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The author solves problem pointed out in the title, in which the effects of transverse
anisotropy and body forces are taken into account, by means of Hankels transforms
and the displacement potentials. The three-part mixed boundary value contact problem
is reduced to the solution of triple integral equations and some conditions. These equations
are solved by expansion of the function describing the displacement and stress states
into a Fourjer cosine series, which leads to two infinite sets of linear simultaneous al-
gebraic equations. The part of the lower surface of the plate which does not contact with
the base, is an annulus, the inner or outer radii of which are not known a priori and are
determined.

Numerical results are shown for the relation among the pressure and weight of the
layer, its thickness, the annulav region and the magnitudes of the protrusion or pit of
the base in cadmium and magnesium single crystals and fiber-reinforced composite ma-
terials. They are compared with these of the isotropic layer to show the effect of anisotropy.
The variation of the stress concentration factors at the adges of the contact are plotted
versus the ratio of theradii of the contact regions for dissimilar materials and layer thickness.

1. Introduction

The indentation problems of an elastic, isotropic half-space by a rigid cone [1], sphere
[2] or truncated cone [3], in the case of circular contact region, contact problems of
a isotropic half-space or layer pressed onto a rigid base with a protrusion or a pit [4, 5],
pressed by a concave rigid punch (a transversely isotropic case) [6], problem of two iso-
tropic half-space pressed against each other with a rigid paraboloidal inclusjon between
them [7] problems involving annular contact or uncontact region, and a two-dimensional
cases [8, 9], have been analyzed.

In the present paper, the axisymmetric contact problems of a transversely-isotropic

layer pressed onto a rigid base with a cylindrical protrusion (Problem I) or a pit (Problem IT)
are considered.
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2. Basic equations and displacement functions

We denote as usual the cylindrical polar coordinates of a point by (r, @, z) where
the z-axis is chosen as the axis of geometric and elastic symmetry. In the case of the tor-
sionless axisymmetric problems the stress-strain relations for a transversely isotropic
solid are as follows:

Oy = €116+ C12€00+ C13€,,
Opp == €126+ C11 €00+ Cp3€zy,
02: = C13(€r+€00) +C33 €21, 2.nH
0rz = Ca4€rz,
O = Ogz = 0,
where

_ Ou ow ou ow

i e S S A @2
u, 0, w are radial, circumferential and axial components of the displacement vector and
¢y are elastic constants.

Let y = g, g be the body force density acting vertically, where g, is the mass density
and g the gravitational constant,

The displacement equations of equilibrium are:

a1 ?w 0%u
€117~ a [r ar (m)]+(613+c44) or oz tCas 55 92 0,
(2.3)
¢ —1——3 ow +(cr3+Caa) = 1 — ()| +c Pw _
4 o \[ar ) TG T Cas 3z r ar " 38z T T

The particular part of the displacement components corresponding to ¥ and the clamp-
ing uniform pressure p, in the z direction may be obtained separately as:

u(r) = +vh),
2.4)
W(@) = o zy(a— )= ST 20po ),
where A is a geometric and ¢ material parameter
¢ = (C1x+012_)033"20§3- (2.5)
This gives the stress state
' C13
On(2) = 066(2) = 2 yQz—h),
C33
2.6}

.O'"(Z) = "Po‘?’(h;z):
O = 0:
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which satisfics the conditions

G’z(h) = —Po> G”(O) = _Po")'h = —Pe»
h

[ 6u(@)dz = 0 @7
0
and in addition
W(I‘, 0) = 0: W(I’, h) = - 611—;0‘:12— h(2p0+'}/h) (28)

To solve the homogeneous equilibrium equations (2.3) we introduce the displacement
potentials ¢, (r, z) and @,(r, z) as defined by [10}

2 0
U= (kpy +¢,), w= F (g +kepy). (2.9)
Egs. (2.3) are satisfied if [10]

2 19 1 o _
("é;y"i'—r“?r +'rv‘lz\‘ ézf) (P,(I', Z) =O, = 1,2 (210)

where

=5 (@xf), a=ey2+D). B=cy/2(-D),

% -
Cit s |1 ey C13 (1 Ci3 )]

& = y ® = . - — + 111, 2.11

( Cas ) l/ C11 [2 Caq Caz \2 Cqa ( )

' 2
— CyyC33—C
k = P, — _Cfufs—Cis
- }/q boa 2¢44(C1a+ Cay)

are dimensionless parameters of the material.
The stress components corresponding to Eqs. (2.9) are:

1 0

Gy o2 roor

o) Gkt Do o206 ) LG,
o

N 2.12)
0. = Gy(k+ ])‘5;‘(3?2% +53292),

62
Oz = Gl(k+ 1) —aﬁé_ (<P1 +(P2);

where G and G, denote the shear moduli in the z-plane and along the z-axis, respectively.
The displacement functions @, (r, z) and @,(r, z) may be taken in the following forms,
noting some symmetries of the stress state, the condition at infinity and the conditions
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0 (r, 0) = o,(r, ) = 0:

Pil0, 8) = (—1)i+t 2t {L(i)_ [e—s,xc+

Gk+Df J U x
1 —-5yX _ _
(et g @ebs(i~0)| +
x(;’ﬁf;[chsfxi-mx)chw(l—cn}Jo(xe)dx, i=1,2 (213)

where ¢ = r/h, { = z/h and J(xg) is Bessel function of the first kind of order zero, p(x)
and o (x) are unknown functions which are to be determined by the boundary conditions
and the functions g,(x) and g,(x) are defined as follows
1 {chﬁx+ozﬁ“shﬂx-—e"‘“, i=
shax+aB~tshfx |28~ '(s;shs;x—s,8hs,%x), = 2.
The displacement w and stresses ., o,. of interest which correspond to Eqgs. (2.9),
(2.12) and (2.13) are:

gi(x) = (2.14)

[2e]
5182 {p(x)[ke—s,xc_e—slxt_i_c—slx

shs, x¢
w(g, &) = mlm— s ntanit SN

shs, x

—g,x SRS X shsy x(1—0) _, shs;x(1-{)

—ke shs,x +g1(x)( shs, x k . shs,x +
shs;xt , shs,xl (shslx(l—é‘) 3

+o ) [ shs, x k shs,x +82(%) shs; x

ik shs@x(l -0

Cy+
shs, x

200” hEQpo+vh),  (2.15)

2
)|} rscos + 22 re -

chs xt B

- 1 fl -—-hxc‘ —3;x{ —‘Sxx
v”(@,ci)~—ﬂ?2 . ]p(x)[sze D Y- shs,x

1

syemme Sl (Sz chsy x(1-0) chszx(l—&‘))] N

shs, x shs, x shs, x
chs; x{ chsxl chs, x(1-0)
to) [Sz shs,x ' shs,x — 8209 (Sz " shs,x
. chs,x(1-0) } :
1T hs,x xJo(x@)dx—po—yh(1-{), ) (2.16}

o

; = 5152 f —52% _ a5y %8 | am5y X shs; x{ ~3x shs,x(

00, = - 2y — 1 e - - 2% 27
@0 ph* {p(x) [e ¢ _ e shex C shs,x

_gl(x)('ShSZX(l—C) _ shs x(l—C)_)] +w(x)[shs1x(; 3

she,x . shs; x shs, x
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shs,x¢
shs,x

she,x(1-8)  shsyx(1-0)
shs, x shs, x

)J}xh(xe)dx;
0t @1

The displacement u and stresses o,, and oge may be expressed similarly.

Superimposing Eqs. (2.4), (2.6) and (2.15) - (2.17) we obtain the representations for
the stress and displacement. Especially, the displa.cement w and the stresses ¢,, and o,
on the layer surfaces £ = 0 and { = 1 are given as:

- g2(X) (

G hw(e, 0) = C1 [ {p(x) [1 g, (9] —e0(¥) g2(x) o (x0) dx,
0

Giw(g, 1) = —C* [ w()To(xe)dx~ G, 12 -”‘—‘-;c”i (Po-+P2),
; |

© (2.18)
6::(0,0) = —h~* [ xp()To(xe)dx—p,,
(1]
0200, 1) = —h? [ x{p(0)gs(¥)+0®) [1 —gs()]}Ja(x0)dx — Po,
0
Gzr(Q: 0) = Uzr(Q, 1) = 0)
where
DPe = Po+yh, (2.19)
_ (I-g)(+g) chax—1—a?872(chfx—1)
gs(9) = 1- FTIZ = 1= shox+af~1shpx ’ 220
C = (k+1)(k—1)"2(s5* —s7Y), 2.21)

are pressure, known function and material parameter, respectively.

3. Boundary conditions

Consider axisymmetric contact problem of a thick plate of height # pressed onto
a rigid base with a cylindrical protrusion (Problem I, Fig. 1a) or a pit (Problem II, Fig. 1b).

a Zy(2),in b
) 1 5 ) Zt(z’).in o
° - 3]
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Ti sel Ti I

e e ] e | h{m_
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& _rie) ’

+—2n—(2g;)
+——2r~ (2420)

Fig. 1. Geometry of the problemﬁ (a) Problem I (b) Problem T
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The layer is pressed by uniform pressure and the effect of gravity is also taken into account.
We assume, that the magnitude of depth &, is small.

In the second problem, if the pressure is small (without the body force) and the lower
surface of the plate does not make contact with the bottom of the pit, the stress state of
the plate is equivalent to that of the plate with a penny-shaped crack, which is analyzed
by Corrins [11] and author [12] for isotropic and transversely isotropic cases, respectively,

In the present paper we analyze, in the second problem, a three-part mixed boundary
value problem where the applied pressure and the weight of the layer are so large, that
a part of the lower surface of the layer 0 € p < p;, makes contact with the bottom of
the pit.

The uncontact region is annular and it inner g; or outer g, radius is not known a priori
in second or first problem, respectively.

The radii g; and g, depend on p,, 9, &0, /2 and g, or g, Tespectively, and on the material
properties of the layer.

The boundary conditions are:

__tEOS OSQSQ‘,

w(o, 0) = 3.1
(e, 0) 0, 00 < 0, | (3.1 |
0:4(0,0) =0, o <0< or 0 <0 <ogo, (3.2)
dw(o, 0
—SngJ- = 0) Q =_QO or e = Ql) . (3'3)
dzr(@: 0) = Gzr(é’ 1) =0, oz 0, (34)
0::(9: 1) = —Po> ez 0, (35)

where the upper and the lower of the double sings denote the cases of the first and second
problems, respectively. With the help of Bqgs. (2.18) for the shearing stresses the boundary
conditions (3.4) are satisfied automatically.

4. The triple integral equations
Get a new unknown function #(x) and set as follows:
w(x) = ~g2(x)1(x), @)
p(x) = [1~g:(3N]1(x), ’
the boundary values of the displacement and stresses which correspond to Egs. (2.18) are
then given by

G hw(e,0) = C* [ 1(x)To(xg)dx,
0

[2e]

(0, 0) = —h% [ xt(x)[1 —gs () To(xe) dx~p..

0

4.2)

Gihw(g, 1) = C™* [ tx)g,(x)To(xg)dx~ G, b C“;cc“
0

'dzz(g’ l) = —Pg

(Po +p¢)’
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with the aid of the relation (2.20) in the first Eq. (2.18). The condition (3.5) is satified
automatically. .

The remaining boundary conditions (3.1) - (3.3) lead to the triple integral equations with
the unknown function 7(x):

0

{ieOa 0<9<Ql’ (43)

w(e, 0) = (G, Ch)™* [ 1(x)Js(x0)dx =
6 O QO S Qa

>4

0,.(0,0) = —h77 f xt(x) [1 - g3(x))do(xp)dx—p, =0, 0, <0 <o Of 0 <@ < g0,

0
4.4
under condition

dw(e,0)
dp B

—(G,Ch™" | xt(x)J(x0)dx =0, @=9, or pg=p. (45)
0
We use herc the series expansion method to solve the above integral equations. This
technique reduces the mixed boundary value problem to the solution of an infinite set
of simultaneous linear algebraic equations [4], which are easier to solve than complicated
integral equations.

5, Amalysis

We employ a nondimensional geometric parameters

¥ h
A=l g2 _
ro Ui e G.1)
These parameters describe the contact regions and are generally unknown quantities,
because r; or r, are unknown in the second and first problems, respectively.
Then, Egs. (4.3) and (4.4), and condition (4.5) can be rewritten to the form

@

N

< 4,

i EO > (1) (52)

w(g,0) = (G, Croy™* [ x)Jo(xe)dx = N

0
0 ’ Sea

0.:(0,0) = —rg* f xt(x) [1 —g3(xn)Jo(x@)dx~p. =0, A<pe<] or i<e<l,
0
(5.3)

dW(ey 0) - ___(Gl C’,O)——l f xt(x)Jl(xQ)dx = 0’ o= 1 or o= A. (54)

do 0

The function ga(x7) tends exponentially to zero as xz tends to infinity, is continuous
for any x € (0, «©), because « € R, and its limit is equal unity for xn — 0.
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When 7 tends to infinity i.e. in the case of the half-space, then the function g;(x7) identi-
cally equals zero. For the isotropic solid, i.e. when s, — 5, - 1 and k — 1, the fanction
ga(x) assumes the form:

x+x24e *shx

8s(x) = 2 sh2x+42x

(5.5

and does not depend on the material properties of the solid. For our solid the boundary
functions gs(x), g.(x) and g,(x) depend on the material properties and the solution of
the integral equations depends on the anisotropic properties of the material.

Now, interchanging the variable pin A< o< 1to ®in0< P

1
the variables ¢ and @ correspond each other and ¢ = 1is ® =O0and g = 1to @ = x.
We put the function #(x) in the form of integral as follows:

1
2

[14+A2—(1—A%)cos D)2, (5.6)

1
/2
where F(p) is an arbitrary continuous function in the interval 0 < y < =.

Substituting Eq. (5.7) into w(p, 0) of Eq. (5.2) and dw(p, 0)/do of Eq. (5.4), we obtain:

n
-~

1) = [ Fp)J,(xRydy, [+ 22— (1 — 22)cos ]z (5.7)
1]

w(@,0) = (G, Cro™ | — Fly) H(R—o)dy, (58)
0
dw(o, ‘ ; :
P — G [ FdR-0dy. (59)

0

Since the argument of the delta function is R—p # 0 in the intervals 0 < o < 2and | < ¢
because of 4 < R < 1, the radial gradient of the displacement w(g, 0) is always equal
to zero on the contact surface < 0, ))u(l, o) independent of the function F(y). On the
other hand, using

I, 0<p<4, (@O<K<AKRKL,
» 0<yp<¢, (R<o),

RN, g<y<n @20, 10
0, 1<op, (A<R<1<y),

we see that the displacement w(g, 0) is equal constant in the interval 0 < o < 4,is 2
function of ¢ in the interval 1 < p < 1 and equals zero in the remaining one 1 < p,
independent of the function F(y).

Integrating in Eq. (5.9), we obtain

dwe,0) 4 F(®)
do T G Cr(-1 smd’

0<P<n 51D

and zero in the contact region.
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Because the layer contacts smoothly at the edges o = 1 or ¢ = A with the 1igid base in
the first and second problems, respectively, the gradient of w(p, 0) must be finite at ¢ — 1
or p — A, respectively. That is equivalent to the conditions (5.4), which lead to

Flx) =0 or F0)=0 (5.12)
in the first and second problems, respectively.
The integral representation of the function #(x) by Eq. (5.7) satisfies the displacement
conditions, if the function F(y) satisfies first or second Eq. (5.12), respectively. It should
be noted that, rigorously speaking, we have two unknown functions F,(y) and F_ ()
for first and second problems, respectively. We assume also, that these unknown functions
take a finite and non-zero possitive or negative values in the intervals 0 < » < 7 or 0 <
< ¢ < m in the first and second problems, respectively. Then the displacement w(g, 0)
is continuous in the interval 1 < p < 1, it gradient takes definite and non-zero values
negative or positive in 1 < ¢ < 1, tends to minus infinity at contact edge p - A* or
infinity at p — 17, and equals to zero for ¢ = 1 or ¢ = 2 in the first and second problem
respectively, and consequently, the slope of w(p,0) at contact edges p = 1 and g = 1
coincides with that of the contact face. :

The function F(y) can be expressed by a Fourier cosine series

o
Fty) = perdR D) acosny. 0<y<m, (5.13)
n=0
where a, are unknown coefficients, which are to be determined by the boundary conditions
(5.3), and for which from the conditions (5.12), we obtain

M(-1a,=0 or Da, =0. (5.14)

n=0 n=0

Substituting Eq. (5.13) into Eq. (5.8) and integrating, we obtain the displacement:

Pe"oao
= 0<p<i,
G.C * &, e<i
0) = A<e<1l (515
w(g, 0) = | peroao 1 1 E'g_ - } ses 15
e i R
0, 1<p
and the relation
perOaO

Eq. (5.16) gives the relation between p., €0, 7o Or 1y and a, where ¢, depends on the
parameters of the contact regions A and 7 and on the properties of the material.
Substituting Eq. (5.13) into Eq. (5.7) and the result into Eqs. (5.3), and using some re-
lations for Bessel functions, we obtain:

3 oz
Hx) = —peréz ay é’ix)—, (5.17)

=0
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oeies® =1 e, f 0 -gsenl 2 ssroyde—p,  (s18)

n=0

o [ 1-a0n ZD goodr =1, 1<e<t o aso<t,

n=0 0

(5.19)
where

. x . x

Multiplying the both sides of Eq. (5.19) by g, using the formula xpJ,(xp) = 2[pJ, (x)]/dp,
integrating with respect to ¢ and using the formula d[Jo(xp)]/dx = —pJ,(xp), we obtain:

w 0Z,(x) 9Jo(x 1 ‘
f [1 —gs(xn] ( ). (:?(xe) dx = "'592“011 l<p<gl

n=0
or Agp<l, (52D
where ¢; (i = 1, 2) are unknown integral constants.
Using the Neumann’s formula [13]

Jo(x0) = Zo(x)+2 ZZ,,,(x)cosmtp, A<o<t (5.22)
in Eq. (5.21), we get
oz, '
Za. ( [l — 81O —— 3Z (x) = o(x) 2 0Zn(x) COqu)}
n=0 m=1{
= —T[l+12-(l——,12)cosq)]—c,, 0LKd<gxn, i=1,2. (5.23)

Assuming the coefficients a, as
a, =ad,—ca,, i=12 524

and equating the coefficients of cos my in both sides of Eq. (5.23), we obtain two infinite
systems of simultaneous equations for the determination of the coefficients a, and a,’)

> Gy Ay = —i[(lwww— Sa —malm],
=0 4 2
o (5.25)
Za:l’Amn=60my m=0,1,2,..
n=0
where A4,, denote the symmetrical matrix given by
0 oz '
f[l~g3( 7 - Z(x) gi_x) dx., m,n=0,1,2,.. (5.26)

and 8o, 0, are Kronecker’s delta.
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The constants ¢; are determined from Eqgs. (5.14) and (5.24) as:

Z (~1)'a—c, Z (—1yay =

n=0

Q0

’ 1t
§ ,.,-62 a, =0
n=0 ]

=0

(5.27)

in the first and second problems, respectively.

The presented three-part mixed boundary value problem given by Eqs. (5.2) and (5.3)
under condition (5.4) is, therefore, reduced to one of solving two infinite systems of si-
multaneous equations (5.25). Solving these equations for dissimilar parameters 4 and 7
of the contact regions and given material, we obtain the coefficients a, from Egs. (5.27) and
(5.24) in both problems.

The other quantities of physical interest will be determined in the next sections.

6. Displacement and stress components on the surfaces of the layer

- The displacement of the lower surface of the layer is given by Eqgs. (5.15) and of the
upper surface by Egs. (4.2) and (5.17)

We have
[ ]
= . Pelo n_ Gtz
we. D= -¢7c ZJ’"GZ 2 (Potph, 6.0
where
8Z x
f g2(xn)Jo(x0) ( ) dx, n=0,1,2,.. (6.2)

are the convergent integrals.
The stress o..(g, 1) = ~p, and o..(e, 0) corresponding to Eq. (5.18) is:

- 2
0.:(e, 0) = —pe[1+ D, (Gs+13+e—3513)], 63)

n=0

where

2
- f g5(xn) xJo(x0) Z(,;'ix) dx,
0

(6.4)

5= [ J(0Zdx, n=0,1,2,3,..
0

are the convergent integrals.

The integrals I3 can be evaluated by the results in the paper of the author [14] where
they are presented in analytical form by Gaussian hypergeometric functions. Since the
continuous functions g,(xn) and g3(xn) converge exponentially to zero as the value of

19 Mech. Teoret. i Stos. 1—2/84
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x becomes large, the integrals G} and G% can be easily evalualed numerically, for example
by the second rule of Simpson’s numerical integral formula.

For the half-space problem (n — ) these integrals are equal to zero. In this case
the values of the solutions of two infinite sets of linear equations and the stress o,,(g, 0)
do not depend on the material properties and the effect of transverse isotropy includes
in the displacement w and relation (5.16) by the material constant G, C

To determine a singularity of the contact stress, we consider its behaviour near the
contact edges into material regions. Using the asymptotic expansion of J,(xp) with large
value of x [13], we obtain

0Z,(%) _,
ox 7 l/ 1—
Thus Eq. (5.18) can be rewritten as follows.

0::(0,0) = —pe{1+ Za,,Gg f[ Z (x)
n=0

0

[lsmxl (=D cosx]+ O(x~1). 6.5

V___ —— === (AsinxA—(—1)"cosx ]Jo(xg)d_x_}.

2 ] "
ey [1/12 s H - Q)Z“" V— H(Q—I)Z( 1)'a ] (6.6)

n=0

It is apparent from Eq. (6.6) that the stress has the smgular parts such as (1—p)™2 in
the first or (9—1)*/2 in the second problem because of the conditions (5.14). The infinite
integrals with respect to x in Eq. (6.6) are convergent because their integrands are O(x—3/2
as x — o. In addition, in the first problem a,,(rq, 0) equals zero, whereas in the second
o.:(ri, 0) equals zero. Using Eq. (6.6) we can easily evaluate the stress concentration
factors.

7. The stress concentration factors

In analogy with the stress intensity factors in the annular crack problem, we define the
stress concentration factors at the edges of the contact regions by the expressions:

N, = lim V2re(A=0) {0.:00, O }pess
Q—+A"

. 7.1
No = lim V2ro(e=1) {0200, 0)Jon 1,
e~1t
or in terms of the coefficients a,:
N oo 22V 2
i
n]/l — A2
(1.2)

20,V 1o Zm
No = —Pelo_ N'(_1yreig,
¢ nl/l_lz n=0( e
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for the inner contact edge and the outer one in the first and second problems, respectively.
In the first problem o,,(ro, 0) equals zero, whereas in the second o,,(r;, 0) is zero.

8. The critical loads

Let p.r = (ph+po).r be the indentated load giving the state in which the layer contacts
the bottom of the pit only in the point r = 0.
Then, Egs. (5.16) and (2.19), give:

€ G; C
roae(A = 0)’ @1
where the upper and the lower of the double singns denote the cases of pressure and ten-
sion, respectively. When the load p, = yh+p, is above the critical value, the uncontact-
ing area in the second problem will be an annulus 4 < ¢ < 1, the inner circumference
of which will shrink with a decreasing load, and when the load is less than a critical value,
the uncontacting region will be a circle. After determining a, by Egs. (5.25), (5.24) and
(5.27), for A = 0 and known 7, we obtain the critical load.

For the special case ro = const, r; - 0 and 9 — oo (the haif-space problem), Eq. (5.19)
can be rewritten as follows

(yhipo)cr = -

% a,,of W[J,f (7)] xJo(xp)dx =1, 0<p<1. (8.2)
Using the formula '
sinx
—foo(x)dx( - )_—1, 0<p<l, (8.3)
we have
Dar; (i) _ 2 sy (8.4)
2 noXx
n=0
Making use of the formulae [13]
nf2 .
f Jo(xsin®)sin@dB = m:x ,
0
(8.5)
Jo(xsin®) = 12 (~~)+22 Jz( ) cos2n@,
we see that

2

\ | X 2
a,Ja (——) = —— [ ( )+2 Jz( )cos2n@] sin@do =

n=l

P CIES I

19*
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It is apparent from Eq. (8.6) that

_ 2 _4 b
o=~ b= 4n2—1"

n=1,2,3,.. (8.7)

are the solution of Eq. (8.2).
The solution (8.7) satisfies the second condition (5.14). Substituting the value @ = —~2/n
into Bq. (8.1), we get for larger values of h/r, :

7 €
(yhipo)cr = -2“ Gl C_",i- . (88)
0
Especially, if
7 €
Do Z Poer = a5 G, C’ﬁ, (8.9)
or
7 €
Po < Poer = yh—-5 G, C—-, (8.10)
2 To

for the pressure p, without the body force and for the tension p, and the weight y A,
respectively a part of the lower surface of the thick plate is in contact with the bottom
of the pit. When n = h/r, decreases, then the critical load also decreases. In the limiting
case of  — 0 the function gz(xn) tends to unity and the solution @, tends to infinity,
and consequently the critical value of the load tends to zero.

If p. < nCG € 4/2ry the elastic body does not make contact with the bottom of the
pit and the solutions are as follows:

2 , d {sinx )
f(x)="7;]7e"6a( < ),
wo, 0) = — 2 Lo [ T52 H(1 - g)
’ n G, C ’ E.11)
0..00,0) = —p, |1 - %Aarcsin —1~ +£~T£T H(e—1),
n 4 T ]/92_1
20,V ro
N, = _p__}i_‘)___

The formulas (8.11) agree with the results for the solid with a penny-shaped crack if we
replace-p, by p,, which are given by Collins [11] and author [12] for isotropic, i.e. C =
= 1/(1 ~»), and transversely isotropic case, respectively. In the special case for a half-
space problem and r; = 0, the contact stress and the stress concentration factor N, do
not depend on anisotropy of the material, whereas the displacement depends. In the layer
contact problem, the stress and displacement fields, and the stress concentration factor
depend on the material properties of the solid. By means of results present in the paper,
the effect of transverse isotropy may be examined.
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9. Numerical calculations

At present, we must determine the values A = r;/ry for given p,, €, h, r; or ro and
material constants. However, it is considerably difficult to determine the unknown ratio 4
by the above procedure. Therefore, we determine the relationship among p., €, and A
from Eq. (5.16) under the condition that the ratios of the inner to outer radius A = ry/rg
and 5 = hfro = h2/r; are given and solving the simultaneous equations (5.25).

To solve these equations we evaluate the infinite integrals A, involving the product
of four Bessel functions by the following method. The element A,,, of m-th row and
n-th column can be rewritten as

= | o 2 (2, A
0

- j B (2 (] - (2o, ©.1)
where
Ao = f i 200 5 2,000~
4 ’ A 1 1 . m--n 1
S = : S‘;‘l X1 3si2Ax,) + (~ 1) [""S I 1(2%)] 9.2)
A= (- 1)"][51“%“—81‘— L i 04+ A+ L —l)cx[x,(l—l)]h

and x,, is taken to be a very large value, and x, a large value.

The second term A,,, is obtained by using the asymptotic approximation of Bessel
function, integrating Eq. (9.2) by parts and using sine and cosine integral functions si(x)
- and ci(x). The first and third terms on the right hand side of Eq. (9.1) are integrated nu-
merically with sufficient convergence by means of Simpson’s rule taking x, = 500 and
xo = 20/an. The algebraic equations are solved by truncation, i.e. we calculate only the
first n roots of them. We can get numerically good results, taking » = 15 or n = 10 for
A<02 or 2> 0,2 and 5 > |, respectively, and n = 20 or n = 15 in the case 4 < 0,2
or 2 > 0,2 and < 1. With a decreasing degrec of anisotropy (E/E,, G/G,) the conver-
gence in the numerical calculation becomes slower. For E/E, € 1 and G/G, € lwe must
take more equations, respectively for E/E,, G/G; > | we can take less.

10. Numerical results

Numerical results show the relations between p,, €o, A, ri, and ro (in Problems I and 1)
in cadmium and magnesium single crystals and fiber-reinforced composite materials
such as E glass-epoxy and graphite-epoxy with fiber direction along z-axis, and they are



0 - 05 A=ri/ro 10

Fig. 2. Refations of p,, €o, &, r, and r, for dissimilar materials in Problem [

O 4
O_ o 05 A=y, 1,0

Fig. 3. Relations of p,, €o, /i, ri and r, for dissimilar materials in Problem IF

1294]
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12 | ’
{n>4,C;>4,5,M;;5,EG-E
1: >6G-E
{ /C,Tl=1
g

. LM, n=1
| EG-En=tiLn=1
3 | 6-E,n=1
75, \ ,.

N

/4

0
0 05 A=n/r, . 10

Fig. 4. The variation of N, with A for dissimilar materials and # = A/r, in Problem I

GE,n=1
\'\\QG’E,IJ}‘W

2
o -_005 \\
zZ3 e
o Min=1
Cn=1
n24,Ci24,5M; 35EG-EL, »6,6-E7
L L
0 05 A=n/1, 1,0

Fig. 5. The variation of Ny with A for dissimilar materials and % = I/ro in Problem 11

compared with those of the isotropic material [4] to show the effect of anisotropy. The
stress concentration factors are also shown graphically.
The elastic constant ¢;; given by HUNTINGTON [15] and CHEN [16] arc. used. The values
of s¢,8,, k are ’
1,58; 0,98; 1,85 1,41; 0,70; 2,78
L,67; 0,34; 12,7 1,36; 0,23; 214

7or cadmum, magnesium , E glass-epoxy, graphite-epoxy, respectively and for isotropic
material 1; 1; 1; G; = 10° N/m?, » = 0,30. ' '

As shown in Figs. 2 and 3 in each case, (1 —¥)p.ro/G; € increases with an increasing
A = rjry and tends to the case of an elastic half-space, with corresponding material, with
an increaing n = hjro. In each figure, the results- indicated by the chain line, show those
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for isotropic material. These results agree with the ones of Refs. [4.5], where the weight

1$
wi

omitted (p. — po). Figs 4 and 5 show the variation of the stress concentration factors
th A = ri/r, and 9 = hfr, for dissimilar materials. N; (for the protrusion) is always

greater than N, (for the pit) and becomes very large when A — 0. With the increasing of

4,

N; decreases and N, decreases slowly. The stress concentration factors are different

for presented material and become small (Ny) or larger (N;) as the layer becomes thick
under the same protrusion or pit dimension, converging to the same values for an infinite
body.

W N =

12.

13.
14,

16.
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Peswome

TPAHCBEPTAJIBHO-M3OTPOITHEIM CJIOM NPYOKHMAEMBINH K XECTKOMY
OCHOBAHMIO C BLICTYIIOM MJIM BIIANVHOL

ABTOp peuusn chopMyMpPOBaHHbIE B 3arNIABHE SANAYM, B KOTOPbIX PHHAN BO BHAMaHNE 3(hdexTht

TpancdepTanbHOl AHM3OTPONMM K COBCTBEHHOTO BECa, NPH IOMOLM MHTETPANbHLIX NpeobpasoBaHmi

Xa

HKEJIA H IIOTEHIHAJIOB IIepEMEISHMA . CMCIHBHHYIO KPacByI1o 3a0a4y CBEACHO K TpOﬁHbIM MHTCrpAJIb-
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HBIM YPABHEHHMAM M HEKOTODbIM YCTIOBHSM. B pesyibrare npecraBienms HEHSBECTHOR (YHKIMHU B BUAE
panga Pypbe ¢ HEONPENEIEHHBIMU NOKA KO3(OHIHEHTAMH 3TH YPABHEHMS IPHBOIATCA X PEUICHHAIO JBYX
OeCHOHEUHBIX CHCYEM JMHEeHbIX anreGpanuecKuX ypaBHeHAM OTHOCHTENHHO Ko3(hduumesToB psaja
PDypee.

B ka)xzoik M3 yKA3aHHBIX 33718V KOKTAKTHEIE JABJIEHHUST HMEIOT CAHIYJIPHOCTh Ha OQHOM M3 PaHHL(
obmacti wonrakTa. OGIacTh KOHTAKTA PaclafaeTcs HA ABa YUACTKE, DasieliseMbIX KONbUEBOH 067acThio
C HeE3BECTHBEIMH BHEUIHMM JTHO0 BHYTPEHHBIM PAafHyCaMH.

Uycrnennble pe3ysILTaThi PESCTABIIAIOT 3aBACHMOCTH MEKY CHXATHEM I COGCTBEHHBIM BECOM IUTAC-
THHKH, €€ TONIIMHON, KONLUEBOH 06NACTHIO B BENHMUMHAMHK BRICTYIA JJIM BNAJMHBI OCHOBAHMSA B KpMC-
Tanax KaJIMUA K MarHAs ¥ B KOMIIO3HTHBIX MATepHasaX apMMPOBAHHLIX BONOKHaMH. CpaBHEHO MX C pe-
SYJLTATAMH AT N3OTPONHOM Cpenbl, uToObl BLIACHUTE 2(hderT apnsorponnii. I'padidecku wmoOCTpR-
pyerca AsMeRenne Ko3Q(UIHEHTOB KOHIIEHTPALMHA HANPSIKeHUA Ha KPasxX BHICTYIIA WIH BOAAWELI B 38-
BECHMOCTH OT CONTHOIIEHHA PafdyCOB KOHTAKTHOH 0GJIACTH AJISI PAasHLIX MaTEpPRANOB M TOIUKMH ILIac-
THHKH.

Streszczenie

WARSTWA POPRZECZNIE IZOTROPOWA DOCISKANA DO SZTYWNEGO PODLOZA
Z WZNIESIENIEM ALBO ZAGLEBIENIEM

Autor rozwiazal sformulowane w tytule zagadnienia, w ktérych uwzglednil efekty poprzecznej ani-
zotropii i sily masowej, za pomoca transformaciji Hankela i potencjalow przemieszczenia. Mieszane za-
gadnienie brzegowe sprowadzono do rozwigzania potréjnych réwnan catkowych i pewnych warunkéw.
Te z kolei sprowadzono do dwoch ukladow nieskoriczonych réwnan algebraicznych liniowych za pomoca
rozkladu funkcji okreslajacej stany napreZenia i przemieszczenia w kosinusowy szereg Fouriera. Czg$é
dolnej powierzchni plyty, ktéra nie kontaktuje sie z podlozem, jest pierfcieniem, ktérego promienie we-
wnetrzny albo zewngtrzny nie s3 znane a priori 1 zostaly wyznaczone.

Wyniki liczbowe przedstawiajg zaleZnosci miedzy ci$nieniem i cigzarem plyty, jej gruboécia, pierécie-
niowym obszarem i wielko$ciami wzniesienia albo zaglebienia podioza w materialach z kadmu, magnezu
i kompozytéw zbrojonych widknami. Poréwnywano je z wynikami dla ciala izotropowego w celu wyjas-
nienia efektu anizotropii. Graficznie pokazano takze jak zmieniaja si¢ wspoéiczynniki koncentracji napre-
zenia na brzegach wzniesienia lub zaglebienia w zaleZnosci od stosunku promieni okreSlajgcych obszary
kontaktu dla réinych materialéw i gruboéci warstwy.

Praca zostala zlozona w Redakcji dnia 1 lipca 1982 roku



