, Wstep do mechaniki analitycznef kontinuum materialnego, in: Dynamika ukladow spre-
zystych, Ossolineum, Warszawa 1976.

15. Cz. WoZNIAK, Wiezy w mechanice cial odksztalcalnych, Ossolineum, Warszawa, to be published.

N R W

Pesome

CBA3U B MEXAHUKE TBEPIOOI'O TEJIA. IPMUMEHEHHUE
HECTAHJOAPTHOI'O AHAJIM3A

B craren npepnoyeno merTofm GoOpMyJIHPOBKH HOBBIX KOHCTHTYTHBHBIX COOTHOINEHHMH MEXAHIIM,
KOTOPOTO MCXOJHBIM TIOJIOIKEHHEM SIBIAIOTCA H3BeCTHbIE ONpene/sgonue (KOHCTHMTYTHBHBIE) COOTHO-
e, MeTon OCHOB2H Ha TIOHATHAX HECTAHZAPTHOro anayimsa. [IpuMeHAd NPC/NIOXKEHHBIX METOR
IIOKA32HO, UTO NPHHLUKI NETEPMHHU3MA OJIsi KOHCTHTYTHBHBIX COOTHOINEHHI CO CBA3AMH MOXKHA BbI-
BECTH M3 KJIACCHUECKOro IIPHHLMIIE NEeTEPMHUHH3MA, B KOTOPOM CBSI3H OTCYCTBYIOT.

Streszczenie
WIBZY W MECHANICE CIALA STAEEGO. ZASTOSOWANIE ANALIZY NIESTANDARDOWEJ
W pracy zaproponowano metode formulowania nowych relacji konstytutywnych ze znanych relacji
konstytutywnych. Wykorzystano w niej efektywnie pojecia analizy niestandardowej. Stosujac powyzsza

metode wykazano, ze zasada determinizmu dla relacji konstytutywnych z wigzami moze by¢ otrzymana
z zasady determinizmu dla relacji konstytutywnych bez wigzow.

Praca wplynela do Redakcji dnia 7 kwietnia 1986 roku.



