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The aim of the paper is the investigation of some class of problems of elastostatics
with constraints for displacements and stresses. There are considered such restrictions
which lead to the problems with generalized displacements and generalized stresses. Some
existence and uniqueness results are proved.

1. Basic concepts and assumptions of elastostatics with constraints

Throughout the paper {ex}r_;.,,; denotes a fixed ortonormal basis in Euclidean
3-space €. The dual basis is given by {e*},_;.2,1, ¢ = (J;), where &;;,i,j=1,2,3 is
the Kronecker delta, is the metric tensor in €. If x € € then by (x*) we denote the ortogonal
coordinates of x relative to the basis {e,}, x = ¢;x*, and analogously (x,) are coordinates
of x relative to the basis {e*}, x = x;e* (In the following the summation convention holds
and the indices 7, /, k, ... run from 1 to 3).

Let B be a bounded region in § with the regular boundary 9B, cf. [1], occupied by the
body in its undeformed state. The problem will be analyzed under the basic assumption
of the infinitesimal theory.

Let us denote by D the space of all vector functions components of which relative
to the basis {e*} are square integrable together with their first partial derivatives in B,
ie.

D={u=(u(x), xeB, weH(B), k=1,2,3},
equipped with the norm

ullz = [ 2 +Rte(Vevu)do = [ Gk Rt 0™ do,
B B

where Vu = (y, ;) is the gradient of » with respect to x, / is a positive constant suitable
choosen in the problem under consideration. The space D will be interpreted as the displa-
cement space and its elements as displacement fields.

External forces acting at the body will be represented by linear continuous functionals
on D, i.e. by elements of D*, D* being the dual of D. To the system of external forces will
be assigned such element f* of D* that the value of work done by these forces on arbitrary
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field v € D is equal to the value of the functional f* at v. Assuming that the body is subjected
to the body forces b = (b*(x)), x € B, b* € L*(B), k = 1, 2, 3, and to the surface traction
p = (P(x)), x € OB, p* € L*(0B), k = 1, 2,3, we have the following representation for
the corresponding functional f* € D*:

dA*, vy, = fb-vdv-}— fp-vds, veD, D
B B ‘

where ¢+, - >, being the pairing between D* and D.
Let us introduce S as the space of all symmetric tensor functions, components of which
relative to the basis {e*®e'}, ;=1 2.1, are square integrable in B, i.e.

6 = {C = (Ck‘(x)), X € B, Ckl = Clk, Ck[ € L2(B)}

The space & is assumed to be equipped with the norm

ICi} = [t(COdo = [ GuCHdo, Ce@.
B B

The displacement-stran relations will be described by the linear continuous operator
E: © — &, which assignes to any v € D the symmetric part of the displacement gradient
Vu, i.e.
E(v) = 1/2(Vu+Vu"), ve?D,
-or equivalently

E = (Ew), Eu(v= 1/2(‘0k,1+'vl.k)a veD.

‘The subspace of & being the image of D by the mapping E is said to be the space of all
strain fields. The whole space & will be called the strain space.

Independently of © we introduce the space T of all symmetric tensor functions T,
components of which relative to the basis {e,®e;};~1, 2.3, are square integrable in B, i.e.

T={T=(T"(x), xeB, TV=T% TYel*B), kI=1,2,3},
the space T being equipped with the norm ‘
ITIZ = [te(TDdo = [ TTudo, TeX.
B B
T will be treated as the stress space and its elements as stress fields. It is easy to see that
from the mathematical point of view the spaces © and T coincide. The main difference
between them follows from the physical interpretation.
For any Te X and any C € S let
(T, 0, = [ tr(TC)do = [ THC, do. 1.2)
B B : ]

Under the above denotation the value of virtual work done by the internal forces corres-
ponding to the stress field T e T over any strain field E(v), v € D, can be written as
rd

(TEW), = [ tr(TEW))do.
: B
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The material properties of the body will be determined by the operator K:T - &,
which is assumed to satisfy the following monotonicity condition

KT—-Ko,T—o), = ¢||[T—0a||} VT,oce,

where ¢ is a positive constant.
It must be stressed, that in this approach the constitutive operator K may be non-linear.
It means that we can also deal with problems in which some physical non-linearities are
taken into account, In the linear case K coincides with a compliance field tensor K =
= (K u(x)), x € B. Then the above monotonicity condition can be rewritten in the
form
KT, Ty, = ¢||T]l5, VTeZ.

In the paper we shall deal with such problems of elastostatics in which admissible
are only certain distingushed subsets of the displacement speace D and the stress space &.
It means that on displaccments and stresses are imposed some restrictions which will be
called displacement constraints and stress constraints, respectively. To precise these con-
cepts we shall assume that in every problem under consideration there are given a priori
two subsets I = D and Z = T of all admissible displacement fields and stress fields,
respectively. In particular, if I = D and Z = I then we deal with the unconstrained
body.

Throghout the considerations we confine ourselves to some class of constraints, na-
mely it will be assumed that i and X are proper convex and closed subsets of D and T,
respectively®),

The equations of equilibrium in problems with constraints will be assumed in the form
of the following condition

f tr (TE(v))dv — fb- vdo— ‘(p- vds—<{r*, v>, = 0, 1.4
B B aB
which has to be satisfied for any v € D, where T € Z is the stress field, b and p have the
same meaning as in (l.1), r* € D* is the functional which represents the work of reaction
forces due to the displacement constraints, c.f. [6]. The condition (1.4) states that the value
of work done by the external forces and by the reaction forces over any v €D is equal
to the value of work done by the internal forces over corresponding strain field E(v).
In this approach together with the displacement constraints we have introduced reaction
forces which have to maintain the constraints. As far as the mathematical aspects of the
problem is concerned it will be assumed that the functional r* € D *representing the work
of reaction forces (contrary to the functional f* € D* which represents the work of external
forces) can be an arbitrary element of D*. This requirement is due to the fact that in the
considerations we are to deal with a wide class of constraints and therefore we ought to
introduce suitable wide class of reaction forces in order to maintain these constraints.
Thus we take into account not only functionals r* of the form

r, vy = fr-vdv-{— fs'vds, VveD,
B an '

D These assum ptions are due the mathematical tool which will be used later.
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where r € L*(B)® and s € L?(dB)® are interpreted as body reaction forces and surface
reaction tractions, respectively, but also functionals having the most general representation,
namely,?,

(r¥, vy, = f(w v+tr(YwVvT))do, VveD, (1.5)
B

for some we®.

For every displacement field # admissible by the constraints, i.e. v € U, we have to
determine the set of all reactions which can act at the body. In order to determine this
set we shall assume that the displacement constraints are ideal, c.f. [6], i.e.

(e, v—uy; = 0, Vvell (1.6)

The above condition is said to be the principle of ideal displacement constraints [6 - 8].
It states that the value of work done by the reaction forces over any virtual displacement
field v—u, v €11, is always non-negative.
The constutive relations for stresses will be given in the form of the following condi-
tion
f tr[o (KT —E(u))]dv— J trfeGldv = 0, W)
B B
which has to be satisfied for any o € T, where u is the displacement field, T is the stress
field, G € © is said to be the strain field incompatibilities due to the stress constraints,
[8]. Together with the stress constraints we have introduced the strain field incompati-
bilities which have to maintain these constraints. As in the case of reaction forces, for
every stress field T admissible by the constraints, i.e. T € Z, we have to determine a set
of all strain incompatibilities. In order to determine this set we shall assume that the stress
constraints are ideal, [8], i.e.

[trl6-T)Gldw > 0, VoeE. (1.8)
B

The above condition is said to be the principle of ideal stress constraints. It states that
the value of work done by internal forces corresponding to any virtual stress 6—T, o € Z,
over the strain field incompatibilities G is always non-negative. In particular, if the stress
constraints are absent, i.e. Z = T, then from (1.8) it follows that G = 0 and (1.7) leads
to the well known form of the constitutive equations for elastic body, namely

KT—E(u) = 0.

Ideal constraints are the special case of so called quasi-ideal constraints which have
been discussed in [8]. Such constraints and their realization are defined by means of the

) Since, as it is known, D is a Hilbert space with the inner product given by

(v, w) = f (wy+tr(Vw¥vH))dv, v,weD,
B

s0, by Riesz Representation Theorem it follows that an arbitrary element of D* can be represented in the
form (1.5).
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known proper convex lower semicontinuous functions g: D — R and v: I - R,¥, suitable
choosen in every problem under consideration. Principles of quasi-ideal constraints are
assumed to have the following forms:

: I, v—wy + (V) —B) > 0, VveD, (1.6)
for the displacement constraints, and

[ trle=T)Gldo+v(@) —y(T) 2 0, Voex, (1.8)
B

for the stress constraints, respectively. In particular, if  and vy are the indicator functions
of U and X then (1.6)" and (1.8)" reduce to (1.6) and (1.8), respectively, and we are to deal
with ideal constraints.
We shall assume that
f* = {5 +11, (1.9)

where f# ¢ D* represents ,,dead” load, i.e.
(B = [bo-vdv+ [po-vds, VveDd, (1.10)
B aB

where by € L*(B)?, p, € L*(9B)* are the known vector functions not depending on the
displacement field u, and ff € D* represents external forces essentially depending on the
displacement field by the formula

E, v—u) +E(WM+L) = 0, VveD, (1.1
where £:D — R is the known proper convex lower semicontinuous function such that
its effective domain satisfies the condition D(€) > U*. For instance, by means of (1.11)
we can charecterize the potential forces (€ being Gateaux differentiable), the forces of
friction [1], the forces of mutual interaction between the body and its foundation, [1],
e.c.t.y, )

Summing up, foundations of elastostatics with constraints for displacements and
stresses are given by equation of equilibrium (1.4), constitutive equation for stresses,
(1.7), constitutive relations for external forces (1.9) - (1.11), the principle of ideal (quasi-
ideal) constraints (1.6) ((1.6)") and that of the ideal (quasi-ideal) stress constraints (1.8)
((1.8)).

2. Generalized displacements and generalized stresses

In this Section the restrictions will be given leading to problems with so called genera-
lized displacement and generalized stresses.
Let us begin the formulation of the displacement constraints. It is supposed that there

% Here and what follows R = RuU{+ o).
4 For any convex function «:X — R we use the symbol D{x) to denote the effective domain of «, i.e.
D(x) = {xeX:a(x) < +w}.

% Eqgs. (1.9) - (1.11) can be reffered to as the constitutive relations for external forces f*,
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is given a space B, being a closed linear subspace of D, and an element ua € D such that

E@IL > M, veS, @1
i.e. on B Korn’s inequality holds, and
Uec B+u, ={v+uy: veB}. 2.2)

For instance, such situations take a place if I is a subset of all displacement fields sati-
sfying on a given part of the body the known displacement boundary conditions.

Moreover, we suppose that there is given the linear continuous operator ®:Q — B
from a reflexive Banach space £ into B such that

I@@ll: > cliglla, q€Q,c > 9,, (2.3)
and there is known the non-empty closed convex subset Q < Q for which
U = Wt+ug = {v+uy:vell}, 2.9)
where
U =&Q) ={veB:v = P(q) for some qefQ). 2.5)

Q will be called the space of generalized displacements and {Q the set of all admissible
generalized displacements. The set 1l is the image of Q by the mapping ®, translated by
u,. From Eq. (2.3) it follows that to any displacement field u admissible by the constraints,
i.e. u €, corresponds exactly one q €Q such that u = B(q)+u,.

In order to specify the set of all admissible stress fields we suppose that there is known
linear continuous operator W:II — ¥ from a reflexive Banach space Ilinto T with

¥@l. > cllrlla, well,c>0. 2.6
There is also known the non-empty closed convex subset II < II such that
%= W) ={TeX:T = ¥(n) for some = e I}, 2.7

II will be called the space of generalized stresses and IT — the set of all admissible genera-
lized stresses. The set X is the image of II by the mapping ¥. From (2.6) it follows that to
any stress field T admissible by the constraints, i.e. T € X, corresponds exactly one 7 € I
such that T = ¥(x),".

Now, let us pass to the governing relations of the problems of elastostatics with con-
straints defined above.

By Riesz Representation Theorem the stress space T can be identified with the dual
of &. Thus (-, - >,, defined by (1.2) can be treated as the paring between I and &. The
adjoint of the restriction E to B, E|g, as the operator from T into B*, B* being the dual
of B, will be denoted by L*, E*:T — B*. Recall that E* assignes to any 6 € T such ele-
ment E¥o € B* that

(E*a, vy = (6, E()),, VED,

(we use the same denotation for the pairing between B* and B as that of between D*
and D).

 Throughout this paper ¢ denote generic positive constants, necessarly the same at each occurance.
7> The physical meaning and selected applications of the introduced constraints can be found in [3.4].
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Assuming that the displacement constraints given by (2.4) are ideal, i.e. (1.6) holds,
for the restriction of r* e D* to B, r*|y € B*, we obtain

r*|lg e{vF e B*:(v*, v—u), 2 0, Vvell}l=
= {v¥ e B* 1 (v¥, @@ +uo— (R(9) +uo)>1 2 0, VpeL) =
= (v eB* (P p-Ou 20, VpeQ}, u=R(q)+uo, (2.8)
where ®*: B* - LQ* is the adjoint o_f @, 0* denotes the dual of Q, (-, * Dg is the pairing
between Q* and Q. Let indg: Q — R be the indicator function of & and dindg:Q — 28*
be its subdifferential,®. Then (2.8) can be written as
®*r*|p € —dindg(q), qel. (2.9)

Analogously, assuming that the stress constraints (2.7) are ideal, i.e. (1.8) holds, for
the strain field incompatibilities we obtain the similar results to that given by (2.9) namely

Y*G e —dindg(®), well, T=W¥@), (2.10)

where W*:& — II* is the adj'oint to W, IT* being the dual of_II, dindg: IT — 27* being
the subdifferential of the indicator function of II, indg:II — R.
By virtue of (1.10) and (1.11) for the external forces we have

PH{*|y € BHF|o— (), 2.11)

where £*|g and {5 are the restrictions of f* and f§ to B (treated as elements of B*) and
C:2 — R is the function defined by

T = {(@@+u,), pe,
9C:0 — 2% is the subdifferential.

Combining equations of equilibrium (1.4) and constitutive relation (1.7) with the
reaction force relation (2.9), the strain incompatibility relation (2.10) and the external
force relation (2.11) we arrive at the following system of two variational inequalities

S*EXF (1) — P o € — IE(q)
{T*E\Y(n) —W*E® (q) € — dindg(m)
for the basic unknown (q, ) € £ x II, provided that a function E:Q — R, defined by E =

mdn+§ satisfies the condition 9§ = dindg+0C. In the foregoing system K:¥ - S
stands for the operator given by

K(-) £ X(-)+E(uo). 2.13)

(2.12)

® Let o be an arbitrary proper convex function defined on a Banach space X. Following [10] we are
the notation

da(x) = {x* e X*: a(y)—a(x)) = {x*, y—xDx, VY€ X} € 2%,
where X* is the dual of X, ¢+, - Dx is the pairing between X* and X, 2** stands for the family of all
subsets of X*. The mapping
X ex— da(x) € 2x*
is said to be the subdifferential of o.
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In particular, if constraints for generalized stresses are absent, i.e. II = II, then (2.12)
reduces to the following system of relations
PHEXY () — PHJ |y € — B(Q) |
{4>*R‘P(n)~‘lf*m(q) =0,
for the basic unknown (q, ) € Q x IL. If only ,,dead” loads act at the body then § = indg.
The system (2.12) can be represented in equivalent form as follows

(2.14)

[t [% @) (ER@)—ES@)]do— [ bo - (2@)~B(@))dv
B B

- f Po - (P(p)—D(@)ds+EP)—E@@) >0, VpeQ,. .12y

[ e [(®(0)~ ¥ (m)) (R¥(m)—ES(@)]do > 0, Vo e IL.
B

Now, let us assume that the realization of the constraints are quasi-ideal, i.e. (1.6)" and
(1.8)' hold. In this case the governing relations take the form of two following variational
inequalities

PHEW (77) — D*f |y € — da(q)

{‘I’*T(‘I’(n)~‘1’*E¢(q) & —oy(m), 2.15)
in which (q,7) eQx1II is the basic unknow, provided that the function a:LQ — R,
defined by a = B+, satisfies the condition da = dP+9C, where B(p) & B(®() +
+up), Vpel and y(p) E y(¥(p)), Ve €Il, and du, J¥ stand for the subdifferentials

of e and ¥, respectively.

3. System of variational inequalities

The general form of the governing relations for problems of elastostatics with constra-
ints for displacements and stresses given by (2.4) and (2.7) takes the form of two variational
inequalities (2.12) — for the ideal constraints, and (2.15) — for the quasi-ideal constraints.

In this Section we shall consider more general abstract problem which can be stated
as follows: find (v, 6) € V' x Y* such that

Koy -—

{L o—fe —op(u) 3.1

Ko—Lu e —dy(o),
where L:¥—Y is a linear continuous operator from reflexive Banach space ¥ into a re-
flexive Banach space ¥ with domain D(L) = ¥, V* and Y* are the duals of ¥ and Y,
respectively, K:Y* — Y is a maximal monotone operator from Y* into ¥ with the domain
D(K) = Y*, ¢:¥V > R and p:Y* - R are proper lower semicontinuous functions on,
V and Y*, dp:¥V — 2"* and 9¥:Y* — 2¥ are subdifferentials of ¢ and v, respectively
fis a given fixed element of ¥*. The norms on ¥ and Y will be denoted by || - ||y and
[l 1|y, respectively.

Note, that putting in 3.1) V=0, Y =II*L = W*E®, p = o, p = ¥, f = P*f¥|y

we obtain the system (2.15).
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Systems of variational inequalities of the form (3.1) have been analyzed in [2] under
the assumption that Ker L = 0 (Ker L denotes the null space of L). In our considerations
this condition in general is not satisfied.

If Ker L is not trivial subspace of V, i.e. Ker L 3 0, we pass to the quotient with Ker L.
Thus, we introduce

Vo= V/KcrL
and define L":¥V' — Y setting
Ly ¥ Lu, ued, wuweV.
As it is known, V" equipped with the norm

TR . . .
= 1
Hu” QngrL”u_I—Q”V’ ueu, u EV’

is a reflexive Banach space, [9]. Assuming that

ooy =0 VYpeKerL,
p(v+0) = p(v) VoeKerL, wveV,
we can define /"€ (V')* and ¢":¥" — R setting

SHud, S wy, uew, uweV,
¢'W) =W, ueu, uweV,

where (V*)* stands for the dual of ¥". As a results we obtain the following system of
variational inequalities

{(L')*G-f e —ap'(w)

Ko—L'u' € — dy(o) 3.2

for the basic unknown (u', 0) € V' x Y*, Above, (L)*:Y* —» (V)* and d9":¥ - — 20V
stand for the adjoint of L' and the subdifferential of ¢°, respectively.

It must be stressed that if (¢*, 6) e V" x ¥* is a solution of (3.2) then any element
(u, 0) e VX Y*, where u € «', is a solution of (3.1).

The formal structure of (3.2) is the same as that of (3.1) and furthermore KerL' = 0.
Thus for the formulation of existence resulsts we can use the argument given in [2]. To
this aid let us define the function «-:Y* — R putting

() £ (P~ LY n+f), Vre¥* (33)
where (¢")*:(¥*)* —» R is the conjugate of ¢". '
Theorem 3.1, [2]. Suppose that
@ Ly 2 i, VYu eV, ©>0;
(ily <Kn—Ko,n—0ody = c|lp—0llfs, V7m,0€Y¥* ¢>0;
(i) Jw+da’ is maximal monotone.

Then (3.2) has at least one solution. Moreover, the solution is unique with respect to a.
As an immediately consequence of the above Theorem we have

4 Mech. Teoret. i Stos. 2/85
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Theorem 3.2. Suppose that
@O ¢ =g@+o VoeKerL, veVl;

i) <f,ody=0 VoeKerL;

(i) [[Lofly = ¢ inf (lv+oly VoeV;

eeKerL

(iv) <Kn—Ko,n—0ody > clln—oll}s Vn,0€Y*,

(v} Jdw+da’ is maximal monotone.

Then (3.1) has at least one solution. The solution is unique with respect to ¢. Moreover,
if(u, o) is a solution of (3.1) then for any ¢ € KerL the pair (#+¢, 0) is also a solution
of (3.1).

In Theorem 3.2 conditions (i) - (iii) assure the maximal monotonicity of de’. In fact,
from (iii) we have the surjectivity of (L)*, i.e Im(L")* = (V')*, which together with (i)
and (ii) guarantees that « is a proper lower semicontinuous convex function, As it is
known, subdifferentials of such functions are maximal monotone mappings [5].

In particular, if 9 = 0 on Y*, then dyp = 0 and the sum dy+Jo” reduces to do’,
which is maximal monotone. Thus the condition (v) in Theorem 3.2 is satisfied immedia-
tely. Moreover, the second inequality in (3.1) becomes the equality. It implies that if
(uy, 6), (uy, 0) are any solutions of (3.1), then u;, —u, € Ker L. As a results we can formu-
late the following

Theorem 3.3. Suppose that

() @) =gpw+e) VoeKerL, wveV;
i) {,oovr=0 VpeKerL;
(i) ([Lofly 2 ¢ Inf [lo+olly, veEV, ¢>0;
ceKer L

ivy =0 onY*

V) <K7}_KU, N—0)y = C||7’]—0'”121, vn,oeY*.

Then (3.2) has at least one solution., The solution is unique with respect to o. Moreover,
if (u,, o) and (u,, o) are any solutions of (3.2) then u, —u, € KerL.

From our considerations it follows that the condition (iii) in Theorems (3.2) and (3.3)
plays the fundamental role in the existence of solutions to the problem under considera-
tion. As it is known this condition is equivalent to the closedness of the image of L, ImL
in Y, [9].

Let us consider the case in which L:¥ — Y can be represented in the following compo-
sition L = 4B, where A:X — Y and B:V — X are linear continuous operators, X is a re-
flexive Banach space. Note, that setting 4 = ¥* and B = E® we obtain L = W*EP.
The below lemma characterizes in terms of 4 and B conditions under which Im L is a closed
subspace of Y.

Lemma 3.1. Suppose that 4 is surjective, i.e. In4 = Y, and that there exists an abso-
lute constant ¢ > 0 such that ||Bo||x > ¢|[7|ly, Vo € V. Then ImL, where L = AB, is
a closed linear subspace of Y if and only if Ker4+Im B is a closed linear subspace of X.

Proof. (Sufficiency). Assume that KerA+ImB is closed and that {Lv,},v,€V,
n=12, .., converges to y, i.e. Lv, = y as n — oo, It suffices to prove that y = Lv
for some » € V. By the surjectivity of 4 we can find a constant ¢, > 0 with

l4xlly > ¢;_inf Ilx+zlly, xeX. 3.3)
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The sequence {4 Bv,} satisfies Cauchy condition. From (3.3) it follows that we can find
{x,}, x, € Ker 4 such that {Bv,+x,}is Canchy sequence, so it converges. By the assumption
the limit of this sequence belongs to KerA+ImB, i.e. Bv,+x, > Bo+x as n — oo for
some v € V and x € Ker4. Hence 4 Bv, — A Bv and consequently we obtain y = ABv =
= Lo.

(Necessity). Assume that Bv,+x, - xasn — oo, wherev, eV, x, € Kerd,n = 1,2, ....
From the continuity of 4 we have 4By, — Ax. But the range of L = 4 B is closed by the
assumption and therefore Ax = 4Bv for some v € V. Hence x = Bv+x for a certain
x € KerA. This completes the proof of the lemma.

The above Lemma shows that the closedness of Im L is equivalent to the closedness
of the sum KerA-+Im B (under suitable assumptions related to 4 and B). Now we give
some usefull result for the sum of closed lineare subspaces of a Hilbert space to be again
closed. .

Lemma 3.2. [11] Let X be a Hilbert space and let M and N be closed linear subspaces
of X. Let us denote by R the intersection of M and N, i.e. R = M nN. The ortogonal
projection of X onto R will be denoted by P, P:X — R. Suppose that there exists ¢ > 0
such that

l[x—=Px+y—Pyllx > ¢ *

for any x € M and y € N such that ||[x—Px]|y = 1 and ||y — Py||y = 1. Then the sum M+ N
is a closed subspace of X.

Proof. Let {x,+y,} be a sequence in M+N (x,e M, y,eN, n+1, 2, ...) converging
to x and such that ||x,~Px,llx = 1, [[}w»—Pwllx =1, n =1,2,.... We have to prove
that x € M+ N. First, we will show that the sequence {x,— Px,} satisfies Cauchy condi-
tion. Suppose that it is not true. Then there exists > 0 and a sequence {k,} of natural
numbers that

Hxn+k,,—Pxn+k,,_'xn+P'XHHX >0 (3.4

for any natural number ». From the continuity and linearity of P we have
P(x,+y,) = Px,+Py,—> Px, asn— .

Since the sequence {x,-+y,—P(x,+y,)} converges, it has to satisfy Cauchy condition.
Hence

”xn+k,,—Pxn+k,,+yn+k,,_'Pyn+k,,""xn+Pxn*_yn+Pyn||X - 0; n— 0. (35)
For the simplicity of denotations let us put
Oy = Xpy— P, and ﬂm = VY= P¥u, m=1,2,..

Under the above denotations (3.4) and (3.5) take the form

Hau+k,,—an||x z (53 n=1,2,.. (36)
and
Han+k,,—an+ﬂn+k”—'ﬂn|lx - 0> as n— 0. (37)
From (3.6) and (3.7) we obtain
&y —a, n+k,~ Fn
il Pt =P -0, ashn-— . (3.9)

”an+k,,_‘an“x ”an+k,,_an“X

4%
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Since
{ Oyt k, — Oy |
||°‘:n+k,,“°‘n||x b's
for any n, the condition (3.8) yields
Brsr,— B
T TP N 51, as o 0. 3.9
”an+k,,'_an|lx X
At the same time we have )
an+k,,—an ﬂn+k,,_'/3n l | 0‘n+k,,_'fxn ﬁu+k,,_ﬂu ‘
+ ‘ < ‘ : L+
”dn-)-k,,—anHX ”ﬂn+k,,—"ﬂn||x X ||an+k,.,—au||x |,an+k,,_an”x X
+ 1 — ,__/M
[k, — %allx ||x
This condition together with (3.8) and (3.9) gives
Ok, Busr,— B
H MR T P 50 as o 0. (3.10)
”au+k,._an”X ”ﬂn+k,,"ﬂn|lx X
On nothing that
Apgk,— O Xatk, ~ Xn P( Xk, ™ %n )
”an+k,,_'dn||)( ”xn+k,,_xn_Pxn+k,,+Pxn||.\’ Hxn-i-k,,—'xn_qu+k,,_qu”x
Xk, — X Opyr, O
X e, ‘.._LL._'L_ _1 n=1.2,..
Hxn+k,,_xn_Pxn+k,,+PanX ”an+k,,—anHX X
ﬂn+k,,_ﬂn

similarly for ) and taking into account (3.10) we arrive at the contradiction

”ﬂn+k"—ﬂn||x
with the assumption (*). Thus sequences {x,— Px,}in M and {y,—Py,} in N have to sa-

tisfy Cauchy condition. From the closedness of M and N it follows that there exists x € M
and yeN that x,—Px,— x and y,—Py,— y. Hence x,+y, = x,+y,—Px,—Py,+
+ P(x,+y,) & x+y+Px and finally we obtain x = X+y+Px e M+N. This ends the
proof of the lemma.

4. Existence and uniqueness results

Now, on the base of the results given in Section 3 we shall formulate some sufficient
conditions for the existence and uniqueness of solutions to problems governed by systems
(2.12) and (2.14).

Let us begin with problems in which on generalized displacements and generalized
stresses are imposed some restrictions. In this case the corresponding system of variational
inequalities takes the form (2.12). Putting

w(n) = E*(— @YEXE (1) + B*MY]y), well,
E* being the conjugate of &, denoting by R the intersection of Ker ¥* and Im E®, i.c.

R = Ker'¥* n ImE® and by Py the ortogonal projection on R, Pyu:S —» S, we arrive
at the following



EXISTENCE AND UNIQUENESS 221

Theorem 4.1. Suppose that (2.1), (2.3) and (2.6) hold. Moreover, let the following
conditions be satisfied:

(i) K is maximal monotone operator with the domain D(K) = T such that there exists
positive constant ¢, ¢ > 0, with

(Ke—K7n,6—-n), > C|n—oll}, Vo,neI;

(i) There exists positive constant ¢, & > 0, such that for any o € Ker %%, ||o — Pyo]|, =
= | and any vy € InE®, |[n—Pxy||, = | the following inequality holds

llo—Pxo+0—Pgy|l, > &;
(iii) {f¥ls, @@, =0, VpeKerW*EP;
(iv) E(q) = E(q+p) VpeKer¥*'EP, qefQ;

(v) du+dindg is maximal monotone.

Then (2.12) has at least one solution (q, ) e Q x M. The solution is unique with respect
to 7 and for any p € Ker W*E® the pair (q+p, ) is also a solution.

Proof of the above theorem follows immediately {rom Theorem 3.2 and Lemmas 3.6
and 3.7.

An analogous result can be formulated for (2.15) replacing only in the hypotheses
(iv) and (v) of Theorem 4.1 the functions § and indg by & and ¥, respectively.

If there are no restrictions on generalized stresses then II = II and the system (2.12)
reduces to (2.14). In this case the assumptions (iii) and (iv) imply immediately (v) and
therefore we obtain

Remark 4.2, Suppose that (2.1), (2.3) and (2.6) hold. Moreover, let the hypotheses
(1), (i), (iii), (iv) of Theorem 4.1 be satisfied. Then problem (2.14) has at least one solution
(q, ™) e QxII. The solution is unique with respect to = and for any p € Ker ¥*E® the
pair (q+p, ) is also a solution.

Remark 4.3. Let us suppose that Il = L and Q = Q (restrictions on generalized displa-
cements and generalized stresses are absent) and that § = 0 (the body is subjected to the
»dead” load only). Then (2.12) reduces to the system of two equations. In this case
if (qy, ) and (g, ) are any two solutions of (2.12) then q, —q, € Ker W*EP, i.e. we have
obtained the uniqueness of generalized displacements with respect to elements of Ker
W+EP. _

Remark 4.4. From our considerations it follows that in general the displacement
field in problems with stress constraints of the form (2.7) is not uniquely determined. The
uniqueness depends on the kernel of the operator W*E®. If Ker ¥*E® = 0 then the
solution is unique, but if Ker ¥*E® is not trivial subspace of Q then the strain field can
be determined up to strain fields belonging to the set {H = E®(p) for some p such that

[ tr[E®(p) ¥(m)ldv = 0, v e T0}.

Some applications of obtained results to problems of plates, shells, membranes and
discretization can be found in [3, 4].
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Pesmome

HEKOTOPLIE PE3VIIFTATEI KOCAIOIWHMECA CVITIECTBOBAHUSA
1 OXHO3HAYHOCTH
B SJIACTOTATHKE CO CBA3JAMH B IIEPEMENEHIAX M HANIPAXEHUSX

B paGoTe paccMoTpeB HEKOTOpHIi Ki1acC MpoGJieM TeOPHHU 3JIACTOTATHKH CO CBA3AMM B IIEPEMEIEHHAX

¥ HAIIDSDKERHsIX. PacCcMOTpHBaeTCSA CBASHU ITPUBOIALNME K NPOBIeMoM ¢ 0GOBIIEHHEIMI IIEpEMEIIEHHAMX
u 0BoBIERHEIMY BanpsikeHuAME. {oKa3aHO TeopeMbl CYLUIECTBOBAHWA M OTHOSHAUHOCTY A TAaKMH
npobGiieM.

Zb:

Streszczenie

ISTNIENIE I JEDNOZNACZNOSC ROZWIAZAN W ELASTOSTATYCE
Z WIEZAMI DLA PRZEMIESZCZEN I NAPREZEN

W pracy rozpatrzono pewna klase zagadnien elastostatyki z wigzami dla przemieszczen i naprezen.
adano takie ograniczenia, ktoére prowadza do probleméw z uogdlnionymi przemieszczeniami i uogdl-

nionymi napr¢zeniami. Udowodniono twierdzenia o istnieniu i jednoznaczno$ci dla tych zagadnien.

Praca zostala zloiona w Redakcji dnia 21 grudnia 1984 roku



