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Summary

Using the results of [1] the governing system of relations for an elastic plate reinforced
by a system of slender cords has been derived. The solution to the axially-symmetric boun-
dary value plane problem has been obtained and discussed.

1. Introduction. Let £ be the regular region in R? occupied in the reference configura-
tion by the elastic plate, which is reinforced by system of cords. We assume that the cords
coinside with curves Iy, k = 1, ..., n. We denote by #.(x), m(x), x € I, the fields of unit
vectors tangent and normal to the curve I, respectively. Let s3(x) and e,(x) be the values
of tension and strain, respectively in cords 1. We assume that the cords are slender, so the
values of tension in cords are restricted by the conditions s = 0.

Fig. 1.

We are to derive, within the range of the linear static elasticity, the local relations des-
cribing boundary value problem for a plate reinforced by a system of slender cords. Using
the obtained local relations we are to solve axially-symmetric boundary value problem for
an elastic circular plate reinforced by a system of slender cords.

The statring point of the analysis is the system of relations which have been proposed
in [1]; namely:
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1° global equilibrium equation

ftr[S(x)Lv(x) ds + Z ftr[t,\(x)®t,\(x)Lv(r)]s,‘(x)dl
=1r,
= [p@o@d+ [ bu(ds, YveV, (LY
an 2

2° constitutive relations
E(x) = A (x)S(x)

(1.2)
e(X) — Ki(%) (%) € Oy + (Sk(x))
3° strain — displacement relations
E(x) = Lu(x), Lv= —;—(V'u+(V'0)"'),
(1.3)

eu(x) = tr[f(x) @1 (x) Lu(x)],
where: S(x) is the stress tensor, b(x) is the body force, p(x)is the surface force, xz, (s) is
the indicator function of R* e. a.
for seR*
Kre(5) = {-}-oo for s¢R*
and 6yg.(s) is a subdifferential on indicator function at the point s.

2. Basic relations. In order to obtain the local relations from the global equilibroum
equation (1.1) we transform the integrals appearing in Eq. (1.1)

[l Lelds = [ Stondi— [ Svdaxtax+ ) [[SUungdl Q1)
0 .

a0 2 k=1 I‘k
and
. . dsy
tr[1, @1, Lvls,dl = skt'v,[x=y: L TAZ| N f s+ 1} - vdl, (2.2)
I l Iy
where [$9] = $4-8%,  S¥() = lims(), SUO) = limSU(),
(>— y)nk >0 (x —ﬁ’;’i <0

% is the curvature of curve I, symbol d( -)/dl denotes derivative in the direction tangent
to a curve, y§, y% are the points of intersection curve I', and boundary 492 of the region £.

The global equilibrium equation have to be satisfied for arbitrary functions veV;
Hence using (2.1) and (2.2), we arrive at local relations

SH-b'=0, er\Lk)]’k,
SHp, = —pl, x €99,
AT i (iil = —[S¥lny, xel, (2.3)

S = —h, xelnoQ,
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where A is the known value of a traction in the cord at the boundary (in the tangent direc-

tion ).
Egs. (1.2), (1.3) can be written as

* Eu = %/‘utmslm,
e, = Kise, i 5, > 0, (24)
Cy < 0, if Sy = 0,

and

1
E,; = 5 (s, 5+uy,0),
(2.5)

€ = flitl{l’u
respectively.

Egs. (2.3), (2.4), (2.5) constitute the basic system of relations descvibing boundary —
value plane problem for a plate reinforced by a system of slender cords.

3. Example. Let the elastic circular plate with the concentric hole be isotropic and
homogeneous. We assume that the plate is reinforced by a system of slender cords which
coincide with curves p = [y =const. k =1, ...,n—1,Crs(a, b). Let {y, = e and £, = b,
and let the plate be loaded at the boundary ¢ = aand ¢ = b by the known radial tractions
p. and py, respectively. In order to obtain displacements, stresses, strains and tractions in
cords we shall use the relations obtained in Sec. 2. Takeing into acount the axial symmetry
of the pertinent problem we shall writte relations (2.3), (2.4) and (2.5) in the polar coordina-
te system as follows:
1° equilibrivin equations

(054(0)).o—Sole) = 0
Sy@) = —pur  S,®) = —p, (3.1)
1
—C— S, = _I[SQ(CI{)]]) Sk =z 0,
Kk

where S, and S, are the main values of the stress, tensor,
2° constitutive relations

1
E, = E(Sa“”S@)’

1
Eo = — (So=7S,), (3.2)
K, for s, >0
e"={5k<0 for s =0.

3° strain — displacement relations

w W(Ck)

E,=w,, E@=—Q—, 6= Lo

In order to obtain solution of the problem given by Egs. (3.1), (3.2), (3.3), we consider
separately the following four cases:

(3.3)
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(i) All cords are unstressed:
=0, <0, for k=1,..,n-1,
(i) All cords are stressed:
s >0,e,=Ks,, for k=1,..,n-1,
(iii) Cords &, ..., Lz, are unstressed and cords z, ..., {— are stressed:

k=0, ¢<0, for k=1,..,k-1,

s >0, ¢ =Ks, for k= k,...n—1,
(v) Cords ¢, ..., Lz, are stressed but cords {g, ..., s~ are not:

>0, e =Ks,, fork=1, c k=1,

s: =0, <0, fork=%,...,n——1.

(i) Assume thatsy = Oholdfork = 1, ..., n—1. From (3.1); we see, that .S, is a conti-

nuous function at points Cx. Eqs. (3.1)1,2, (3.2);,2 and (3.3),, represent the system of
equations for an elastic plate. In this case the following solution holds

1 1
SQ = Al '—Q'E‘+2C1, S@ = _TA1'9_2+2C1_,

3.4
1—» I+» 1
E@ = E (2C1“’A1 1——-1;-1)7)’ W = E@Q.
The constants 4,, C, can be found from boundary conditions (3.1),
a*b*(py—Pa Pa@® —pyb®
Ay =" Pa). 2C, = ’"bT—?%_' (3.5)

b2 — a2 ’
Relations (3.4) represent the solution to the problem under consideration provided that
strains e;, in cords I, which are due to loadings p, and p, satisfy conditions

e = Eo(ly) = wé.fk) £ 0.

From aforementional conditions we get

A
Dy Z —i;pa’ (36)
k
where
. L 1 ¥ . 14y
}'k=?+'&_’ lz=b2+ ’%’ 'V=1_’p.

Since A7, 1/, < /A for k =1, ...,n—2, then it follows that the inequalities (3.6)
are satysfied if

(pa’ pb) € Bl = B(I)UB?’ (37)
where

/q'b
B} = {(pa,pb) €ER*;p, > 0,p, > P, T;]l
1

' Ab_
Bi’={(pa,pb)€R2; Pa<0, py2p "1}.

f s
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If radial tractions p,, p, satisfy the condition (3.7) then the solution to the pertinent problem
is given by the relation (3.4) in which constants 4;, C, are determined by Egs. (3.5).

(i) If s > 0 holds for k = 1, ..., n—1, then form (3.1); it follows that the stress S,
is discontivons for o = &, k = 1, ...,n—1. Then the system of Eqs. (3.1),, (3.2);.5, (3.3)1.»
has the solution in every interval ({x_y1, {) in the form

A ] .
SQ = -0—2k+2Ck, S@ = — le" +2Ck,
) (33)
1—» P
E@ = E (ZCk—?A,‘), W= QE@.
From Egs. (3.1)3, (3.8); we get
1
S = Ce(2C;4y _2Ck)+"?' (Aps1—Ay) (3.9
k
and from Egs. (3.3)s, (3.8);, , it follows that
1—v P
& = —p— (ZCk T Ak). (3.10)

In order to determine constants A, C, we take into account boundary conditions
(3.1),, equations e, = Ksx, k = 1, ..., n~1 and the continuity conditions for the displa-
cement field. The continuity conditions for displacement at every ¢ = {; and equations
e = Ksi, k=1, ...,n—1, leads to the following recurrent relations for constants A4y, Ci

Apyy = YA+ 0:2C, 2Cyy = o A+ 5,2C, (3.11)
where:
02 . o .
oy = -'—v_i'K’ ﬂk=1+?‘u"Ks
¢ g (3.12)
oo — = (l—yy?
=1-—K, 0§ =0K K=—F—72—.
Y 3 & K ZEK |
From (3.11) constants 4;, Ci, k = 2, ..., n can be expressed in term of constants 4,, C,
A, = ¢ A, +d.2C,, 2C, = aqA,+b,2C,, (3.13)
where ‘
Gy = OpCut Py,  beyy = G d+Piby,
Chbt = VCht Ouli, iy = Vidi+Ocby, (3.14)
a, =0,b, =1, ¢, =1,d =0.
From boundary conditions (3.1), we obtain
' 1
A2 = —py S A2C = B (319

Taking into account (3.13), we get
1
—a—z‘Al +2C1 = —PDa, 'VnAl +lun2C1 = —Po (3.16)

where v, = 1/b% ¢,+a,, s = 1/b* d,+b,.



654 A. GArxA

The forementioned system of equations has the solution of the form

1 1 1
A, = 'A_(Pb"'lun.pa)’ 2C1 = 'Zr(vnpa_’a—zpb) (317)

where 4 = 1/au,—v,.
Constants Ay, C, will be given by

1 1
Ak = Z [pb (Ck_'a—z dk) +pa(dkvll_ll't’lck):|’
1 1 (3.18)
2C, = a [Ph (ak 2 bk) +Pa(by¥n~ lu"ak)] :

Now, the range of the boundary tractions p,, p, should be determined such that inequalities
se > 0,k =1, ..., n—1 hold. We can prove that sequences of constants ay, by, cx, di, which
are given by (3.14) are monotonic

Gy <@ <0, 1 < by < by,

(3.19)
Ck+1<ck<1, 0<dk<dk+1
Hence
1
Yo <Gz M > 1, 4>0. (3.20)
Let us introduce the following denotations
. 1 , 1
re = ap,—v —4_76’“ qr = bk—""—z dk,
k k
(321
Ilg = a_zqk_rk, II? = GV —Tilins

and note that I > 0. Conditions s, > 0 lead to the range of boundary tractions as follows
lb

p,,<p,,T’;—, k=1,..,n-1, (3.22)
k

because 12, /I,y < If/lg and If = A%, inequality (3.22) fulfield for each k = 1, ..., n—1if

(Pas Pv) € B, = B3UBS, (3.23)
where

Ib
Bg = {(Pa,Pb)ERZ; Do < 0’ Db < Da _Iia-}’
1
l
|

b
Bg = (Pa,Pb) G-RZ; Pa > 0 Py <Pa§’:,—_1}'
n—1

If tractions p,, p, satisfy the condition (3.23), then the solution to the pertinent problem is
given by relations (3.8), (3.9), (3.10) in which constants 4;, Cy are determined by Eqgs. (3.18).

(iii) If s, =0 fork = 1,...,k—1and 5, > O for k = %, ...,n—1 then the stress S, is
continuous on the interval (a, %) and discontinuous for ¢ = &, k = k, ... n—1. System
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of equations (3.1),, (3.2),, 25 (3.3);,, has the solution glven by (3.8) in which for ¢ € (a, {3),
we have to substitute k = k and for o€y, L)), i = k+1, ...,n we have to substitute
k = i the values of tension in cords I, k = k,...,n—1 are determined by relation (3.9)
and the values of strain e, by relation (3.10). Constants 4y, Cy, k = k, ..., n, which appear
in the solution, are determined analogously as befor, i.e., from boundary conditions (3.1),,
Eqgs. e, = Ks; for k =k, ...,n—1 and from continuity condition for displacement. The
continuity condition for the displacement field and equations: e, = Ks; lead to recurent
relations (3.11) for k =k, ...n—1. From these relations constants A;, C;, i = k+1,...,n
can be expressed in term of constants Az, Cy.

A; = ¢,(k) A +dy(k)2Cx,
- - (3.24)
2C;, = a,(k) Az + b, (k) 2Cx,

where:
Gy = e (k) +pia(k),  biyy = oydi(k)+pib(k),
vy = vic()+0,aik),  diax = y,d,(k)+8,b,(0), (3.25)
ak) =0, BE=1, k=1, dk) =0.

From boundary conditions (3.1), we get

A A,

k +2Ck = paa . b2 pb- i (3.26)
Using (3.24) we obtain the system of equation for Aj, Cy, solution of which is given by
1 — 1 — 1
Ay = = (po— (K pa)s 2Cc = — (v, ()pa—— 3.27
e == (n-m®r). 26 A(“” az”")’ (327)
where: |
_ 1 - —
va(k) = 7 ca(k) +an(k), k) = = d (k)+b k),

7 = — =),

Constants 4;, C; i = k, ..., n can be expressed in the form

— 1 — o .
A= 5 | oz a®) o (@)= rm®)|
(3.28)
1 = 1, = - = = =
26, = 7 | a0+ (6 =i orm®)|
From conditions s; > 0, i = k, ..., n— 1 we obtain the following restriction on the bounda-

ry tractions

pb<pa—;—-“, i=k—,...,n—1, (3-29)
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where:

B = 0@ -r®, 1® = 2 ®a®-m@n®,

1) = a5 e®, i) = B =iz AR,

e}

In the case under discussion, conditions

1—» P

. (2c,;—c—_2A;) <0 (3.30)

€i=

ought to be satysfied for i =1, ..., Je—1. From these conditions we get inequalities

s
v, (k) + 77 () _
Po 2 Pa- -———ﬁ——- i = 1,...,k——1 (331)

Conditions (3.29) and (3.31) are fulfield if

(pa, Pb) EB’Z;:
B = {(pas o) ER?*;  pa <0,  pli_i/2-i < py < padif 2} (3.32)

If boundary tractions p,, p, satisfy the condition

n—1

(Pas Py) € By = kUl BS (3.33)

then the solution to the problem under consideration is given by relations (3.8), (3.9), (3.10)
in which constants 4,, C, k = 1, ..., n are determined by (3.28) and wehere A4, = Ag,
Cp=Cyp for k=1,.., k-1

(iv) In this case s, > O for k = 1,...,k—1 and s, = O for k = k, ..., n—1. Then the’
stress S, is discontinuous for ¢ = {;, i = 1, ..., k—1. System of Egs. (3.1);, (3.2)y,2,
(3.3),,, have the solution given by (3.8), in which for o € (¢i~y, &), i = 1, ..., k—1 we have
to substitute k = 7 and for g € ({1, ) we have to substitute k = k. Constants Ay, Cx,
k =1, ..., k which appear in the solution are determined by the procedure analogous to
that given above. From the ciontinuity condition for the displacement field and from rela-
tions e, = Ksx, k = 1, ..., k—1, we obtain reccurrent relations @B fork=1,..., k1.
and hence (3.14) holds.
From boundary conditica (3.1), we get

1

B2 A +2C; = —p, (3.349)

—-——+2C1 = _pa,

Substituting (3.14) into (3.34), we obtain the system of equations for 4; and C,, solution
of which is

1 1 1
Ay = A—E(Pb",uipa), 2C, = ZE_ (VEPa"-a—;Pb)

where  Ag = 1/a?ugz—v;.
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The formulas for constants A4, Cy have the form

1 1
A= 'A—k_ [Pb (ck—'a_z dk) +pn(dk VE—Ck.“E)]
| 1 | (3.35)
2C, = e [pb (ak"'aT bk) +Pa(bk1’E-'ak.“E)] _

From inequalities s, > 0, k = 1, ..., k—1 we obtain the following restriction for loadings

k -—
Dy < paj—;‘ for i=1,... k-1 (3.36)

where
P a_ 1
If = qve—ripe, It = pe q.—r;

From conditions

1—» =
E, = E (ch Ci Ak)\o, l=k, ,n—‘l
we obtain
22
Po 2 Pa—j (3.37)
k
Conditions (3.36) and (3.37) are fulfield if
b b
- - v Az
(pan pb) EBE! BI-:- = {(pa;pb) € Rz: pa > 0’ pa lk pa la = } (3'38)
. k k-1
If boundary tractions p,, p, satisfy the condition
n—1
(Pa, Ps) € By = U B (3.39)

then the solution is given by relations (3.8), (3. 9) (3 10) in wh:ch constants Ay, C, k =
=1, ..., k are determine by (3.35), and where d; = Az, Cx = Ci fork = k+1,.

Note that every pair from sets B,, B,, B;, B, is disjointed and that B, v Bz U 83
U B, == R?. For the case n = 4 the aforementioned situation is ilustrated on Fig. 2.

&
s
_ //\
B | AN -
Ve S B;\/ B/
/ g
/ gt ,.‘,—/—?/“J' .
AT R
T-r\— //// s / ; ’
Bg/,,/ s !
"y 2
5 A y
- { &gl \\_J/ B,
b
Fig. 2.
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For (p,, py) € B, the solution is given as in (i), for (p,, p,) € B, as in (ii), for (Pas Py) € B,
as in (iii) for (p,, ps) € B, as in (iv).
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Pesome
VIIPVYTAS TINACTHHA APMHUPOBAHA I'IBKMMH BOJJIOKHAMUI
HManonb3ays pesysisTaTLbl nolyuernnle B {1] BoiBeeno OCHOBHYIO CHCTEMY OTHOLUCHWH JUISL yIIpyToit

MI3CTHHB! APMHPOBAHOW THOKMMHM BalOKHAMy. [AIOTCA TOUHbLIE PEILeHHE MIOCKOH 0CEeBO-CHMMETDH-
YeCKOH TpaHM4HON 3ajaui. .

Streszczenie
TARCZA SPREZYSTA WZMOCNIONA UKEADEM WIOTKICH CIEGIEN

Korzystajgc z rezultatow uzyskanych w pracy [1] wprowadzono podstawowy uklad zwigzk6w lokalnych
dla tarczy sprezystej wzmocnionej ukladem wiotkich wiékien. Rozwiazano osiowo-symetryczne zagadnienie

brzegowe dla pierscieniowej tarczy sprezystej wzmocnionej ukiadem n wiékien rozmieszczonych koncent-
rycznie.

Praca wplynela do Redakcji dnia 26 lutego 1986 roku.



