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The present shell research activities at the Aerospace Engineering Depértment of the
TH Delft are directed towards the development of an improved shell design criteria, which
incorporates the latest theoretical findings and makes efficient use of the currently avai-
lable computational facilities.

The establishment of an International Imperfection Data Bank is discussed. Charac-
teristic initial imperfection distributions associated with different fabrication techniques
are shown. It is demonstrated that the generation of reliability fuctions via the Monte
Carlo Method, which displays the degrading effect of the expected initial imperfection
distribution characteristic of a given fabrication process on the buckling load, offers the
means of combining the Lower Bound Design Method with the notion of Goodness
Classes. Thus shells manufactured by a process, which produces inherently a less damaging
initial imperfection distribution, will not be penalized because of the low experimental
results obtained with shells made by another process which produces a more damaging
characteristic initial imperfection distribution.

1. Introduction

For buckling sensitive applications a typical shell design procedure, as recommended
by any of the currently available shell design manuals [1], [2] consists of the following,
steps:

1. Lay-out the preliminary dimensions.

2. Select a wall construction and a stiffening concept.

3. Use one of the many shell-of-revolution codes to calculate the buckling load of the
“perfect” structure taking into account the appropriate boundary conditions and the
effect of. prebuckling deformations. . '

4. Select a “knockdown” factor to account for the “imperfections™ present in the finished
product. : -

5. Apply the appropriate safety factor.

In the form of a formula one can write:

Po<-r P, N ¢
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P, = allowable load,
P, = buckling load of the “perfect” structure,
y = “knockdown” factor,

F.S. = factor of safety.

The empirical “kniockdown” factor y is so chosen that when it is multiplied with P
the buckling load of the perfect structure, a lower bound to all available experimenta,
data is obtained. For isotropic shells under axial compression this approach yields the
lower-bound curve shown in Figure 1.
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Fig. 1. Test data for isotropic cylinders under axial compression [3]..

In principle, the use of empirical “knockdown” factors to account for the damaging
effect of as yet unknown causes is an accepted engineering solution to a pressing problem.
However, the question that immediately comes to ‘one’s mind is, where has scientific
community failed? How comes 'that today, after so many years of concentrated research
effort one cannot do any better and this despite the enormously mcreased computational
facilities provided by todays high powered computers? - '

It is true that for many cases, especially in applications where the total weight of the
structure is of no major concern, the Lower Bound Design Method provides safe and
reliable buckling load prediction. However, it penalizes innovative shell design because
of the poor experlmental results obtamed with shells produced and tested under completely
different circumstances.

Thus the purpose of the Shell Stability Research currently being carried out at the
Aerospace Enginnering Department of the Delft University of Technology is to derive
an Improved Shell Design Procedure, which will' incorporate the latest theoretical fin-
dings, especially that of the Imperfection Sensntmty Theory [4], and makes full use of the
available computational facilities.
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2. The imperfection sensitivity theory

Much effort has been spent in the past 30 years in trying to find the cause (or the
causes) for the wide experimental scatter and for the poor correlation between the predic-
tions based on a linearized small deflection theory with SS-3 (N, =2 = w = M, = 0)
boundary conditions and the available experimental results for axially compressed cylin-
drical shells. The concesus reached is that the experimental buckling loads are mainly
affected by 3 factors, namely: ' o '
1. Initial geometric imperfections,

2. Boundary conditions,
3. Inelastic effects.

It has been shown [5] that for thin shells (—? > 300, say) the inelastic effects may be

neglected. Moreover, though different combinations of in-plane boundary conditions
may affect the buckling loads considerably, for thin shells that buckle elastically initial
imperfections have been accepted as the main cause of the wide scatter of experimental
results (see also Fig. 1). ‘

Thus a designer that wants to do better than the Lower Bound Design Method is
faced by the following 3 questions:

1. Is the projected structure imperfection sensitive?
2. What are the shape and the amplitudes of the expected imperfections?
3. How does one calculate the buckling load of the imperfect structure?

Since it is well known that the largest portion of the knockdown factor used during
the buckling load calculations of stiffened or ‘unstiffened cylinders is due to initial geo-
metric imperfections, therefore it makes sense to try to find shell configurations w1th
stable post-buckling behaviour.

The imperfection sensitivity that a given structure will exhibit under certain loading
conditions can be investigated very conveniently by so-called b-Factor Method, which
is based on Koiter’s general theory of elastic stability [4]. For those cases where the lowest
buckling load is single valued and the bifurcation point is symmetric with respect to the
buckling deflection, the initial post—bu0klmg behawour is governed by the following
equation;

) .
o= 14+ )

where: 1 = applied load,
A. = perfect shell buckling load,
¢ = buckling displacement, -
all normalized in a suitable fashion, and
b = second post-buckling coefficient.
Notice from Fig. 2 that if the post-buckling coefficient b is negative, then the equili-
brium load 2 falls following buckling and the buckling load A, of the real structure is
expected to be imperfection sensitive. In this case the asymptotic relationship between

the buckling load of the imperfect structure A; and the imperfection amplitude £ is:
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Here it is assumed that the shape of the initial imperfection is affine to the shape of the
lowest buckling mode.
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Fig. 2. Equilibrium path for perfect and imperfact shells.

That the idea of imperfection sensitivity is widely known and accepted is mainly due
to the pioneering contributions of Koiter [4], [6] and the tireless efforts of the Harvard
group under Budiansky and Hutchinson in the 60’s [7], [8]. However, as the work of
different investigators have shown, when computing the value of the b-factor for a parti-
cular configuration one must take into account the:

1. Effect of prebuckling analysis,
2. Effect of boundary conditions,

3. Apparent singularities due to the occurence of (nearly) simultanous buckling modes.
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Fig. 3. Imperfectxon sensitivity of axxally compressed stringer stiffened cylinders (HU-sheIls N,r =v=
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Thus, for instance, considering Fig. 3 one sees that the large increase in imperfection
sensitivity, obtained for Z values between 40 and 200 when one uses a membrane prebuck-
ling analysis, disappears if the analysis is repeated using a nonlinear prebuckling analysis
and when the SS-3 boundary conditions are enforced rigorously.
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Fig. 4. Imperfection sensitivity of axially compressed stringer stiffened cylinders (HU-shells, u = v =
W= w = 0).

Furthermore, as can be seen from Fig. 4, the variation of the »-factor with Batdorf’s
Z-parameter exhibits a singular type behaviour at about Z = 362 if one uses nonlinear
prebuckling analysis and C-4 (4 = 2 = w = w), = 0) boundary conditions. The large
negative peak of b, which corresponds to a large increase in imperfection sensitivity,
is accompanied by a change in axaial dependence of the buckling mode from antisymmetric
to symmetric. Obviously close to Z = 362 one has two nearly coincident buckling modes.
As has been shown recently by several investigators [9], [10] in such cases the perturba-
tion scheme used to compute the post-buckling coefficient & must be modified to account
for the occurence of (nearly) simultaneous buckling modes and the resulting modal cou-
pling effects. .
 The results shown in Fig. 4 have been computed by the computer code SRA [11]
developed by Cohen, which has the capability of computing the first and second imper-
fection sensitivity factors “a” and “b” for general meridional shapes and wall constructions.
The code provides for the use of different boundary conditions with either membrane,
linear or nonlinear prebuckling analysis, However, the SRA program is based on the
assumption that the lowest buckling load is isolated. Thus the results obtained near Z = 362
are uncertain.

Work is currently in progress at the TH-Delft to include the possibility of the occu-
rence of (nearly) simultaneous buckling modes in an SRA-like code.



528 J. ArBOCZ-

3. Characteristic imperfection dis{ributions

Once the preliminary layout of a shell design has been completed and initial runs with
an SRA-like code indicate that the buckling load of the proposed structure is sensitive
to initial imperfections one has essentialy two options.

If the total weight of the structure and material costs are of no major concern one
can employ the buckling formulas from the current design manuals, read the appropriate
empirical “knockdown” factor y from the charts to account for the effect of the unknown
imperfections and use a factor of safety (F.S. = 1.5-2.0, say) to cover uncertainties in
loading and other unforeseen damaging factors. This approach is the so-called Lower
Bound Design Method.

If, however, the total cost and especially the total weight are of critical importance,
then a more sophisticated design approach is called for. That is the designer must estimate
how much the expected imperfections will decrease the buckling load of the chosen con-
figuration. It is obvious that the main difficulty in using the Imperfection Sensitivity
Theory in practical design problems dealing with weight sensitive applications is related
to the fact, that it requires some advanced knowledge of the geometric imperfections that
will be present once the structure under consideration has been built, an information
that is rarely available.

For a prototype the imperfections can be measured experimentally and then they can
be incorporated into the theoretical analysis to predict the buckling load accurately.
This approach, however, is impractical for predicting the buckling loads of shells produced
in. normal production runs. The best one can hope to do for these shells is to establish
the characteristic initial imperfection distribution, which a given fabrication process
is likely to produce, and then to combine this information. with some kind of statistical
analysis of noth imperfections and the corresponding critical loads, a kind of Statistical
Imperfection Sensitivity Analysis. The critical question thus is:

“Can we -associate characteristic initial imperfection distributions w1th a specified

manufacturing process?” :
That the answer to this question is an uncoditional yes will be demonstrated by a few
examples. - :

Figure 5 shows the measured initial imperfections of the integrally stringer stiffened
aluminium shell AS-2, which has been tested at Caltech [12]. Figure 6 shows the measured
initial imperfections of a similar shell KR-1 tested at Technion [13]. For further analysis
the measured initial imperfections are decomposed in either a half-wave' cosine

. W(x,y) = tXXcos %—i (Ak,cosl +B,“sml ) : , G)]
of .a half-wave sine Fourier series
W(x v) 122 sin k:zx (Ck,cosl R +Dk,sml ) ®)

For the case of comparlson Flgures 7 and 8 display the varlatlon of the measured half-wave
sine Fourier coefficients as a function of the circumferential wave numbers (/) for selected
axial half-wave numbers (k) for the shells AS-2 and KR-1. As one can see in both cases
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Fig. 5. Measured initial shape of the stringer-stiffened shell AS-2 [12].
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Fig. 6. Measured initial shape of the stringer-stiffened shell KXR-1 [13].
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the amplitudes of the Fouries coefficients decay with increasing wave numbers both in
the axial and in the circumferential directions. The Donnel-Imbert [14] analytical imper-
fection model

Eu = VCItDE = Jae ®)
where the coefficients X, r and s are determinated by least-square fitting the measured
data displayed in Figures [7] and [8], represents the variation of the harmonic compo-
nents with axial (k) and circumferential (/) wave numbers satisfactorily. Since both shells
were machined out of seamless thick walled 7075-T6 aluminium alloy tubing, therefore
the imperfection model given by Eq. (6) represents the characteristic imperfection distri-
bution for this fabrication process,

Turning now to large scale of full scale shells, Figure 9 shows the 3-dimensional plot
of measured initial imperfections of a large scale shell (945.8 mm radius, 0.635 mm well-
thickness) tested at the Georgia Institute of Technology [15]. This shell was assembled
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Fig. 9. Measured initial shape of Horton’s shell HO-1 [15].
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Fig. 10. Construction details of Horton's shell HO-1 {[15].
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Fig. 12. Measured initial shape of the ARIANE shell AR23-1 [16].

from six identical longitudinal panels and reinforced by 312 closely spaced Z-shape strin-
gers on the inside. One edge of each panel was joggled and two stringers were riveted
along each joint line. As can be seen from Fig. 10 the shell was held circular by means
of heavy rolled [-shaped external frames located 3.175 mm from each shell end. In addi-
tion 7 Z-shape equally spaced rings were riveted to the outer skin. As can be seen from
Fig. 11 the amplitndes of the Fourier harmonics with a single half-wave in the axial direc-
tion have two distinct maxima, one at / = 2 (out of roundness) and another at [ = 6
(number of panels the shell is assembled from). The Fourier coefficients with more than
a single half-wave in the axial direction are in comparison much smaller.

In the last few years the Solid Mechanics Group of the Aerospace Engineering Depart-
ment at the Delft University of Technology has carried out a number of imperfection



532 J. Arpocz

surveys on the Ariane interstage I/II and II/IIT shells [16]. Figure 12 shows the 3-dimen-
sional plot of the Ariane interstage II/TII shell AR23-1 (1300.0 mm radius, 1.2 mm wall-
thickness). These shells are assembled out of eight identical longitudinal panels. The
joints between adjacent panels are joggled and one of the 120 equally spaced hat-shape
stringers are riveted along the joint line on the outside. The shells are held by two preci-
sion-machined end-rings on the outside and five equally spaced [-shape rings on the inside.
As can be seen from Fig. 13 the amplitudes of the Fourier harmonics with a single half-
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Fig. 13. Circumferential variation of the half-wave sine Fourier representation.

wave in the axial direction this time have a distinct maxima at / = 8 (which corresponds
to the number of panels the shell is assembled from). There is also a sizeable / = 2 (out
of roundness) component. All other Fourier coefficients are in comparison much smaller.
Thus, as has been pointed out by the same author in a recent survey lecture [17], it
appears from the results presented in Figures 11 and 13 that for full-scale aerospace shells
assembled out of a fixed number of curved panels the initial imperfections will be domi-
nated by two components only, if the joints are riveted. Using the half-wave sine axial
representation both components will have a single half-wave in the axial direction and,
respectvely, two and ¥V, full-waves in the circumferential direction, where N, is the number
of full-length panels out of which the shell is assembled. By using accurately machined
rigid endrings the / = 2 (out of roundness) component can be significantly reduced in
size. The variation of the measured Fourier coefficients with axial half-wave (k) and
circumferential full wave (J) numbers can be approximated by expressions of type:

T vy L X, X,

Eu =V Ca+Diy = ?{ 0 =D24 2%, 12 + =D+ 25, }, U
where coefficients X, X;, 7, I, 1, (, and ¢, are determined by leastsquare fitting the
measured data displayed in figures 11 and 13. Thus Equation (7) represents the characte-
ristic imperfection distribution of full-scale aerospace shells assembled out of a fixed
number of full-length panels by riveted joints.

The above examples demonstrate unequivocally that indeed characteristic initial
imperfection distributions can be associated with the different fabrication processes. It
must also be clear that further advances towards more accurate buckling load predictions
of thin shells depend on the availability .of extensive information about realistic imper-
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fections and their correlation with manufacturing process. Hence the need for the esta-

blishment of an International Imperfection Data Bank.

The purpose of creating this International Imperfection Data Bank is twofold:

1. All the imperfection data obtained at different laboratories by different investigators
are presented in identical format.

This makes the comparison and the critical evaluation possible resulting in characteristic

imperfection distributions for the different manufacturing processes used.

2. For those who want to use the powerful nonlinear shell analysis codes on today’s
supercomputers the much needed realistic imperfection distributions are made avai-
lable.

Besides contributions by Caltech, the TH Delft and Technion the International Imper-
fection Data Bank contains the results of injtial imperfection surveys carried out at the

University of Glasgow [18], at Det Norske Veritas [19] and others,

4. Stochastic stability analysis

Having demonstrated that indeed one can associate characteristic initial imperfection
distributions with the different fabrication processes, one is faced with the next question,
namely:

“Given a Characteristic Initial Imperfection Distribution, how does one proceed to

incorporate this knowledge into a Systematic Design Procedure?”

Since initial imperfections are obviously random in nature some kind of Stochastic
Stability Analysis is called for. The buckling of imperfection sensitive structures with
small random initial imperfections has been studied by several investigators like Bolotin
[20], Fraser and Budiansky [21], Amazigo [22], Roorda [23] and Hansen [24], just to
name a few. In the absence of experimental evidence about the type of imperfections that
occur in practice and in order to reduce the mathematical complexity of the problem all
the above named investigators have worked with some form of idealized imperfection
distribution.

It is not obvious to this author how these methods can be extended to the general
imperfections observed in practice. Thus it was not until 1979 that a method has been
proposed by Elishakoff [25] which makes it possible to introduce the results of the expe-
rimentally measured initial imperfections routinely into the analysis. The proposed approach
is based on the notion of a reliability function R(4), where by definition:

R(2) = Prob(A = 1). 8)
Here 1 is the normalized load parameter and A is the normalized random buckling load.
As can be seen from Fig. 14 the knowledge of the reliability function permits the evalua-~
tion of the allowable load, defined as the load level A4, for which the desired reliability is
achieved, for the whole ensemble of similar shells produced by a given manufacturing
process. Notice that the allowable load level A, is identical to the “knockdown” factor y
introduced in Eq. (1).

Basically Elishakoff has suggested to utilize the Monte Carlo Method to obtain the
reliability function R(A) for a certain shell structure produced by a given fabrication
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process. The relative ease with which one can apply this procedure, once a sufficiently
large sample of initial imperfection measurements is available, will be demonstrated for
the case of axially compressed cylindrical shell with random axisymmetric imperfections.

R(A)=Prob{A>X\)
10 | -
/ £,
Desired RIN)= St 13513
Reliability £ X
Monle Carlo simulation
0.5

0 Aa 0.5 10
N Attowoble Load

Fig. 14. Plot of the reliability function R(A).

Having a sample of N shells, the initial imperfections of which are given by:
nx
L b
one proceeds by first calculating, by taking “ensemble averages”, the estimated mean of
the Fourier coefficients 4™

W(xX)™ = XA cosi (m=1,2,..,N), (9

N

—2 1 m
AP =+ S:Af %, (10)

and then the estimated variance-covariance matrix

N
1 \! — -

(e) _ m)_. 4] . (m) __ 4(e) )
O N—i = [Aj AS 1- [4¢ AP (11)

m=1
Since o2 is a non-negative symmetric matrix, therefore it can be decomposed into a pro-
duct of lower and upper triangular matrices (Cholesky decomposition)
off = CCT, (12)
where C is a lower triangular matrix, Next the vector 4 of the simulated initial imperfec-
tions is obtained as:
A= (4P} = Cr+ 4, (13)

where: 4’® = estimated “mean” vector

r = random vector.
The r’s are normally distributed random numbers with zero mean and unit variance com-
puted by standard random number generators available at every computing center. Taking,
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for example, 1000 different #’s one gets 1000 diffrent 4’s, that is, 1000 different simulated
shells with the 4’s as the Fourier coefficients of the initial imperfections. With these simu-
lated shells (which are statistically equivalent to the initial experimentally measured sample)
one can proceeds to carry out repeated buckling load analysis generating a so-called
histogram of buckling loads. Since the reliability function R(1) has been defined as the
probability that the random buckling load A will exceed the prescribed value, one then
proceeds to calculated R(%) from the histogram of the buckling loads by the frequency
interpretation (i.e. fraction of an ensemble).

As a test on the accuracy of the Monte Carlo Method one can use the results of Roorda
and Hansen [26). Assuming an axisymmetric initial imperfection of the form:

W(x) = teosiy =, (14)
L 2c

where: i, = . Rr° ¢ = ]/3(1 —2?)

and & is a normally distributed random variable X, they used Koiter’s formula
3 -
(1-2? = 5 cléld, (15)

as the nonlinear transfer function between the imperfection & and the buckling load A.

Since £ is assumed to be a random variable therefore A must also be a random variable
yielding

(1—-4)* = %cli"lzl, (16)
or
= 2(1—A)?
X= ==

The reliability is then defined as the probability that the (random) buckling load A be
greater or equal to some specified value A. From the transfer function this is equivalent

to the probability that the absolute value of the (random) imperfection X be less than or
equal to the value given by Eq. (17.) Hence:

R() = Prob(A > ) = Prob (]X’] < M) -

3¢k
2WL—2)?  — 21—y (18)
=P)'0b{—T<X<T}.

If one further assumes that the random variable X is normally distributed then its proba-
bility density is given by: h

B _ L GE=a
fX(E)'— 0"/5; exp{ 2 0.2 })

(19

where: a = mean value of X,
o = standard deviation of X,
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and one can write

Prob(4 > 7) = Prob(X| < &) = | fx(Hdé. 20
For a = 0 one obtains Roorda and Hansen’s result
- _ 1 20-4)? _ ,

This expression has been ploted in Fig. 14 as the solid curve. The accuracy of the
Monte Carlo Method can be seen from the close coincidence of the dots, representing
the results obtained via the Monte Carlo Method, with the analytical solution. Further,
it 1s evident from the initial imperfection surveys published sofar (see Figures 5, 6, 9 and

RIN) = ProblA2X)
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Fig. 15. Simulated reliability functions [29].

12) that in a realistic Stochastic Stability Analysis one must include both axisymmetric
and asymmetric imperfections. Using the so-called Multi-Mode Analysis [27] Elishakoff
and Arbocz [28] have demonstrated the feasibility of using the Monte Carlo Method to
derive reliability functions for very general initial imperfections. As can be seen from
Fig. 15 (here reproduced from Ref. [29]) the inclusion of asymmetric imperfection com-
ponents results in a lower allowable load level 4, for a given reliability (see curve II) than
for the case of axisymmetric imperfections only (see curve I).

5. The improved shell design procedure

The improvements in the currently recommended shell design procedures are primarily
sought in a more selective approach by the definition of the “knockdown” factor y. Thus,
for instance, if a company takes great care in producing its shells very accurately and if
it can show experimentally that the boundary conditions are defined in such a way that
no additional imperfections (especially at the shell edges) are introduced, then the use of
an improved (higher) “knockdown” factor A, derived by a stochastic approach should
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be allowed. The proposed new Improved Shell Design Procedure can be represented by
the following formula:

A
Py < 5 Pes (22)

where: P, — allowable buckling load,

P. = buckling load of the “perfect” structure,
1, = reliability based improved (higher) “knockdown” factor,
F.S. = factor of safety.

The steps involved in the definition of such a reliability based improved (higher)
“knockdown” factor A, can be summarized for the group of 7 copper electroplated shells
tested at Caltech [30] as follows:

1. Compute the Fourier coefficients of the initial imperfection surveys of a relatively
small sample (say 7) nominally identical shells.

2. Calculate the mean vector and the variance-covariance matrix of the Fourier coeffx-
cients of the experimental sample.

3. Use Elishakoff’s Method [31] to simulate a large sample of statistically equivalent
imperfect shells.

4. Calculate the buckling loads of each of the simulated imperfect shells by one of the

available deterministic methods [27], [32].

5. Determine the histogram of buckling loads from the results of step 4.

6. Compute the reliability function R(A) from the histogram of buckling loads via the
frequency interpretation (i.e. fraction of an ensemble).

7. Determine the improved (higher) “knockdown™ factor A, for a given reliability from
the plot R(4) VSA.

If the R/t values of the shells in the small experimental sample vary only slightly (see
Caltech shells on Fig. 16) then it is sufficient to derive just a single reliability function
R(%) for a group of shells produced by the same fabrication process. One.uses then the
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Fig. 16. Definition of the Improved Lower Bound Design Curve.
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mean values for the geometric parameters involved like radius R, wall-thickness 7, length
L, Young’s modulus £ and Poisson’s ratio ». However, if the geometric parameters of the
shells in question vary widely then it is necessary to calculate several reliability functions
for a given fabrication process. Notice that one would have to derive at least (say) 4 relia-
bility functions R(1) at different R/t values in order to get a reasonably well defined lower
bound curve valid for (say) 300 < R/t < 1500 (see Fig. 16).

To establish the accuracy of the new improved (higher) lower bound curve one must
investigate the influence of the following factors
1. Confidence limits of the estimated statistical quantities;
2. Size of the experimental sample used;
3. Accuracy of the deterministic buckling analysis used;
4. Confidence limit of the Monte Carlo Method itself.
At the present time the effects of all these factors are being investigated at the Solid Mecha-
nics Group of the Aerospace Engineering Department of the Delft University of Tech-
nology.

6. Conclusions

It has been shown that with the itse of the reliability based “knockdown” factor 2,
it is possible to arrive at an Improved Shell Design Procedure, which for weight sensitive
applications can result in large cost-savings.

Using the Monte Carlo Method to derive reliability functions one is combining the
Lower Bound Design Philosophy with the notion of Googness Classes. Thus shells manu-
factured by a process, which produces inherently a less damaging initial imperfection
distribution, will not be penalized because of low experimental results obtained with
shells produced by another process, which generates a more damaging characteristic
initial imperfection distribution.

For a successful implementation of the proposed Improved Shell Design Procedure
the companies involved must be prepared to do the initial investment in carrying out
complete imperfection surveys on a (small) sample of shells that are representative of
their production-line. With the modern measuring and data systems one can carry out
a complete surface map of very large shells at a negligible small fraction of their pro-
duction cost. What is more expensive is the data reduction and the analysis that must
be carried out in order to get the reliability functions.

The Solid Mechanics Group of the Aerospace Engineering Department of the Delft
University of Technology is prepared to set up cooperative programs with interested
companies in order to advice them how they can carry out the necessary imperfection
surveys in an optimal manner, and to perform the necessary data reduction and the analy-
sis involved in getting the reliability functions at minimal costs.

It is the author’s opinion that, as the amount of data on characteristic initial imper-
fection distributions classified according to fabrication processes increases, we shall succeed
with the help of the increased computational speed of the next generation of computers
to make the Improved Shell Design Procedure available to more and more shell designers.
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This, hopefully, will result in the desired dissemination of the wast amount of theoretical
knowledge accumulated over the past 75 years about shell buckling behaviour. Thus,
finally, the academic world will be able to point to the successful solution of one of the
most perplexing problems in Mechanics.
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Pesome

HOCHENHUE OOCTHXEHMSI B TEOPUM VCTOMYMBOCTU OBOJIOUEK

B paGore nmpencragneHo HAMpaBieHUsT COBPEMEHHOH TeopuH ofoyoder passusaemble B KucTuryre
Asmainn nonurexuuyeckoro uucTuryTa B Jempdr (Comnanmua). ChopMynHpoBaHLEl HOBEIE, YIIYUIIEH-
HLIE METOAB! IPOEKTHPOBAHHSA, KOTODbhIE YUHTHIBAIOT XOCTEMHUME De3yJIbTaThl TEOPEeTHUeCKHX paboT
M COBPEMEHHYIO 3JIEKTPOHHO BBIUACIIATENBHYIO TEXHHKY.

Streszczenie
WSPOLCZESNE KIERUNKI ROZWOJU BADAN STATECZNOSCI POWLOK
W pracy omowiono kierunki rozwoju teorii powlok w ramach badan prowadzonych obecnie w Insty-

tucie Inzynierii Lotniczej w Delft. Dotycza one formulowania nowych ulepszonych kryteriéw projekto-

wania. Kryteria te uwzgledniaja najnowsze wyniki prac teoretycznych przy wykorzystaniu wspolczesnej
techniki obliczeniowe;j.

Praca wplynela do Redakcji dnia 14 stycznia 1987 roku.



