ELASTIC PLATE REINFORCED BY SYSTEM OF SLENDER CORDS ANDRZEJ GALKA IPPT, PAN, Warszawa ## Summary Using the results of [1] the governing system of relations for an elastic plate reinforced by a system of slender cords has been derived. The solution to the axially-symmetric boundary value plane problem has been obtained and discussed. 1. Introduction. Let Ω be the regular region in R^2 occupied in the reference configuration by the elastic plate, which is reinforced by system of cords. We assume that the cords coinside with curves Γ_k , k = 1, ..., n. We denote by $t_k(x)$, $n_k(x)$, $x \in \Gamma_k$ the fields of unit vectors tangent and normal to the curve Γ_k , respectively. Let $s_k(x)$ and $e_k(x)$ be the values of tension and strain, respectively in cords Γ_k . We assume that the cords are slender, so the values of tension in cords are restricted by the conditions $s_k \ge 0$. Fig. 1. We are to derive, within the range of the linear static elasticity, the local relations describing boundary value problem for a plate reinforced by a system of slender cords. Using the obtained local relations we are to solve axially-symmetric boundary value problem for an elastic circular plate reinforced by a system of slender cords. The statring point of the analysis is the system of relations which have been proposed in [1]; namely: 650 A. GAŁKA 1° global equilibrium equation $$\int_{\Omega} \operatorname{tr}[S(x)Lv(x)]ds + \sum_{k=1}^{n} \int_{\Gamma_{k}} \operatorname{tr}[t_{k}(x) \otimes t_{k}(x)Lv(x)]s_{k}(x)dl =$$ $$= \int_{\partial\Omega} p(x)v(x)dl + \int_{\Omega} b(x)v(x)ds, \quad \forall v \in V,$$ (1.1) 2° constitutive relations $$E(x) = \mathcal{X}(x)S(x)$$ $$e_k(x) - K_k(x)s_k(x) \in \partial \chi_{\bar{p}} + (S_k(x))$$ (1.2) 3° strain — displacement relations $$E(x) = Lu(x), Lv \equiv \frac{1}{2} (\nabla v + (\nabla v)^T),$$ $$e_k(x) = \text{tr}[t_k(x) \otimes t_k(x) Lu(x)],$$ (1.3) where: S(x) is the stress tensor, b(x) is the body force, p(x) is the surface force, $\chi_{\overline{R}_{+}}(s)$ is the indicator function of \widehat{R}^+ e. a. $$\chi_{R^+}(s) = \begin{cases} 0 & \text{for } s \in R^+ \\ +\infty & \text{for } s \notin R^+ \end{cases}$$ and $\delta \chi_{R+}(s)$ is a subdifferential on indicator function at the point s. 2. Basic relations. In order to obtain the local relations from the global equilibroum equation (1.1) we transform the integrals appearing in Eq. (1.1) $$\int_{\Omega} \operatorname{tr}[S(x)Lv(x)]ds = \int_{\partial\Omega} S^{ij}v_{i}n_{j}dl - \int_{\Omega} S^{ij}_{,j}v_{i}dx^{1}dx^{2} + \sum_{k=1}^{n} \int_{\Gamma_{k}} [S^{ij}]v_{i}n_{kj}dl \qquad (2.1)$$ and $$\int_{\Gamma_{k}} \text{tr}[t_{k} \otimes t_{k} L v] s_{k} dl = s_{k} t^{l} v_{l}|_{x=y_{2}^{k}} - s_{k} t_{k}^{l} v_{l}|_{x=y_{1}^{k}} - \int_{\Gamma_{k}} \left(\varkappa_{k} n_{k}^{l} s_{k} + t_{k}^{l} \frac{ds_{k}}{dl} \right) v_{l} dl, \qquad (2.2)$$ where $$[S^{ij}] \equiv S^{ij}_+ - S^{ij}_-$$, $S^{ij}_+(y) = \lim_{\substack{x \to y \\ (x-y)n_k > 0}} S^{ij}_-(x)$, $S^{ij}_-(y) = \lim_{\substack{x \to y \\ (x-y)n_k < 0}} S^{ij}_-(x)$, $x \to y \to 0$ 0$ $x \to y x to a curve, y_1^k , y_2^k are the points of intersection curve Γ_k and boundary $\partial \Omega$ of the region Ω . The global equilibrium equation have to be satisfied for arbitrary functions $v \in V$; Hence using (2.1) and (2.2), we arrive at local relations $$S_{,J}^{iJ} - b^{i} = 0, x \in \Omega \setminus \bigcup_{k} \Gamma_{k},$$ $$S^{iJ} n_{J} = -p^{i}, x \in \partial \Omega,$$ $$\varkappa_{k} S_{k} n_{k}^{i} + t_{k}^{i} \frac{dS_{k}}{dl} = - [S^{iJ}] n_{kJ}, x \in \Gamma_{k},$$ $$S_{k} = -h_{k}, x \in \Gamma_{k} \cap \partial \Omega,$$ $$(2.3)$$ where h_k is the known value of a traction in the cord at the boundary (in the tangent direction t_k). Eqs. (1.2), (1.3) can be written as $$E_{ij} = \mathcal{K}_{ijlm} S^{lm},$$ $$e_k = K_k s_k, \quad \text{if} \quad s_k > 0,$$ $$e_k \leq 0, \quad \text{if} \quad s_k = 0,$$ $$(2.4)$$ and $$E_{ij} = \frac{1}{2} (u_{i,j} + u_{j,i}),$$ $$e_k = t_k^i t_k^j u_{i,i}$$ (2.5) respectively. Eqs. (2.3), (2.4), (2.5) constitute the basic system of relations describing boundary—value plane problem for a plate reinforced by a system of slender cords. 3. Example. Let the elastic circular plate with the concentric hole be isotropic and homogeneous. We assume that the plate is reinforced by a system of slender cords which coincide with curves $\varrho = \zeta_k = \text{const. } k = 1, ..., n-1, \zeta_k \in (a, b)$. Let $\zeta_0 = a$ and $\zeta_n = b$, and let the plate be loaded at the boundary $\varrho = a$ and $\varrho = b$ by the known radial tractions p_a and p_b , respectively. In order to obtain displacements, stresses, strains and tractions in cords we shall use the relations obtained in Sec. 2. Takeing into acount the axial symmetry of the pertinent problem we shall writte relations (2.3), (2.4) and (2.5) in the polar coordinate system as follows: 1° equilibrium equations $$(\varrho S_{\varrho}(\varrho))_{,\varrho} - S_{\Theta}(\varrho) = 0$$ $$S_{\varrho}(a) = -p_{a}, \quad S_{\varrho}(b) = -p_{b}$$ $$\frac{1}{\zeta_{k}} s_{k} = -[S_{\varrho}(\zeta_{k})], \quad s_{k} \ge 0,$$ $$(3.1)$$ where S_{ϱ} and S_{θ} are the main values of the stress, tensor, 2° constitutive relations $$E_{\varrho} = \frac{1}{E} (S_{\varrho} - \nu S_{\varrho}),$$ $$E_{\Theta} = \frac{1}{E} (S_{\Theta} - \nu S_{\varrho}),$$ $$e_{k} = \begin{cases} Ks_{k} & \text{for } s_{k} > 0 \\ \delta_{k} \leqslant 0 & \text{for } s_{k} = 0. \end{cases}$$ $$(3.2)$$ 3° strain — displacement relations $$E_{\varrho} = w_{,\varrho}, \quad E_{\Theta} = \frac{w}{\varrho}, \quad e_{k} = \frac{w(\zeta_{k})}{\zeta_{k}}.$$ (3.3) In order to obtain solution of the problem given by Eqs. (3.1), (3.2), (3.3), we consider separately the following four cases: 652 A. Galka (i) All cords are unstressed: $$s_k = 0$$, $e_k \le 0$, for $k = 1, ..., n-1$, (ii) All cords are stressed: $$s_k > 0, e_k = Ks_k, \quad \text{for} \quad k = 1, ..., n-1,$$ (iii) Cords $\zeta_1, ..., \zeta_{\bar{k}-1}$ are unstressed and cords $\zeta_{\bar{k}}, ..., \zeta_{n-1}$ are stressed: $$s_k = 0, \quad e_k \le 0, \quad \text{for} \quad k = 1, ..., \overline{k} - 1,$$ $s_k > 0, \quad e_k = K s_k, \quad \text{for} \quad k = \overline{k}, ..., n - 1,$ (iv) Cords $\zeta_1, ..., \zeta_{\overline{k}-1}$ are stressed but cords $\zeta_{\overline{k}}, ..., \zeta_{n-1}$ are not: $$s_k > 0$$, $e_k = Ks_k$, for $k = 1, ..., \overline{k} - 1$, $s_k = 0$, $e_k \le 0$, for $k = \overline{k}, ..., n - 1$. (i) Assume that $s_k = 0$ hold for k = 1, ..., n-1. From (3.1)₃ we see, that S_Q is a continuous function at points ζ_k . Eqs. (3.1)_{1,2}, (3.2)_{1,2} and (3.3)_{1,2} represent the system of equations for an elastic plate. In this case the following solution holds $$S_{\varrho} = A_{1} \frac{1}{\varrho^{2}} + 2C_{1}, \quad S_{\Theta} = -A_{1} \frac{1}{\varrho^{2}} + 2C_{1},$$ $$E_{\Theta} = \frac{1 - \nu}{E} \left(2C_{1} - A_{1} \frac{1 + \nu}{1 - \nu} \frac{1}{\varrho^{2}} \right), \quad w = E_{\Theta}\varrho.$$ (3.4) The constants A_1 , C_1 can be found from boundary conditions $(3.1)_2$ $$A_1 = \frac{a^2b^2(p_b - p_a)}{b^2 - a^2}, \qquad 2C_1 = \frac{p_aa^2 - p_bb^2}{b^2 - a^2}.$$ (3.5) Relations (3.4) represent the solution to the problem under consideration provided that strains e_k in cords Γ_k , which are due to loadings p_a and p_b satisfy conditions $$e_k = E_{\Theta}(\zeta_k) = \frac{w(\zeta_k)}{\zeta_k} \leqslant 0.$$ From aforementional conditions we get $$p_b \geqslant \frac{\lambda_k^b}{\lambda_k^a} \, p_a, \tag{3.6}$$ where $$\lambda_k^a = \frac{1}{a^2} + \frac{\mathring{v}}{\zeta_k^2}, \qquad \lambda_k^b = \frac{1}{b^2} + \frac{\mathring{v}}{\zeta_k^2}, \qquad \mathring{v} = \frac{1+v}{1-v}.$$ Since $\lambda_{k+1}^b/\lambda_{k+1}^a \leq \lambda_k^b/\lambda_k^a$ for k = 1, ..., n-2, then it follows that the inequalities (3.6) are satysfied if $$(p_a, p_b) \in B_1 = B_1^0 \cup B_1^n, \tag{3.7}$$ where $$B_{1}^{0} = \left\{ (p_{a}, p_{b}) \in R^{2}; p_{a} > 0, p_{b} \geqslant p_{a} \frac{\lambda_{1}^{b}}{\lambda_{1}^{a}} \right\},$$ $$B_{1}^{n} = \left\{ (p_{a}, p_{b}) \in R^{2}; \quad p_{a} \leqslant 0, \quad p_{b} \geqslant p_{a} \frac{\lambda_{n-1}^{b}}{\lambda_{n-1}^{a}} \right\}.$$ If radial tractions p_a , p_b satisfy the condition (3.7) then the solution to the pertinent problem is given by the relation (3.4) in which constants A_1 , C_1 are determined by Eqs. (3.5). (ii) If $s_k > 0$ holds for k = 1, ..., n-1, then form $(3.1)_3$ it follows that the stress S_ϱ is discontiuous for $\varrho = \zeta_k, k = 1, ..., n-1$. Then the system of Eqs. $(3.1)_1, (3.2)_{1,2}, (3.3)_{1,2}$ has the solution in every interval (ζ_{k-1}, ζ_k) in the form $$S_{\varrho} = \frac{A_{k}}{\varrho^{2}} + 2C_{k}, \qquad S_{\Theta} = -\frac{A_{k}}{\varrho^{2}} + 2C_{k},$$ $$E_{\Theta} = \frac{1 - \nu}{E} \left(2C_{k} - \frac{\mathring{\nu}}{\varrho^{2}} A_{k} \right), \quad \mathcal{W} = \varrho E_{\Theta}.$$ (3.8) From Eqs. $(3.1)_3$, $(3.8)_1$ we get $$s_k = \zeta_k (2C_{k+1} - 2C_k) + \frac{1}{\zeta_k} (A_{k+1} - A_k)$$ (3.9) and from Eqs. $(3.3)_3$, $(3.8)_{1,2}$ it follows that $$e_k = \frac{1-\nu}{E} \left(2C_k - \frac{\hat{\nu}}{\zeta_k^2} A_k \right). \tag{3.10}$$ In order to determine constants A_k , C_k we take into account boundary conditions $(3.1)_2$, equations $e_k = Ks_k$, k = 1, ..., n-1 and the continuity conditions for the displacement field. The continuity conditions for displacement at every $\varrho = \zeta_k$ and equations $e_k = Ks_k$, k = 1, ..., n-1, leads to the following recurrent relations for constants A_k , C_k $$A_{k+1} = \gamma_k A_k + \delta_k 2C_k, 2C_{k+1} = \alpha_k A_k + \beta_k 2C_k \tag{3.11}$$ where: $$\alpha_{k} = -\frac{\mathring{v}^{2}}{\zeta_{k}^{3}} \overline{K}, \qquad \beta_{k} = 1 + \frac{\mathring{v}}{\zeta_{k}} \overline{K},$$ $$\gamma_{k} = 1 - \frac{\mathring{v}}{\zeta_{k}} \overline{K}, \qquad \delta_{k} = \zeta_{k} \overline{K}, \qquad \overline{K} = \frac{(1 - v)^{2}}{2EK}.$$ (3.12) From (3.11) constants A_k , C_k , k = 2, ..., n can be expressed in term of constants A_1 , C_1 $$A_k = c_k A_1 + d_k 2C_1, \quad 2C_k = a_k A_1 + b_k 2C_1,$$ (3.13) where $$a_{k+1} = \alpha_k c_k + \beta_k a_k, b_{k+1} = \alpha_k d_k + \beta_k b_k, c_{k+1} = \gamma_k c_k + \delta_k a_k, d_{k+1} = \gamma_k d_k + \delta_k b_k, a_1 = 0, b_1 = 1, c_1 = 1, d_1 = 0.$$ (3.14) From boundary conditions (3.1)₂ we obtain $$\frac{1}{a^2}A_1 + 2C_1 = -p_a, \quad \frac{1}{b^2}A_n + 2C_n = p_b. \tag{3.15}$$ Taking into account (3.13), we get $$\frac{1}{a^2}A_1 + 2C_1 = -p_a, \quad \nu_n A_1 + \mu_n 2C_1 = -p_0 \tag{3.16}$$ where $v_n = 1/b^2 c_n + a_n$, $\mu_n = 1/b^2 d_n + b_n$. A. Galka The forementioned system of equations has the solution of the form $$A_{1} = \frac{1}{\Delta} (p_{b} - \mu_{n} p_{a}), \quad 2C_{1} = \frac{1}{\Delta} \left(\nu_{n} p_{a} - \frac{1}{a^{2}} p_{b} \right)$$ (3.17) where $\Delta = 1/a^2 \mu_n - \nu_n$. Constants A_k , C_k will be given by $$A_{k} = \frac{1}{\Delta} \left[p_{b} \left(c_{k} - \frac{1}{a^{2}} d_{k} \right) + p_{a} (d_{k} \nu_{n} - \mu_{n} c_{k}) \right],$$ $$2C_{k} = \frac{1}{\Delta} \left[p_{b} \left(a_{k} - \frac{1}{a^{2}} b_{k} \right) + p_{a} (b_{k} \nu_{n} - \mu_{n} a_{k}) \right].$$ $$(3.18)$$ Now, the range of the boundary tractions p_a , p_b should be determined such that inequalities $s_k > 0$, k = 1, ..., n-1 hold. We can prove that sequences of constants a_k , b_k , c_k , d_k , which are given by (3.14) are monotonic $$a_{k+1} < a_k < 0, \quad 1 < b_k < b_{k+1},$$ $$c_{k+1} < c_k < 1, \quad 0 < d_k < d_{k+1}$$ (3.19) Hence $$v_n < \frac{1}{h^2}, \quad \mu_n > 1, \quad \Delta > 0.$$ (3.20) Let us introduce the following denotations $$r_{k} = a_{k} - \hat{r} \frac{1}{\zeta_{k}^{2}} c_{k}, \qquad q_{k} = b_{k} - \hat{r} \frac{1}{\zeta_{k}^{2}} d_{k},$$ $$l_{k}^{a} = \frac{1}{a^{2}} q_{k} - r_{k}, \qquad l_{k}^{b} = q_{k} v_{n} - r_{k} \mu_{n},$$ (3.21) and note that $l_k^a > 0$. Conditions $s_k > 0$ lead to the range of boundary tractions as follows $$p_b < p_a \frac{l_k^b}{l_k^a}, \quad k = 1, ..., n-1,$$ (3.22) because $l_{k+1}^b/l_{k+1}^a < l_k^b/l_k^a$ and $l_1^a = \lambda_1^a$, inequality (3.22) fulfield for each k = 1, ..., n-1 if $$(p_a, p_b) \in B_2 = B_2^0 \cup B_2^n, \tag{3.23}$$ where $$B_2^0 = \left\{ (p_a, p_b) \in R^2; \quad p_a < 0, \quad p_b < p_a \frac{l_1^b}{l_1^a} \right\},$$ $$B_2^n = \left\{ (p_a, p_b) \in R^2; \quad p_a > 0 \quad p_b < p_a \frac{l_{n-1}^b}{l_{n-1}^a} \right\}.$$ If tractions p_a , p_b satisfy the condition (3.23), then the solution to the pertinent problem is given by relations (3.8), (3.9), (3.10) in which constants A_k , C_k are determined by Eqs. (3.18). (iii) If $s_k = 0$ for $k = 1, ..., \overline{k} - 1$ and $s_k > 0$ for $k = \overline{k}, ..., n-1$ then the stress S_{ϱ} is continuous on the interval $(a, \zeta_{\overline{k}})$ and discontinuous for $\varrho = \zeta_k, k = \overline{k}, ..., n-1$. System of equations $(3.1)_1$, $(3.2)_{1,2}$, $(3.3)_{1,2}$ has the solution given by (3.8) in which for $\varrho \in (a, \zeta_{\overline{k}})$, we have to substitute $k = \overline{k}$ and for $\varrho \in (\zeta_{i-1}, \zeta_i)$, $i = \overline{k}+1$, ..., n we have to substitute k = i the values of tension in cords Γ_k , $k = \overline{k}$, ..., n-1 are determined by relation (3.9) and the values of strain e_k by relation (3.10). Constants A_k , C_k , $k = \overline{k}$, ..., n, which appear in the solution, are determined analogously as befor, i.e., from boundary conditions $(3.1)_2$, Eqs. $e_k = Ks_k$ for $k = \overline{k}$, ..., n-1 and from continuity condition for displacement. The continuity condition for the displacement field and equations: $e_k = Ks_k$ lead to recurent relations (3.11) for $k = \overline{k}$, ..., n-1. From these relations constants A_i , C_i , i = k+1, ..., n can be expressed in term of constants $A_{\overline{k}}$, $C_{\overline{k}}$. $$A_{l} = c_{l}(\overline{k}) A_{\overline{k}} + d_{l}(\overline{k}) 2C_{\overline{k}},$$ $$2C_{l} = a_{l}(\overline{k}) A_{\overline{k}} + b_{l}(\overline{k}) 2C_{\overline{k}},$$ (3.24) where: $$a_{i+1} = \alpha_{i} c_{i}(\overline{k}) + \beta_{i} a_{i}(\overline{k}), \qquad b_{i+1} = \alpha_{i} d_{i}(\overline{k}) + \beta_{i} b_{i}(\overline{k}),$$ $$c_{i+1} = \gamma_{i} c_{i}(\overline{k}) + \delta_{i} a_{i}(\overline{k}), \qquad d_{i+k} = \gamma_{i} d_{i}(\overline{k}) + \delta_{i} b_{i}(\overline{k}),$$ $$a_{\overline{k}}(\overline{k}) = 0, \qquad b_{\overline{k}}(\overline{k}) = 1, \qquad c_{\overline{k}}(\overline{k}) = 1, \qquad d_{\overline{k}}(\overline{k}) = 0.$$ $$(3.25)$$ From boundary conditions (3.1)₂ we get $$\frac{A_k}{a^2} + 2C_k = -p_a, \qquad \frac{A_n}{b^2} + 2C_n = -p_b. \tag{3.26}$$ Using (3.24) we obtain the system of equation for $A_{\overline{k}}$, $C_{\overline{k}}$, solution of which is given by $$A_{\overline{k}} = \frac{1}{\overline{\Delta}} \left(p_b - \mu_n(\overline{k}) p_a \right), \qquad 2C_{\overline{k}} = \frac{1}{\overline{\Delta}} \left(\nu_n(\overline{k}) p_a - \frac{1}{a^2} p_b \right), \tag{3.27}$$ where: $$\nu_n(\overline{k}) = \frac{1}{b^2} c_n(\overline{k}) + a_n(\overline{k}), \qquad \mu_n(\overline{k}) = \frac{1}{b^2} d_n(\overline{k}) + b_n(\overline{k}),$$ $$\overline{\Delta} = \frac{1}{a^2} \mu_n(\overline{k}) - \nu_n(\widehat{k}).$$ Constants A_i , C_i $i = \overline{k}$, ..., n can be expressed in the form $$A_{l} = \frac{1}{\overline{\Delta}} \left[p_{b} \left(c_{l}(\overline{k}) - \frac{1}{a^{2}} d_{l}(\overline{k}) \right) + p_{a} \left(d_{l}(\overline{k}) \nu_{n}(\overline{k}) - c_{l}(\overline{k}) \mu_{n}(\overline{k}) \right) \right]$$ $$2C_{l} = \frac{1}{\overline{\Delta}} \left[p_{b} \left(a_{l}(\overline{k}) - \frac{1}{a^{2}} b_{l}(\overline{k}) \right) + p_{a} \left(b_{l}(\overline{k}) \nu_{n}(\overline{k}) - a_{l}(\overline{k}) \mu_{n}(\overline{k}) \right) \right]. \tag{3.28}$$ From conditions $s_i > 0$, $i = \overline{k}$, ..., n-1 we obtain the following restriction on the boundary tractions $$p_b < p_a \frac{l_i^n(\overline{k})}{l_i^a(\overline{k})}, \quad i = \overline{k}, ..., n-1,$$ (3.29) 656 A. Galka where: $$\begin{split} l_l^a(\overline{k}) &= \frac{1}{a^2} \, q_l(\overline{k}) - r_l(\overline{k}), \qquad l_l^n(\overline{k}) = \nu_n(\overline{k}) \, q_l(\overline{k}) - \mu_n(\overline{k}) \, r_l(\overline{k}), \\ r_l(k) &= a_l(k) - \mathring{\nu} \, \frac{1}{f^2} \, c_l(\overline{k}), \qquad q_l(\overline{k}) = b_l(\overline{k}) - \mathring{\nu} \, \frac{1}{f^2} \, d_l(\overline{k}). \end{split}$$ In the case under discussion, conditions $$e_t = \frac{1 - \nu}{E} \left(2C_{\overline{k}} - \frac{\mathring{\nu}}{\zeta_i^2} A_{\overline{k}} \right) \le 0 \tag{3.30}$$ ought to be satysfied for $i = 1, ..., \overline{k} - 1$. From these conditions we get inequalities $$p_b \geqslant p_a \frac{\nu_n(\overline{k}) + \frac{\mathring{\nu}}{\zeta_i^2} \mu_n(\overline{k})}{\lambda_i^n} \qquad i = 1, \dots, \overline{k} - 1$$ (3.31) Conditions (3.29) and (3.31) are fulfield if $$(p_a, p_b) \in B_3^k,$$ $$B_3^k = \{ (p_a, p_b) \in \mathbb{R}^2; \quad p_a \le 0, \quad p_a l_{k-1}^n / \lambda_{k-1}^a \le p_b < p_a l_k^n / \lambda_k^a \}. \tag{3.32}$$ If boundary tractions p_a , p_b satisfy the condition $$(p_a, p_b) \in B_3 = \bigcup_{k=1}^{n-1} B_3^k$$ (3.33) then the solution to the problem under consideration is given by relations (3.8), (3.9), (3.10) in which constants A_k , C_k , k = 1, ..., n are determined by (3.28) and wehere $A_k = A_{\overline{k}}$, $C_k = C_{\overline{k}}$ for $k = 1, ..., \overline{k} - 1$. (iv) In this case $s_k > 0$ for $k = 1, ..., \overline{k} - 1$ and $s_k = 0$ for $k = \overline{k}, ..., n-1$. Then the stress S_q is discontinuous for $\varrho = \zeta_l$, i = 1, ..., k-1. System of Eqs. $(3.1)_1$, $(3.2)_{1,2}$, $(3.3)_{1,2}$ have the solution given by (3.8), in which for $\varrho \in (\zeta_{l-1}, \zeta_l)$, $i = 1, ..., \overline{k} - 1$ we have to substitute k = i and for $\varrho \in (\zeta_{\overline{k}-1}, b)$ we have to substitute $k = \overline{k}$. Constants A_k , C_k , $k = 1, ..., \overline{k}$ which appear in the solution are determined by the procedure analogous to that given above. From the ciontinuity condition for the displacement field and from relations $e_k = Ks_k$, $k = 1, ..., \overline{k-1}$, we obtain reccurrent relations (3.11) for $k = 1, ..., \overline{k-1}$. and hence (3.14) holds. From boundary conditica (3.1)₂ we get $$\frac{A_1}{a^2} + 2C_1 = -p_a, \qquad \frac{1}{b^2} A_{\overline{k}} + 2C_{\overline{k}} = -p_b \tag{3.34}$$ Substituting (3.14) into (3.34), we obtain the system of equations for A_1 and C_1 , solution of which is $$A_1 = \frac{1}{\Delta_{\overline{k}}} (p_b - \mu_{\overline{k}} p_a), \qquad 2C_1 = \frac{1}{\Delta_{\overline{k}}} \left(\nu_{\overline{k}} p_a - \frac{1}{a^2} p_b \right)$$ where $\Delta_{\overline{k}} = 1/a^2 \mu_{\overline{k}} - \nu_{\overline{k}}$. The formulas for constants A_k , C_k have the form $$A_{k} = \frac{1}{\Delta_{\overline{k}}} \left[p_{b} \left(c_{k} - \frac{1}{a^{2}} d_{k} \right) + p_{a} \left(d_{k} \nu_{\overline{k}} - c_{k} \mu_{\overline{k}} \right) \right]$$ $$2C_{k} = \frac{1}{\Delta_{\overline{k}}} \left[p_{b} \left(a_{k} - \frac{1}{a^{2}} b_{k} \right) + p_{a} \left(b_{k} \nu_{\overline{k}} - a_{k} \mu_{\overline{k}} \right) \right]$$ (3.35) From inequalities $s_k > 0$, $k = 1, ..., \overline{k} - 1$ we obtain the following restriction for loadings $$p_b < p_a \frac{\bar{l}_i^k}{l_i^a}$$ for $i = 1, ..., \bar{k} - 1$ (3.36) where $$l_i^{\overline{k}} = q_i \nu_{\overline{k}} - r_i \mu_{\overline{k}}, \quad l_i^a = \frac{1}{a^2} q_i - r_i.$$ From conditions $$e_{i} = \frac{1-\nu}{E} \left(2C_{\overline{k}} - \frac{\mathring{\nu}}{\zeta_{i}^{2}} A_{\overline{k}} \right) \leq 0, \quad i = \overline{k}, ..., n-1$$ we obtain $$p_b \geqslant p_a \frac{\lambda_{\overline{k}}^b}{l_{\overline{k}}^a} \tag{3.37}$$ Conditions (3.36) and (3.37) are fulfield if $$(p_a, p_b) \in B_4^{\overline{k}}, \quad B_4^{\overline{k}} = \left\{ (p_a, p_b) \in R^2; \quad p_a > 0, \quad p_a \frac{\lambda_{\overline{k}}^b}{l_a^a} \leqslant p_b < p_a \frac{\lambda_{\overline{k}-1}^b}{l_a^a} \right\}. \quad (3.38)$$ If boundary tractions p_a , p_b satisfy the condition $$(p_a, p_b) \in B_4 = \bigcup_{k=1}^{n-1} B_4^k$$ (3.39) then the solution is given by relations (3.8), (3.9), (3.10) in which constants A_k , C_k , $k=1, ..., \overline{k}$ are determine by (3.35), and where $A_k = A_{\overline{k}}$, $C_k = C_{\overline{k}}$ for $k = \overline{k} + 1, ..., n$. Note that every pair from sets B_1 , B_2 , B_3 , B_4 is disjointed and that $B_1 \cup B_2 \cup B_3 \cup B_4 = R^2$. For the case n = 4 the aforementioned situation is illustrated on Fig. 2. Fig. 2. 658 A. GAŁKA For $(p_a, p_b) \in B_1$ the solution is given as in (i), for $(p_a, p_b) \in B_2$ as in (ii), for $(p_a, p_b) \in B_3$ as in (iii) for $(p_a, p_b) \in B_4$ as in (iv). #### References 1. Cz. Wożniak, Materials reinforced by system of cords with constrained tensions, J. Techn. Phys. #### Резюме ### УПРУГАЯ ПЛАСТИНА АРМИРОВАНА ГИБКИМИ ВОЛОКНАМИ Изпользуя результаты полученные в [1] выведено основную систему отношений для упругой пластины армированой гибкими валокнами. Даются точные решение плоской осево-симметрической граничной задачи. #### Streszczenie # TARCZA SPRĘŻYSTA WZMOCNIONA UKŁADEM WIOTKICH CIĘGIEN Korzystając z rezultatów uzyskanych w pracy [1] wprowadzono podstawowy układ związków lokalnych dla tarczy sprężystej wzmocnionej układem wiotkich włókien. Rozwiązano osiowo-symetryczne zagadnienie brzegowe dla pierścieniowej tarczy sprężystej wzmocnionej układem n włókien rozmieszczonych koncentrycznie. Praca wpłynęła do Redakcji dnia 26 lutego 1986 roku.